Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:"

Transcripción

1 VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes escalares: la masa, volumen, área, presón, trabao, etc. Las Magntudes Vectorales: son aquellas que quedan defndas además de su valor numérco (escalar) por otras característcas como dreccón y sentdo, se representa por medo de un elemento matemátco llamado vector. Eemplo de magntudes vectorales: el desplazamento, velocdad, aceleracón, fuerza, etc..- Defncón y Elementos de un Vector: Un vector es un segmento de recta que posee magntud, dreccón y sentdo y que se suman medante el método del paralelogramo. Se denotan con letras mayúsculas por eemplo:,, o tambén, CD. Elementos de un Vector: 1. La Magntud o modulo de un Vector: representa la dstanca del orgen al extremo (sempre es postva) y se denota por.. La Dreccón del Vector: es el grado de nclnacón θ (ángulo) meddo con respecto a la horzontal 3. Punto de plcacón u Orgen: Es el punto donde se consdera aplcada la magntud a quen el vector representa. 4. Sentdo: Se representa por una punta de flecha en el extremo del vector. El sentdo puede ser: haca la derecha, haca la zquerda, haca arrba, haca abao. Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

2 Magntud Sentdo (extremo) Orgen θ Dreccón Línea de ccón 3.- Tpos de Vectores: a. Vector Fo: actúa en un punto específco. b. Vector Deslzante: se mueve a lo largo de su línea de accón. c. Vector Lbre: se mueve en forma paralela mantenendo su magntud y dreccón. d. Vectores Iguales (equpolentes): poseen la msma magntud, dreccón y sentdo. e. Vector Negatvo u Opuesto: poseen la msma magntud y sentdo contraro. f. Vector Untaro: es un vector lbre que tene magntud gual a la undad y necesta de otro para quedar defndo, esta representado por: U U 4.- Operacones con Vectores: Suma y esta de Vectores Suma de Vectores: Debe tenerse en cuenta que solo pueden sumarse vectores que representen las msmas cantdades físcas. Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

3 Suma de Vectores por Métodos Geométrcos. a) Método del Trangulo: por el extremo de un vector trazamos el otro vector en forma paralela, el vector resultante va desde el orgen del prmero hasta el extremo del segundo. + b) Método del Polígono: Cuando se suman más de dos vectores se procede de la sguente forma: se une el orgen de segundo vector con la punta del prmero, el orgen del tercero con la punta del segundo y así sucesvamente. El vector suma o vector resultante es aquel que se traza desde el orgen del prmer vector hasta la punta del últmo vector. C C c) Método del Paralelogramo: Para sumar dos vectores y trasladamos los vectores a escala, hacendo concdr sus orígenes; luego se traza una recta paralela al vector que pase por la punta de, después se traza una paralela a que pase por la punta de. El vector resultante se traza desde el orgen hasta el punto de nterseccón de ambas rectas. La magntud del vector resultante vene a ser la longtud de la dagonal del paralelogramo que forma los vectores y. Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

4 + S los dos vectores tenen la msma dreccón (colneales), la aplcabldad de la ley del paralelogramo o la ley del trangulo se reduce a una suma escalar de las magntudes de los vectores (por el extremo de un vector colocamos el orgen del otro vector). + Propedades de la Suma de Vectores. Propedad Conmutatva: Cuando se suman dos vectores la suma es ndependente del orden de los factores. Propedad socatva: S se suman tres o mas vectores, su suma es ndependente de la manera como se agrupen los vectores ndvduales. C C Negatvo de un Vector: El negatvo de un vector es el vector (-), tenen la msma magntud pero apuntan en dreccones opuestas. Dferenca de Vectores: Es un caso partcular de la suma de vectores, consste en sumar a un vector el negatvo u opuesto del otro. Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

5 Propedad Conmutatva. =+=+ Propedad socatva. C C (+)+C + +(+C) +C Negatvo de un Vector. - Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

6 Dferenca de Vectores (-) - Suma de Vectores por Métodos nalítcos. a) Ley del eno: En todo trangulo el cuadrado de un lado es gual a la suma de los cuadrados de los otros dos menos el doble producto de ellos por el coseno del ángulo que forman. θ α θ =+ β Consderando uno de los trángulos cuyos lados son, y, tenemos: Entonces: 18 * * * Sen*Sen 18 1 * * 18 * * * * * Sen18 *Sen Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

7 b) Ley del Seno: Podemos utlzarla ben sea para determnar el vector (resultante) o su dreccón con respecto a un ee de referenca. elaconando los lados del trangulo con los senos de sus ángulos opuestos, tenemos: Sen Sen Sen Componentes de un Vector Y Vectores Untaros. Las componentes de un vector son sus proyeccones a lo largo de los ees de un sstema de coordenadas rectangular. Consderemos un vector, en el plano xy que forma un ángulo θ con el ee X +, (como se muestra en la fgura). El vector se puede expresar como la suma de otros dos vectores x y y llamados vectores componentes de. El vector componente x representa la proyeccón de a lo largo del ee X, mentras que y representa la proyeccón de a lo largo del ee Y. Las componentes de un vector pueden ser postvas o negatvas dependendo de su dreccón, pero sus magntudes sempre son postvas. Y y θ x X Por trgonometría tenemos que: Sen x y Por lo tanto las componentes rectangulares de están dadas por: x y * *Sen Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

8 Estas componentes forman los lados de un trangulo donde la hpotenusa, representa la magntud de, utlzando el teorema de Ptágoras: Su dreccón vene dada por: x y y tan x y arctan x Los sgnos de las componentes rectangulares dependen del ángulo θ, por eemplo s θ = 1º x es negatva y y es postva, s θ = 5º x y y son negatvas. (La sguente fgura resuma los sgnos de las componentes cuando cae en lo dferences cuadrantes). y II x - y + I x + y + x III x - y - IV x + y - Las cantdades vectorales generalmente se expresan en térmnos de vectores untaros. Un vector untaro es un vector sn dmensones y de longtud gual a la undad, se emplea para especfcar una dreccón dada en el espaco. Se utlzan los símbolos,,, para representar los vectores untaros que apuntan en las Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

9 dreccones x, y, z respectvamente. Los vectores untaros son perpendculares entre s, y su magntud es gual a la undad. Podemos entonces expresar el vector e térmnos de sus componentes y de los vectores untaros: x y Donde: x y y: Son las componentes vectorales de. x y y: Son las componentes rectangulares de. Vectores Untaros. Y X Z Método de la Componentes. Dados los vectores: =x + y y =x + y; el vector suma o resultante = + se obtene sumando los componentes X y Y por separado. x x y y La resultante tendrá dos componentes: x y x x y y x y Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

10 La Magntud de la resultante vendrá dada por: x y Su dreccón con respecto al ee X: arctan y x Se procede de gual forma en el caso de vectores en tres dmensones. x y z x y z x x y y z z x y z Vector Untaro en la Dreccón de Cualquer Vector. La Dreccón de cualquer vector, puede representarse por otro vector con la msma dreccón magntud gual a a undad, desgnado con la letra U, y puede determnarse dvdendo entre su magntud. U De esta expresón, podemos observar que para escrbr correctamente un vector necestamos conocer su magntud y un vector untaro que nos ndque su dreccón. *U Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

11 Componentes ectangulares de un Vector en el Espaco. a) Cuando un vector esta orentado en el espaco, tendrá tres componentes rectangulares: Y X Z x y z La magntud será: x y z Para calcular las componentes rectangulares de un vector en el espaco, se multplca el modulo del vector por el coseno del ángulo que forma el vector con cada uno de los ees, llamados ángulos drectores (cosenos drectores). x y z * * * x y z y z x y z Los cósenos drectores cumplen la relacón: x X y z 1 Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

12 Una forma senclla de obtener los cosenos drectores del vector (dreccón), es encontrando un vector untaro en la dreccón de, tenemos: U U x y z relacón. Como la magntud de un vector untaro es 1 por eso es la razón de la b) S tenemos dos puntos en el espaco sus componentes rectangulares serán: Y (x, y, z) (x1, y1, z1) X Z x x1 y y1 z z1 Multplcacón de Vectores. 1.- Multplcacón de un Escalar por un Vector. El producto de un vector, por un escalar (n), da como resultado otro vector con la msma dreccón de s el escalar es postvo, y con dreccón contrara s el escalar es negatvo. Su magntud será tantas veces mayor o menor como lo ndque el valor de (n). Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

13 Eemplo: Dado el vector =+3-7 determne 3*; -1/* 3* = 3*(+3-7) = ½* = -½*(+3-7) = Multplcacón de dos Vectores de tal forma que se Obtenga como resultado un escalar: Producto Escalar: El producto escalar de dos vectores y se smbolza * (producto punto). Se defne como la multplcacón de la magntud de por la magntud de por el coseno del ángulo que forman y, da como resultado una cantdad escalar. * * * θ Propedades: 1. Es conmutatvo. * *.. Es dstrbutvo con respecto a la suma. C * C* C* 3. El producto punto de un vector multplcado por s msmo es el cuadrado de su magntud, es decr: * S Entonces: * * * 1 4. S dos vectores son perpendculares, su producto escalar es gual a cero, ya que: 9 º Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

14 5. Los productos escalares de los vectores untaros, y. *=*=*=1. 6. Ya que los vectores,, son perpendculares entre s, se tene que: * * * * * * 7. El producto escalar se puede utlzar para encontrar la proyeccón escalar de un vector sobre otro. La proyeccón de un vector sobre un ee es gual al producto escalar de dcho vector por un vector untaro en la dreccón postva del ee que contene al vector. θ *θ * * Entoces: P P * * * * * * * * 8. S se tene dos vectores =x+y+z y =x+y+z su producto escalar esta dado por: * x x y y x * x z z y * y z * z Es gual a la suma de los productos de sus respectvas componentes. Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

15 3.- Multplcacón de dos Vectores de tal forma que se Obtenga como resultado un Vector: Producto Vectoral: el producto vectoral o producto cruz de dos vectores y, denotado por X, cuya longtud o magntud es gual al producto de sus módulos por el seno del ángulo que ellos dos forman. El sentdo del vector X se obtene medante la regla de la mano derecha. La magntud del vector X, tambén representa el área del paralelogramo formado por y. X * *Sen X θ Propedades: 1. No cumple con la propedad conmutatva. X X X X. S dos vectores son paralelos su producto vectoral es gual a cero. Sen X * *Sen 3. Es dstrbutvo con respecto a la suma: CX CX CX 4. Producto vectoral de vectores untaros: x x x Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

16 Consderando el sentdo anthoraro postvo: x ; x ; x Consderando el sentdo horaro negatvo: x ; x ; x (+) - (-) El producto vectoral de dos vectores y se resolverá de la sguente forma: 1º º x y z x y z (-) (+) y*z z*y x*z z*x x*y y*x 6. Se puede demostrar que la magntud del producto vectoral, representa la área del paralelogramo formado por los vectores y. h θ rea * h h *Sen Susttuyendo : rea * *Sen x Unversdad de Orente Venezuela Copyrght 9 Prof.: Ing. Isandar rneodo

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Fuerzas distribuidas. 2. Momento de inercia

Fuerzas distribuidas. 2. Momento de inercia Dpto. Físca y Mecánca Fuerzas dstrbudas d Centro de gravedad centro de masas. Centro de gravedad, centro de masas. Momento de nerca ntroduccón. Fuerzas dstrbudas Cálculo de centrodes y centros de gravedad

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA PÁCTICA Nº 5. CICUITOS DE COIENTE CONTINUA OBJETIVO Analzar el funconamento de dferentes crcutos resstvos empleando la Ley de Ohm y las Leyes de Krchhoff. FUNDAMENTO TEÓICO Corrente Eléctrca Una corrente

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

PROBLEMARIO DE CÁLCULO 10 Y CÁLCULO 20

PROBLEMARIO DE CÁLCULO 10 Y CÁLCULO 20 Calculo Pro. Eduardo Rondón Pro. EDUARDO RONDÓN PROBLEMARIO DE CÁLCULO Y CÁLCULO Calculo Pro. Eduardo Rondón CÁLCULO Calculo Pro. Eduardo Rondón CONJUNTOS Y SISTEMAS NUMÉRICOS Sea A: {, -,, }, B:{,, }

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

Descripción de la deformación y de las fuerzas en un medio continuo

Descripción de la deformación y de las fuerzas en un medio continuo Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

Tema 2 : DEFORMACIONES

Tema 2 : DEFORMACIONES Tema : eformacones Tema : EFRMACINES F F 3 F / u u u 3 3 3 / 3 / F n Prof.: Jame Santo omngo Santllana E.P.S.-Zamora (U.SAL.) - 008 Tema : eformacones..- INTRUCCIÓN Los cuerpos se deforman debdo a la accón

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

Introducción a Vacío

Introducción a Vacío Introduccón a Vacío Sstema de vacío Partes generales de un sstema de vacío: Fgura 1: Sstema de vacío con bomba mecánca y dfusora Fgura 2: Prncpo de funconamento de la bomba mecánca La Fg. 2 muestra el

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

Hidrología superficial

Hidrología superficial Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Unversdad Dego Portales Profesor: Carlos R. Ptta Hasta este momento nos hemos enfocado en juegos en los cuales cualquer nformacón que es conocda por un jugador es conocda por todos los demás (es decr,

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

Mecánica y fluidos. Temario. Webpage:

Mecánica y fluidos. Temario. Webpage: Mecánica fluidos Webpage: http://paginas.fisica.uson.m/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares vectores. 2. Representación

Más detalles

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo VII. Corrente Alterna Introduccón: Cas la totaldad de la energía eléctrca utlzada actualmente se produce medante generadores eléctrcos de corrente alterna, la cual tene la gran ventaja sobre la corrente

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Tipos de amplificadores según su ganancia

Tipos de amplificadores según su ganancia Tpos de amplfcadores según su gananca Electrónca nalógca: ealmentacón Todo amplfcador que posea unas resstencas de entrada () y de salda (o) dstntas de cero y dstntas de nfnto se puede representar de cuatro

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

(p +Q 222 P +Q P +Q )

(p +Q 222 P +Q P +Q ) TEMA S.- PUNTOS. RECTAS Y PLANOS EN EL ESPACO. TEMA 5.- PUNTOS, RECTAS Y PLANOS EN EL ESPACO..- PUNTOS. Sstema de referenca: Un sstema de referenca en el espaco 93 consste en un conjunto formado por un

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Primer Parcial 2000: ( n ) 2. Introducción a la Optica (Agrimensura)

Primer Parcial 2000: ( n ) 2. Introducción a la Optica (Agrimensura) Introduccón a la Optca (Agrmensura) Prmer Parcal 2000: Ejercco 1 (5 puntos): Se consdera la lámna transparente de la fgura, de índce de refraxón n'. El efecto de colocar la msma en la trayectora del rayo,

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles