Métodos directos para resolver sistemas de ecuaciones lineales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos directos para resolver sistemas de ecuaciones lineales"

Transcripción

1 Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente calcular el número de las multiplicaciones y divisiones (juntas). Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops. Entrada: x, y R n. Salida: vector x + y. 2. Programación: el producto de un escalar por un vector. Escriba una función que calcule αx, donde α R, x R n. Calcule el número de flops. Entrada: α R, x R n. Salida: vector αx. 3. Programación: axpy. Escriba una función que realice la operación αx + y, donde α R, x, y R n. Calcule el número de flops. Entrada: α R, x, y R n. Salida: vector αx + y. Producto interno de vectores 4. Programación: producto interno de vectores. Escriba una función que calcule x i y i, i=1 donde x, y R n. Calcule el número de flops. Entrada: x, y R n. Salida: x i y i. i=1 Métodos directos para resolver sistemas lineales, problemas para examen, página 1 de 11

2 Producto diádico de vectores 5. Producto diádico de dos vectores. Sean a R m, b R n. El producto diádico de a y b se define como la matriz ab = [ a j b k ] m,n j,k=1. Esta matriz también se llama el producto tensorial de a y b y se denota por a b. 6. Programación: producto diádico de vectores. Escriba una función que calcule el producto diádico de dos vectores dados. Entrada: x R m, y R n. Salida: matriz A M m n (R) tal que A i,j = x i y j para todos i {1,..., m}, j {1,..., n}. Multiplicación de matrices por vectores 7. Definición. Sea A M m n (R) y sea b R n. Escriba la definición del producto Ab: Ab, (Ab) i = }{{}?? j=? }{{}? 8. Cada componente del producto de una matriz por un vector se expresa como un producto interno. Sea A M m n (R) y sea b R n. Muestre que cada componente del producto Ab se puede escribir como un producto interno de ciertos vectores. 9. Programación: multiplicación de una matriz por un vector, versión con producto interno. Escriba una función que calcule el producto de una matriz por un vector usando la fórmula obtenida en el problema anterior. 10. El producto de una matriz por un vector es una combinación lineal de las columnas de la matriz. Sea A M m n (R) y sea b R n. Escriba el producto Ab como una combinación lineal de las columnas de la matriz A. 11. Programación: producto de una matriz por un vector, versión por columnas. Basándose en la fórmula del ejercicio anterior escriba una función de dos argumentos A y b, donde A M m n (R), b R n, que calcule el producto Ab trabajando con las columnas de la matriz A y usando operaciones axpy de nivel Sea A M m n (R) y sean x, y R n. Demuestre que A(x + y) = Ax + Ay. 13. Sea A M m n (R), sea x R n y sea λ R. Demuestre que A(λx) = λax.. Métodos directos para resolver sistemas lineales, problemas para examen, página 2 de 11

3 Varias formas de escribir el producto de matrices 14. Sea A M m n (R) y sea B M n p (R). Demuestre la siguiente fórmula para el i-ésimo renglón del producto AB: (AB) i, = A i, B. 15. Sea A M m n (R) y sea B M n p (R). Demuestre la siguiente fórmula para la j-ésima columna del producto AB: (AB),j = AB,j. 16. Escriba funciones calculen el producto de matrices usando las fórmulas de los problemas anteriores. 17. Sea A M m n (R) y sea B M n p (R). Muestre que cada columna del producto AB es una combinación lineal de las columnas de A: (AB),j = B?,? A,k. k=1 Muestre cómo funciona la fórmula para matrices generales de tamaños pequeños (m = 2, n = 3, p = 4). 18. Sea A M m n (R) y sea B M n p (R). Muestre que cada renglón del producto AB es una combinación lineal de los renglones de B: (AB) i, = A?,? B k,. k=1 Muestre cómo funciona la fórmula para matrices generales de tamaños pequeños (m = 2, n = 3, p = 4). 19. Escriba funciones que calculen el producto de matrices usando las fórmulas de los problemas anteriores. 20. Producto de matrices como una combinación lineal de productos diádicos. Sea A M m n (R) y sea B M n p (R). Muestre con ejemplos y luego con un razonamiento formal que AB = A,k B k,. Escriba una función que calcule el producto matrices por esta fórmula. k=1 Métodos directos para resolver sistemas lineales, problemas para examen, página 3 de 11

4 Matriz transpuesta 21. Matriz transpuesta del producto de matrices. Sea A M m n (R) y sea B M n p (R). Demuestre que (AB) = B A. Traza 22. La traza del producto no depende del orden de los factores. Sea A M m n (R) y sea B M n m (R). Demuestre que tr(ab) = tr(ba). Matrices simétricas 23. Sea A M n (R). Demuestre que existe un único par de matrices B, C M n (R) tales que B es simétrica, C es antisimétrica y A = B + C. 24. Producto de matrices simétricas. Determine si el producto AB siempre es una matriz simétrica para cualesquiera matrices simétricas A, B M n (R) o no. Símbolo delta de Kronecker 25. Propiedad principal del símbolo delta de Kronecker. Simplifique la suma: δ k,j a k. k=1 Considere dos casos: 1) j {1,..., n} y 2) j / {1,..., n}. 26. Base canónica de R n. Sea n un número fijo y sea p {1,..., n}. Denotemos por e p al vector del espacio R n cuya p-ésima componente es 1 y todas las demás son 0. Exprese la j-ésima componente del vector e p en términos del símbolo de Kronecker: (e p ) j =? 27. Producto de una matriz por un vector de la base canónica. Enuncie y demuestre la fórmula para el producto Ae p, donde A M m n (R) y e p es el p-ésimo vector de la base canónica de R n. Métodos directos para resolver sistemas lineales, problemas para examen, página 4 de 11

5 28. Producto de un vector de la base canónica por una matriz. Enuncie y demuestre la fórmula para el producto e p A, donde A M m n (R) y e p es el p-ésimo vector de la base canónica de R m. 29. Producto de una matriz por vectores de la base canónica por ambos lados. Enuncie y demuestre la fórmula para el producto e p Ae q, donde A M m n (R), p {1,..., m}, q {1,..., n}, e p es el p-ésimo vector de la base canónica de R m, e q es el q-ésimo vector de la base canónica de R n. Notación (matrices básicas). Sean m, n {1, 2,...} algunos números fijos. Para cualesquiera p {1,..., m}, q {1,..., n} definamos la matriz E p,q mediante la siguiente regla: E p,q = [ δ i,p δ j,q ] m,n i,j=1. Para m = 3, n = 3 escriba las matrices E 1,3, E 2,2 y E 3, Tabla de multiplicación de matrices básicas. Calcule la tabla de multiplicación de matrices básicas para m = n = 2: E 1,1 E 1,2 E 2,1 E 2,2 E 1,1 E 1,2 E 2,1 E 2,2 Enuncie y demuestre la fórmula general para el producto E p,q E r,s. 31. Matrices básicas como productos diádico de vectores básicos. Sean p {1,..., m}, q {1,..., n}. Exprese la matriz E p,q como el producto diádico ab de algunos vectores básicos. 32. Matriz identidad y su propiedad principal. Sea A M m n (R). Demuestre que I m A = A, AI n = A. Métodos directos para resolver sistemas lineales, problemas para examen, página 5 de 11

6 Matrices de permutación Definición (matriz de permutación). Sea ϕ S n. Entonces la matriz P ϕ M n (R) se define de la siguiente manera: P ϕ = [ δ ϕ(i),j ] n i,j= Producto de una matriz de permutación por un vector. Sean ϕ S n, v R n y j {1,..., n}. Deduzca una fórmula para (P ϕ v) j. 34. Producto de matrices de permutación. Sean ϕ, ψ S n. Demuestre que Indicaciones: P ϕ P ψ = P ψϕ. Pruebe la fórmula para n = 5, con dos permutaciones que no conmutan. En el caso general deduzca una fórmula para (P ϕ P ψ ) p,q, usando la definición del producto de matrices, la definición de la matriz de permutación y la regla para simplificar sumas con la delta de Kronecker. 35. Producto de una matriz de permutación por una matriz general. Sea A M m n (R) y sea ϕ S m. Explique cómo construir la matriz P ϕ A a partir de la matriz A. En algún lenguaje de programación escriba una función que lo haga. 36. Producto de una matriz general por una matriz de permutación. Sea A M m n (R) y sea ϕ S n. Explique cómo construir la matriz AP ϕ a partir de la matriz A. En algún lenguaje de programación escriba una función que lo haga. Métodos directos para resolver sistemas lineales, problemas para examen, página 6 de 11

7 Propiedades de la multiplicación de matrices 37. Demuestre la propiedad distributiva izquierda: si A M m n (R) y B, C M n p (R), entonces A(B + C) = AB + AC. 38. Demuestre la propiedad distributiva derecha: si A, B M m n (R) y C M n p (R), entonces (A + B)C = AC + BC. 39. Demuestre la propiedad asociativa: si A M m n (R), B M n p (R) y C M p q (R), entonces (AB)C = A(BC). 40. Demuestre la propiedad homogénea izquierda: si A M m n (R), B M n p (R) y λ R, entonces (λa)b = λ(ab). 41. Demuestre la propiedad homogénea derecha: si A M m n (R), B M n p (R) y λ R, entonces A(λB) = λ(ab). Propiedades raras de la multiplicación de matrices 42. Construya un ejemplo de matrices A, B M 2 (R) tales que AB BA. 43. Construya un ejemplo de matrices A, B M 2 (R) tales que A 0 2 2, B 0 2 2, AB = Construya un ejemplo de una matriz A M 2 (R) tal que A 0 2 2, A 2 = Construya un ejemplo de matrices A, B, C M 2 (R) tales que A B, C 0 2 2, AC = BC. Métodos directos para resolver sistemas lineales, problemas para examen, página 7 de 11

8 Matrices diagonales 46. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k= Producto de dos vectores por componentes. Sean a, b R n. Denotemos por a b al vector cuyas componentes son los productos de las componentes correspondientes de a y b: a b = [ a j b j ] n j= Operaciones con matrices diagonales. Sean a, b R n, λ R. Haga las siguientes operaciones con matrices diagonales (enuncie y demuestre las fórmulas): Matrices triangulares diag(a) + diag(b), λ diag(a), diag(a) diag(b). 49. Denotemos por ut n (R) al conjunto de las matrices triangulares superiores y por lt n (R) al conjunto de las matrices triangulares inferiores: { } ut n (R) := A M n (R): i, j {1,..., n} i > j A i,j = 0 ; lt n (R) := { } A M n (R): i, j {1,..., n} i < j A i,j = 0. Encuentre la intersección ut n (R) lt n (R). 50. Producto de matrices triangulares superiores. Sean A, B ut n (R). Demuestre que AB ut n (R). Enuncie y demuestre la fórmula para las entradas del producto AB. 51. Programación: producto de una matriz triangular inferior por un vector. Escriba una función que calcule el producto de una matriz triangular inferior por un vector aprovechando la estructura de la matriz triangular. En otras palabras, hay que omitir las operaciones con las entradas que son nulas por la definición de matriz triangular inferior. Calcule el número de flops. 52. Programación: producto una matriz triangular superior por un vector. Escriba una función que calcule el producto de una matriz triangular superior por un vector aprovechando la estructura de la matriz triangular. En otras palabras, hay que omitir las operaciones con las entradas que son nulas por la definición de matriz triangular superior. Calcule el número de flops. 53. Programación: producto de matrices triangulares superiores. Escriba una función que calcule el producto de matrices triangulares superiores aprovechando su estructura. En otras palabras, hay que omitir las operaciones con las entradas que son nulas por la definición de matriz triangular superior. Calcule el número de flops. Métodos directos para resolver sistemas lineales, problemas para examen, página 8 de 11

9 54. Programación: producto de matrices triangulares inferiores. Escriba una función que calcule el producto de matrices triangulares inferiores aprovechando su estructura. En otras palabras, hay que omitir las operaciones con las entradas que son nulas por la definición de matriz triangular inferior. Calcule el número de flops. 55. Criterio de invertibilidad de matrices triangulares superiores. Sea A ut n (R). Muestre que A es invertible si y sólo si todas sus entradas diagonales son no nulas. 56. Criterio de invertibilidad de matrices triangulares inferiores. Sea A lt n (R). Muestre que A es invertible si y sólo si todas sus entradas diagonales son no nulas. 57. Teorema sobre la inversa de una matriz unitriangular inferior. Sea A una matriz unitriangular inferior de orden n. Muestre que A 1 también es unitriangular inferior. Sugerencia: encontrar una cadena de operaciones elementales que transforman A en I n, luego expresar A 1 como un producto de ciertas matrices elementales y analizar su forma. 58. Teorema sobre la inversa de una matriz triangular superior. Sea A una matriz triangular superior de orden n con entradas diagonales no nulas. Muestre que A 1 también es triangular superior. Sugerencia: encontrar una cadena de operaciones elementales que transforman A en I n, luego expresar A 1 como un producto de ciertas matrices elementales y analizar su forma. Solución de sistemas de ecuaciones lineales, casos simples 59. Programación: solución de sistemas de ecuaciones lineales con matrices unitriangulares inferiores. Escriba una función que resuelva sistemas de ecuaciones lineales de la forma Lx = b, donde L LT n (R) es una matriz unitriangular inferior y b R n. Calcule el número de flops. 60. Programación: solución de sistemas de ecuaciones lineales con matrices triangulares inferiores. Escriba una función que resuelva sistemas de ecuaciones lineales de la forma Lx = b, donde L LT n (R) es una matriz triangular inferior y b R n. Calcule el número de flops. 61. Programación: solución de sistemas de ecuaciones lineales con matrices triangulares superiores. Escriba una función que resuelva sistemas de ecuaciones lineales de la forma Lx = b, donde L UT n (R) es una matriz triangular superior y b R n. Calcule el número de flops. 62. Programación: sistemas tridiagonales de ecuaciones lineales. Escriba una función que resuelva sistemas tridiagonales de ecuaciones lineales, usando Métodos directos para resolver sistemas lineales, problemas para examen, página 9 de 11

10 pivotes diagonales. Los datos iniciales son los vectores a, b, c, r de longitudes n, n 1, n 1, n, respectivamente. Por ejemplo, para n = 5, se trata del sistema a 1 b r 1 c 1 a 2 b r 2 0 c 2 a 3 b 3 0 r c 3 a 4 b 4 r c 4 a 5 r 5 Calcule el número de flops. Factorizaciones LU, Cholesky y PLU 63. Programación: factorización LU. Escriba una función que calcule la factorización LU de una matriz dada. Puede suponer que dicha factorización existe. Calcule el número de flops. 64. Teorema: unicidad de la factorización LU. Sea A una matriz cuadrada invertible. Demuestre que si A tiene una factorización LU, entonces esta factorización es única. 65. Definición: matriz estrictamente invertible. Una matriz cuadrada A de orden n se llama estrictamente invertible si para cada k {1,..., n} la submatriz A (1,...,k),(1,...,k) de la matriz A, ubicada en la intersección de sus primeros k renglones y k columnas, es invertible. En otras palabras, A es estrictamente invertible si todos sus menores principales líderes son distintos de cero. 66. Lema sobre las submatrices principales líderes del producto de una matriz triangular inferior por una matriz triangular superior. Sea A = LU, donde L es una matriz triangular inferior y U es una matriz triangular superior, todas de tamaño n n. Demuestre que para cada p {1,..., n} A(1 : p, 1 : p) = L(1 : p, 1 : p)u(1 : p, 1 : p). 67. Lema sobre los menores principales líderes en la eliminación de Gauss con pivotes diagonales. Sea A una matriz de tamaño n n y sea B una matriz obtenida de la matriz A al aplicar operaciones elementales de la forma R q + = µr p, con q > p. Demostrar que los menores principales líderes de la matriz B coinciden con los menores correspondientes de la matriz A, esto es, para cada p {1,..., n}, det B(1 : p, 1 : p) = det A(1 : p, 1 : p). 68. Teorema: criterio de existencia de una factorización LU. Sea A una matriz cuadrada invertible. Demuestre que A tiene una factorización LU si y sólo si A es estrictamente invertible. Métodos directos para resolver sistemas lineales, problemas para examen, página 10 de 11

11 69. Ejemplo de una matriz invertible que no tiene factorización LU. Construya una matriz de orden 3 que sea invertible, pero no tenga ninguna factorización LU. 70. Programación: factorización de Cholesky. Escriba una función que calcule el factor triangular inferior de Cholesky de una matriz dada (suponer que dicha factorización existe). Calcule el número de flops. 71. Teorema: criterio de existencia de una factorización de Cholesky. Sea A una matriz real cuadrada de orden n. Demuestre que las siguientes condiciones son equivalentes: A tiene una factorización de Cholesky A = LL, donde L es una matriz triangular inferior invertible. A es simétrica y positiva definida, esto es, A = A y x Ax > 0 para cada x R n \ {0}. 72. Programación: permutación de las componentes de un vector. Escriba una función que calcule el vector w = [ v ϕ(j) ] n j=1, donde v Rn es un vector dado y ϕ S n es una permutación dada como un arreglo ϕ(1),..., ϕ(n). 73. Programación: permutación de los renglones de una matriz. Escriba una función que calcule la matriz B = [ ] m,n A ϕ(j),k, donde A M j,k=1 m n(r) es una matriz dada y ϕ S m es una permutación dada como un arreglo ϕ(1),..., ϕ(m). 74. Programación: factorización PLU. Escriba una función que calcule una factorización PLU de la matriz dada A M n (R), usando el pivoteo por columna. Regresar la permutación que corresponde a la matriz P y las matrices L y U. Calcule el número de flops. 75. Programación: solución de sistemas de ecuaciones lineales usando la factorización PLU. Escriba una función que resuelva sistemas de ecuaciones lineales de la forma Ax = b usando una factorización PLU de la matriz dada A. Use funciones de los problemas anteriores. Calcule el número de flops. 76. Programación: inversión de una matriz unitriangular inferior. Escriba una función que calcule la inversa de la matriz dada L, donde L es una matriz cuadrada unitriangular inferior. Calcule el número de flops. 77. Programación: inversión de una matriz triangular superior. Escriba una función que calcule la inversa de la matriz dada L, donde L es una matriz cuadrada triangular superior. Calcule el número de flops. 78. Programación: cálculo del determinante de una matriz. Escriba una función que calcule el determinante de la matriz dada A. Use el pivoteo parcial por columna o el pivoteo por columna escalado. Sugerencia: simplifique la función que realiza la factorización PLU. Métodos directos para resolver sistemas lineales, problemas para examen, página 11 de 11

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Inversas de las matrices triangulares superiores

Inversas de las matrices triangulares superiores Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una

Más detalles

Producto de matrices triangulares superiores

Producto de matrices triangulares superiores Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices

MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices 55 Capítulo 3 MATRICES Martínez Héctor Jairo Sanabria Ana María Semestre 02, 2007 3 Introducción En los capítulos anteriores, utilizando la noción de matriz, simplificamos la representación de problemas

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Métodos para matrices especiales. Descomposición de Cholesky

Métodos para matrices especiales. Descomposición de Cholesky Métodos para matrices especiales. Descomposición de Cholesky MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@cimat.mx

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices y Determinantes

Matrices y Determinantes Matrices y Determinantes Definición de matriz Matriz Una matriz es un ente matemático equivalente a una tabla; es decir, es un arreglo de elementos de cualquier naturaleza (aunque, en general, suelen ser

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Matrices y Determinantes

Matrices y Determinantes Apuntes de Álgebra Lineal Capítulo 3 Matrices y Determinantes 31 Operaciones con matrices 311 Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Matrices y Determinantes

Matrices y Determinantes Tema 2 Matrices y Determinantes 21 Introducción Presentaremos en este tema las matrices y los determinantes, centrándonos en particualar en el caso de matrices constituidas por números reales 22 Matrices

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Propiedades de las operaciones lineales con matrices

Propiedades de las operaciones lineales con matrices Propiedades de las operaciones lineales con matrices Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en M m n (R). Requisitos. Operaciones lineales en R n, definición

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : III 1 / 8 Ejercicios sugeridos para : los temas de las clases del 5 y 7 de mayo de 2009. Temas : Matriz transpuesta. Matriz simétrica. Determinantes; propiedades de los determinantes. Matriz adjunta de

Más detalles

Tema 3 Resolución de Sistemas deecuaciones Lineales

Tema 3 Resolución de Sistemas deecuaciones Lineales Tema 3 Resolución de Sistemas de Ecuaciones Lineales E.T.S.I. Informática Indice 1 Introducción 2 Resolución de Sistemas Triangulares Triangulación por el Método de Gauss Variante de Gauss-Jordan Comentarios

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

La forma de denotar los elementos de una matriz ya la introdujimos en (1.11). Una matriz de m n ( m filas y n columnas ) es de la forma

La forma de denotar los elementos de una matriz ya la introdujimos en (1.11). Una matriz de m n ( m filas y n columnas ) es de la forma Capítulo 2 Álgebra de matrices 21 Operaciones con matrices La forma de denotar los elementos de una matriz ya la introdujimos en (111) Una matriz de m n ( m filas y n columnas ) es de la forma a 11 a 12

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Resumen de Teoría de Matrices

Resumen de Teoría de Matrices Resumen de Teoría de Matrices Rubén Alexis Sáez Morcillo Ana Isabel Martínez Domínguez 1 de Octubre de 2004 1. Matrices. Generalidades. Definición 1.1. Se llama matriz de orden m n sobre un cuerpo K a

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

I. Operaciones con matrices usando Mathematica

I. Operaciones con matrices usando Mathematica PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Notas del curso de Algebra Lineal I. Luis Valero Elizondo

Notas del curso de Algebra Lineal I. Luis Valero Elizondo Notas del curso de Algebra Lineal I Luis Valero Elizondo 11 de septiembre de 2008 Índice general 1. Sistemas de ecuaciones lineales. 4 1.1. Campos............................... 4 1.2. Sumatorias.............................

Más detalles

ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS

ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS ÁLGEBRA LINEAL, RESUMEN Y EJEMPLOS Héctor Manuel Mora Escobar hectormora@yahoo.com www.hectormora.info July 2, 2015 i ÍNDICE GENERAL Notación iv 1 Matrices 1 1.1 Definiciones iniciales.......................................

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Matriz identidad y su propiedad principal

Matriz identidad y su propiedad principal Matriz identidad y su propiedad principal Objetivos Dar la definición de la matriz identidad y establecer su propiedad principal Requisitos Notación para entradas de matrices, producto de matrices, la

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015.

Apuntes de álgebra lineal. Eduardo Liz Marzán. Enero de 2015. Apuntes de álgebra lineal Eduardo Liz Marzán Enero de 2015 Índice general 1 Introducción 7 11 Operaciones internas y estructura de cuerpo 7 12 Números complejos 8 13 Vectores 10 2 Matrices y determinantes

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles