UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA"

Transcripción

1 UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA PRACTICA N 1 CICLO RANKINE SIMPLE AUTOR ING. CARACCIOLO GÓMEZ

2 BREVE DESCRIPCION La práctica consiste en el análisis del ciclo Rankine como modelo para las plantas térmicas de generación de potencia a vapor. Los elemos principales de una planta térmica son: Caldera, Turbina, condensador y bomba. Se pueden utilizar como fluido de trabajo varias sustancias, mas la que se utiliza con mayor frecuencia por sus condiciones es el agua, ya que reúne ciertas características como optima trasferencia de calor, y el manejo de relativame bajas presiones, bajo costo, disponibilidad y alta alpia de vaporización. El fluido de trabajo se vaporiza y condensa alternadame. El objetivo de las crales térmicas de vapor es producir una cantidad considerable de potencial eléctrico. Para obtener este potencial, se utilizan turbinas de vapor cuyo fin es transformar la energía de flujo de vapor en energía mecánica, a través de un intercambio de cantidad de movimio re el fluido de trabajo (iéndase el vapor) y el rodete, órgano principal de la turbina, que cua con álabes los cuales tienen una forma particular para poder realizar el intercambio energético. Esta energía es aprovecada por un generador eléctrico que esta acoplado a la turbina. El vapor es obtenido producto de agregarle calor al fluido de trabajo que ra en la fase liquida a una caldera y sale en la fase de vapor a un temperatura y presión elevadas. Para obtener el calor se utilizan diferes tipo de combustibles los cuales pueden encontrarse en las fases solidas, liquidas o gaseosas. 1. Procesos del Ciclo Rankine Ideal Simple:

3 Proceso 1-2: Compresión Isoropica en una bomba. Proceso 2-3: Adición de Calor a Presión constante en la caldera. Proceso 3-4: Expansión Isoropica en la Turbina. Proceso 4-1: Recazo de calor a Presión constante en el condensador. 2. Ciclo Rankine Real: Los ciclos de Rankine idealizados tienen eficiencias próximas a la de Carnot. Esto no es verdad para las máquinas reales que operan según un ciclo Rankine. En las máquinas reales existen mucas irreversibilidades, principalme en la turbina y en la bomba. También debe notarse que se estudia la eficiencia del ciclo; con frecuencia, la eficiencia de las plantas de potencia se define en términos del trabajo (o energía eléctrica) regada por la planta en comparación con la energía obtenida del combustible que ra a la caldera y no de la energía agregada al fluido de trabajo. Esta eficiencia global de las plantas recibe el nombre de gasto específico de calor de la planta y se expresa frecueme en unidades mezcladas de Btu de energía demandada por kiloatt-ora de electricidad regada. Como la eficiencia de la caldera puede ser tan baja como un 60%, la eficiencia global de la planta resulta considerableme más baja que la eficiencia del ciclo. Entre las principales causas de irreversibilidades están la fricción del fluido y las pérdidas de calor acia los alrededores, que ocasionan: a) Perdidas por Fricción: La fricción del fluido ocasiona caídas de presión en la caldera, el condensador y las tuberías re los diversos compones. Para compensar las caídas en las presiones se requiere presiones más altas en el bombeo de agua. b) Perdidas de calor: Perdida de calor del vapor por los alrededores cuando éste circula por varios compones. c) Irreversibilidades en bombas y turbinas: Existen variaciones de ropía re la rada y salida. Ocasionando un aumo o disminución ropía.

4 Tratamio para las Ineficiencias en turbinas y bombas. El efecto de las irreversibilidades de la turbina y la bomba sobre el ciclo se analiza mediante el uso de las eficiencias adiabáticas de la bomba y de la turbina. Estas se definen como: Turbinas: La eficiencia de una turbina es la comparación re la rega de trabajo real y el trabajo producido por un proceso isrópico. La rada a la turbina corresponde a un estado específico y la salida debe ser a una presión dada. Turbina a, real s, iodeal sal ssal Bombas: En una bomba también se ace la comparación re el trabajo real y el isrópico. El funcionamio deseado en una bomba consiste en producir una cierta presión a la salida con una rada mínima de trabajo. Suponiendo que el trabajo real es adiabático, se observa que las irreversibilidades requieren más trabajo. La eficiencia de una bomba es. Bomba s, ideal a, real ssal sal NOTA: El subíndice S represa el proceso Isoropico. 3. Definiciones Básicas: Sistema Turbogenerador: Su función es transformar la energía en forma de vapor en energía mecánica de movimio, ya sea para generar electricidad, mover bombas, compresores re otros. Turbina con descarga atmosférica en vacio: Las turbinas de vapor transforman la energía potencial del vapor de tipo térmico, en energía mecánica de movimio. La energía potencial térmica disponible es la diferencia de alpías re el estado inicial del vapor, a la rada de la turbina, y su estado final, a la salida de la misma; esta diferencia de alpías se conoce como salto álpico o salto térmico. La transformación de energía cinética en energía mecánica se produce aciendo seguir al fluido una determinada trayectoria, (re álabes), de forma que su velocidad absoluta disminuya; cualquier cambio de magnitud o de dirección en dica velocidad, tiene que ser debido al efecto de una fuerza, que es la acción de los álabes de la corona sobre el fluido. A su vez, se puede decir también que todo cambio en la dirección o en la magnitud de la velocidad del fluido, originará un empuje sobre los álabes, de forma que, para cuando éstos vayan montados sobre una corona móvil, la potencia producida será

5 igual al producto de la velocidad tangencial de los álabes por la compone periférica de la fuerza. La acción y el movimio de los alabes de la turbina al cambiar la velocidad de flujo alteran la velocidad y energía molecular del vapor así como su presión y temperatura. Regulador automático crifugo: Consta de un elemo sensible a las variaciones de velocidad o sobre velocidad, actúa por medio de válvulas de cierre rápido cortando el suministro de vapor a la turbina. Sistema de Condensado: Su función es trasformar el vapor agotado que sale de la turbina para convertirla en agua condensada de recuperación para la caldera. Condensador: Es un intercambiador de calor, que utiliza agua fría (de una corrie natural o enfriada por una torre de enfriamio) para enfriar y condensar el vapor de escape de la turbina. Torre de Enfriamio: Tiene como finalidad enfriar una corrie de agua por vaporización parcial de esta con el siguie intercambio de calor sensible y late de una corrie de aire seco y frió que circula por el mismo aparato. Sistema de Generación de vapor: Tiene por objetivo suministrar tanta energía, al fluido de trabajo (agua), para la obtención de vapor. Generador de vapor: Son unidades que se utilizan para colocar a disponibilidad de un fluido, el calor de un combustible (fuel-oil, carbón, gas) y todos los elemos necesarios para transferir tanto calor como sea comercialme factible. Caldera: Área donde se trasfiera calor al fluido de trabajo para transformarlo en vapor. 4. Consideraciones de la Práctica: Objetivo de la Práctica: Determinar el rendimio térmico de la planta de generación de potencia a vapor de la UNEFM. Objetivos Específicos. Analizar el funcionamio de la planta térmica de la universidad. Realizar una comparación re el ciclo Rankine Real e Ideal. Determinar el calor la cantidad de calor transferido en la caldera. Obtener el trabajo real de la turbina. Determinar La eficiencia adiabática tanto de la turbina como la bomba. Obtener el porcaje de vapor a la salida de la turbina. Procedimios: Se colocara en servicio la planta térmica de vapor. Inicialme se debe medir la temperatura del agua que va a rar a la caldera. Con la ayuda del técnico, se

6 deberá suministrar agua a la caldera, al abrir la llave a la salida del tanque de alimación y encender la bomba de alimación acia la caldera, asta que llegue a su nivel máximo. Luego se procederá a encender el quemador una vez alcanzado una temperatura de estabilización en la caldera se procede anotar la presión la cual se tomara como la presión de rada. Después se abre la válvula de alimación de vapor acia el domo superior o tambor de vapor. Una vez que esté lleno el depósito de vapor se mide la presión de salida del mismo. Posteriorme se abre la válvula que alima vapor del depósito de vapor acia la turbina, momo en el cual se tomara la temperatura y presión de rada y salida en la turbina, bomba y condensador, ay que aclarar que la temperatura de salida de la caldera será tomada a la rada de la turbina. Las temperaturas para la turbina, condensador y bomba serán tomadas en el panel de control, miras que las presiones manométricas se anotaran de los manómetros acoplados a cada equipo. FORMATO DE TOMA DE DATOS. EQUIPO PRESION TEMPERATURA ENTRADA SALIDA ENTRADA SALIDA CALDERA TURBINA CONDENSADOR BOMBA FORMATO DE RESULTADOS: VARIABLES Qsum Qced Wreal Turbina UNIDADES RESULTADO Wideal Turbina ηturbina calidad Wreal bomba Wideal Bomba ηbomba ηtermica Planta real ηtermica Planta ideal Ecuaciones básicas: Qcaldera = sal Qcondensador = - sal Wturb = - sal Wbomba = sal Rendimio total de la planta:

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

TEMA III Primera Ley de la Termodinámica

TEMA III Primera Ley de la Termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TERMODIMANICA BASICA Primera Ley de la Termodinámica Profesor: Ing. Isaac Hernández

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en:

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en: CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA INTRODUCCION La conversión de energía es un proceso que tiene lugar en la biosfera. Sin embargo, los seres humanos a lo largo de la historia hemos

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

Eficiencia energética en instalaciones de aire acondicionado. José Carlos Caparó Jarufe Ingeniero Mecánico

Eficiencia energética en instalaciones de aire acondicionado. José Carlos Caparó Jarufe Ingeniero Mecánico Eficiencia energética en instalaciones de aire acondicionado José Carlos Caparó Jarufe Ingeniero Mecánico INTRODUCCIÓN El aire acondicionado se requiere para : Dar confort a las personas Acondicionar espacios

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

GENERADORES DE CICLO RANKINE. RESITE, S.L. C/ Navales, 51 Pol. Ind. Urtinsa II Alcorcon (MADRID)

GENERADORES DE CICLO RANKINE. RESITE, S.L. C/ Navales, 51 Pol. Ind. Urtinsa II Alcorcon (MADRID) GENERADORES DE CICLO RANKINE ORGÁNICO 28923 Alcorcon (MADRID) 1 WHG125 - Diseño o Estructural Turbo Expansor Flujo de entrada radial de etapa simple 30,000 rpm Requisitos energéticos: 835 kw Temp. Mínima:

Más detalles

INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO

INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO INGENIERÍA CIVIL MECÁNICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA SISTEMAS TÉRMICOS CÓDIGO 15158 NIVEL 07 EXPERIENCIA C- 582 CICLOS TERMODINÁMICOS OBJETIVO GENERAL: Familiarizar al alumno con el análisis,

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

Tema 4. Máquinas Térmicas III

Tema 4. Máquinas Térmicas III Asignatura: Tema 4. Máquinas Térmicas III 1. Máquinas Frigoríficas 2. Ciclo de refrigeración por compresión de vapor 3. Ciclo de refrigeración por absorción 4. Ciclo de refrigeración por compresión de

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

TEMA 9. CICLOS DE POTENCIA DE VAPOR

TEMA 9. CICLOS DE POTENCIA DE VAPOR Termodinámica Aplicada Ingeniería Química TEMA 9. CICLOS DE POTENCIA DE VAPOR TEMA 9: CICLOS DE POTENCIA DE VAPOR BLOQUE II. Análisis termodinámico de procesos industriales ANÁLISIS PROCESOS CALOR GENERALIDADES

Más detalles

Tema 5: ENERGÍA (Repaso de Contenidos Básicos)

Tema 5: ENERGÍA (Repaso de Contenidos Básicos) Tecnologías 3ºE.S.O. Tema 5: ENERGÍA (Repaso de Contenidos Básicos) 1. Definición de energía. Unidades. ENERGÍA La energía es la capacidad de un cuerpo o sistema para realizar cambios. Unidades Julio (J),

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Ciclo Rankine. Cap. 12 INTRODUCCIÓN. Termodinámica para ingenieros PUCP

Ciclo Rankine. Cap. 12 INTRODUCCIÓN. Termodinámica para ingenieros PUCP Cap. Ciclo Rankine INTRODUCCIÓN Ahora entramos en la parte práctica del curso, empezaremos a conocer las Centrales Térmicas a Vapor que utilizan como combustible carbón, leña, petròleo, biogas o cualquier

Más detalles

ACB automatización y control eléctrico sa de cv

ACB automatización y control eléctrico sa de cv Ahorro de Electricidad en la Industria 1. Instalaciones Eléctricas 2. Motores eléctricos 3. Aire acondicionados 4. Calentamiento de agua 5. Compresores 6. Refrigeración 7. Equipo de refrigeración 8. Sistema

Más detalles

ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES)

ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES) ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES) CARLOS LÓPEZ PAUTT (1), DANIEL CASTILLA PUELLO (2 ) Universidad Tecnológica de Bolívar, Facultad de Ingeniería

Más detalles

Principios Fundamentales de las Turbinas a Gas Centrales Eléctricas FI UBA

Principios Fundamentales de las Turbinas a Gas Centrales Eléctricas FI UBA Principios Fundamentales de las Turbinas a Gas 65.17 - Centrales Eléctricas FI UBA - 2007 Temario Principios Termodinámicos Ciclo de Brayton Ideal y Real Rendimiento del Ciclo de Brayton Elementos Constitutivos

Más detalles

Principios de máquinas: máquinas frigoríficas

Principios de máquinas: máquinas frigoríficas Página 1 de 5 I. INTRODUCCIÓN Principios de máquinas: máquinas frigoríficas El calor es una manifestación de la energía. Cualquier forma de energía puede transformarse en calor integramente, sin embargo

Más detalles

Análisis de represa hidroeléctrica a escala

Análisis de represa hidroeléctrica a escala Análisis de represa hidroeléctrica a escala Resumen ejecutivo Se analiza mediante las herramientas básicas de la mecánica de fluidos el funcionamiento de una represa hidroeléctrica a pequeña escala. Se

Más detalles

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas.

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas. 9.3. Turbinas a gas y sus sistemas de regulación de velocidad En las unidades con turbinas a gas las acciones de control son realizadas por 4 sistemas de control que compiten por el manejo de la válvula

Más detalles

Ciclo de Carnot. El funcionamiento de estas máquinas se basa en el ciclo de Carnot.

Ciclo de Carnot. El funcionamiento de estas máquinas se basa en el ciclo de Carnot. El Refrigerante Seguramente habremos escuchado la palabra refrigerante, y lo habremos relacionado con el aire acondicionado de un coche, una nevera, etc. Pero la pregunta es: cómo se puede producir frío

Más detalles

CASOS DE ÉXITO CON BIOMASA

CASOS DE ÉXITO CON BIOMASA JORNADAS HISPANO-AUSTRIACAS AUSTRIACAS DE EFICIENCIA ENERGÉTICA Y EDIFICACIÓN N SOSTENIBLE Eficiencia energética con Biomasa CASOS DE ÉXITO CON BIOMASA Ponente: David Poveda Madrid, 06 de marzo de 2013

Más detalles

UNA EXPERIENCIA DE TRIGENERACIÓN

UNA EXPERIENCIA DE TRIGENERACIÓN SEMINARIO DE GESTIÓN ENERGÉTICA UNA EXPERIENCIA DE TRIGENERACIÓN Complejo Hospitalario Granada SEMINARIO DE GESTIÓN ENERGÉTICA Explicación conceptual Cogeneración - Trigeneración Planta de Trigeneración

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

El motor no funciona, sin descarga, algún tipo de humo. Desgaste y estiramiento prematuro de faja del ventilador

El motor no funciona, sin descarga, algún tipo de humo. Desgaste y estiramiento prematuro de faja del ventilador 1.- Qué es una falla en un motor? Una falla es la interrupción del funcionamiento del motor causado por cualquier anomalía que se presente en uno o varios componentes de los diferentes sistemas 2.- Cuáles

Más detalles

DISEÑO DE SISTEMAS DE COGENERACIÓN

DISEÑO DE SISTEMAS DE COGENERACIÓN DISEÑO DE SISTEMAS DE COGENERACIÓN M. I. Liborio Huante Pérez Gerencia de Turbomaquinaria Junio, 2016 1. Que es la cogeneración 2. Diferencias respecto al ciclo convencional 3. Equipos que lo integran

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O

CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O EL EYECTOR El eyector es una bomba estática, sin partes mecánicas en movimiento, caracterizado por: - seguridad de funcionamiento - fiabilidad de funcionamiento

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

Descripción funcional del Sistema de Gas Natural Gas Natural Licuado ( GNL ),

Descripción funcional del Sistema de Gas Natural Gas Natural Licuado ( GNL ), Descripción funcional del Sistema de Gas Natural Actualmente el gas natural usado en la Central Nehuenco es Gas Natural Licuado ( GNL ), es gas natural que ha sido procesado para ser transportado en forma

Más detalles

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC

Más detalles

CALORIMETRIA DEL VAPOR DE AGUA

CALORIMETRIA DEL VAPOR DE AGUA CAPITULO I.- CALORIMETRIA DEL VAPOR DE AGUA GENERACIÓN DE VAPOR DE AGUA. Cuando al agua se le agrega energía calorífica, varían su entalpía y su estado físico. A medida que tiene lugar el calentamiento,

Más detalles

INDICE Capitulo I. Principios Básicos Capitulo II. Características de la Mezcla Vapor Aire Capitulo III. Tablas y Cartas Psicométricas

INDICE Capitulo I. Principios Básicos Capitulo II. Características de la Mezcla Vapor Aire Capitulo III. Tablas y Cartas Psicométricas INDICE Prólogo 5 Capitulo I. Principios Básicos 15 I.1. Primera ley de la termodinámica 15 I.2. Segunda ley de la termodinámica 15 I.3. Ley de Boyle 15 I.4. Ley de Joule 16 I.5. Ley de Joule 16 I.6. Ley

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

INSTRUCCIÓN TÉCNICA IT.3 MANTENIMIENTO Y USO

INSTRUCCIÓN TÉCNICA IT.3 MANTENIMIENTO Y USO INSTRUCCIÓN TÉCNICA IT.3 MANTENIMIENTO Y USO IT 3.1. GENERALIDADES Esta instrucción técnica contiene las exigencias que deben cumplir las instalaciones térmicas con el fin de asegurar que su funcionamiento,

Más detalles

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 INTRODUCCIÓN: Una caldera es una máquina o dispositivo de ingeniería que

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

1. MÁQUINAS HIDRÁULICAS

1. MÁQUINAS HIDRÁULICAS . MÁQUINAS HIDRÁULICAS. MÁQUINAS HIDRÁULICAS.. DEFINICIÓN DE MÁQUINA Una máquina es un transformador de energía. La máquina absorbe energía de una clase y restituye energía de otra clase o de la misma

Más detalles

Máquinas de combustión externa. 1. Generalidades:

Máquinas de combustión externa. 1. Generalidades: 67./7 UBA Ing. O. Jaimovich Capítulo 7 Máquinas de combustión externa. Generalidades: on aquellos conversores que utilizan también la entalpía de un fluido que evoluciona en su interior, pero el cual recibe

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Boletín 36 IMPORTANCIA DEL SUBENFRIAMIENTO EN LOS SISTEMAS DE REFRIGERACIÓN

Boletín 36 IMPORTANCIA DEL SUBENFRIAMIENTO EN LOS SISTEMAS DE REFRIGERACIÓN Boletín 36 IMPORTANCIA DEL SUBENFRIAMIENTO Boletín 36 IMPORTANCIA DEL SUBENFRIAMIENTO 2 INTRUDUCCION Hoy en día los sistemas de refrigeración juegan un papel muy importante en el ámbito de la refrigeración

Más detalles

TURBOMÁQUINAS TÉRMICAS

TURBOMÁQUINAS TÉRMICAS TURBOMÁQUINAS TÉRMICAS CT-3412 Prof. Nathaly Moreno Salas Ing. Victor Trejo 4. Aspectos Generales de las Máquinas 1 Contenido (1/3) Turbinas a vapor Definición Ámbito de aplicación Desarrollo técnico de

Más detalles

Sistemas de Micro-cogeneración y Trigeneración. Santiago Quinchiguango

Sistemas de Micro-cogeneración y Trigeneración. Santiago Quinchiguango Sistemas de Micro-cogeneración y Trigeneración Santiago Quinchiguango 11/2014 1. Micro-Cogeneración 1.1 Cogeneración Cogeneración es la producción combinada de electricidad y energía térmica útil (calentamiento

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

CALOR Y TEMPERATURA CALOR

CALOR Y TEMPERATURA CALOR CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor

Más detalles

Generación de la energía eléctrica

Generación de la energía eléctrica Generación de la energía eléctrica Conceptos básicos sobre electricidad Fenómeno y naturaleza Conceptos básicos sobre energía Energía Transformación de la energía y su control Generación hidráulica Generación

Más detalles

Proceso de Producción de ácido sulfúrico

Proceso de Producción de ácido sulfúrico Proceso de Producción de ácido sulfúrico El ácido sulfúrico es uno de los químicos industriales más importantes. Es de gran significado, la observación que frecuentemente se hace, es que el per cápita

Más detalles

CT Prof. Nathaly Moreno Salas Ing. Victor TRejo. 4. Aspectos Generales de las Máquinas. 2

CT Prof. Nathaly Moreno Salas Ing. Victor TRejo. 4. Aspectos Generales de las Máquinas. 2 TURBOMÁQUINAS TÉRMICAS CT-3412 Prof. Nathaly Moreno Salas Ing. Victor TRejo 4. Aspectos Generales de las Máquinas. 2 Turbinas a gas Turbina a gas Pratt and Whitney Ft78 derivada de la turbina de avión

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo, mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

General. Calderas humotubulares GENERADORES DE VAPOR

General. Calderas humotubulares GENERADORES DE VAPOR GENERADORES DE VAPOR General La generación de vapor para el accionamiento de las turbinas se realiza en instalaciones generadoras comúnmente denominadas calderas. La instalación comprende no sólo la caldera

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 4 CENTRALES TÉRMICAS DE GAS CICLO DE BRAYTON ALUMNO: AÑO 2015 INTRODUCCIÓN La turbina

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo. Mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

Jornada eficiencia energética CEOE. Sector Alimentación. Ahorro energético, mediante aprovechamiento de energía residual y trigeneración

Jornada eficiencia energética CEOE. Sector Alimentación. Ahorro energético, mediante aprovechamiento de energía residual y trigeneración Ahorro energético, mediante aprovechamiento de energía residual y trigeneración 1 CAPSA FOOD, QUIENES SOMOS? INFORMACIÓN DE MERCADO Compañía láctea líder en cuota de mercado de leche líquida, nata y mantequilla

Más detalles

El funcionamiento de las trampas FENIX en aplicaciones de carga variable

El funcionamiento de las trampas FENIX en aplicaciones de carga variable fenix earth inc 1100 NW Loop 410 Suite 700-136 San Antonio, Texas 78213 USA tel. 210 888 9057 sales@fenixearth.com El funcionamiento de las trampas FENIX en aplicaciones de carga variable La trampa FENIX

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Aprovechamiento de gases de combustión, aspectos técnicos a considerar

Aprovechamiento de gases de combustión, aspectos técnicos a considerar Aprovechamiento de gases de combustión, aspectos técnicos a considerar Proceso de compresión actual (CS) Proceso propuesto para Cogeneración (CC) Gases de combustión al recuperador de calor Eficiencia

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS CALOR Y TRABAJO: MÁQUINAS TÉRMICAS I.-ENERGÍA MECÁNICA (TRABAJO) Y ENERGÍA CALORÍFICA (CALOR) TRANSFORMACIONES DE LA ENERGÍA MECÁNICA (TRABAJO) EN ENERGÍA CALORÍFICA. TRANSFOMRACIÓNES DE LA ENERGÍA CALORÍFICA

Más detalles

MINISTERIO DE ENERGÍA Y MINAS República de Guatemala

MINISTERIO DE ENERGÍA Y MINAS República de Guatemala MINISTERIO DE ENERGÍA Y MINAS Parque de Generación Eólica San Antonio El Sitio, Villa Canales, Guatemala LAS ENERGÍAS RENOVABLES EN LA GENERACIÓN ELÉCTRICA EN GUATEMALA Guatemala, agosto de 2016 www.mem.gob.gt

Más detalles

I.- INTRODUCCIÓN I.(I) II.- LEYES, REGLAMENTOS Y NORMAS II.(I) III.- GENERALIDADES DEL GAS L.P. Y NATURAL

I.- INTRODUCCIÓN I.(I) II.- LEYES, REGLAMENTOS Y NORMAS II.(I) III.- GENERALIDADES DEL GAS L.P. Y NATURAL COMBUSTIÓN E INGENIERÍA EN GAS L.P. Y NATURAL C O N T E N I D O I.- INTRODUCCIÓN I.(I) 1.1 Sistema Mexicano de Metrología, Normalización y Evaluación I.(2) de la conformidad (SISMENEC) 1.2 Evaluación de

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

EFICIENCIA ENERGÉTICA

EFICIENCIA ENERGÉTICA EFICIENCIA ENERGÉTICA MESA REDONDA COMERCIALIZADORES 9 de Mayo de 2008 Ana Castelblanque Delegada Zona Levante Cepsa Gas Comercializadora Página 1 de 17 Índice Generalidades Cambio de combustible por gas

Más detalles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles ÍNDICE Prefacio... 19 Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades... 27 Objetivos fundamentales del capítulo... 27 1.1. Introducción... 27 1.2. Concepto de máquina

Más detalles

M. En C. José Antonio González Moreno Máquinas Térmicas Octubre del 2015

M. En C. José Antonio González Moreno Máquinas Térmicas Octubre del 2015 M. En C. José Antonio González Moreno Máquinas Térmicas Octubre del 2015 En esta presentación se estudiará las características de lo que es y cómo funciona un enfriador de agua o Chiller, así como sus

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

COGENERACIÓN. ENERGIE QUELLE MBA. Ing. Daniel Mina 2010

COGENERACIÓN. ENERGIE QUELLE MBA. Ing. Daniel Mina 2010 COGENERACIÓN ENERGIE QUELLE MBA. Ing. Daniel Mina 2010 Contenido La energía y el sector productivo del país. La Cogeneración: Clasificación, beneficios y aplicaciones. Quiénes son candidatos para la implementación

Más detalles

PANORAMA DEL SISTEMA ELECTRICO

PANORAMA DEL SISTEMA ELECTRICO PANORAMA DEL SISTEMA ELECTRICO Precaria situación financiera para el acceso al crédito Bajo nivel de inversión para concretar proyectos a largo plazo Política regulatoria que debe ser modificada para permitir

Más detalles

Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante

Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante Ingeniería Mecánica Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante Equipo 1 Tipos de circuitos y componentes A). Circuito de alta presión: encargado

Más detalles

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica UNEFA Ext. La Isabelica TERMODINÁMICA I Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica 4to Semestre Objetivo: Interpretar la segunda ley de la termodinámica. Materia: Termodinámica I Docente:

Más detalles

Ciclo de refrigeración por la compresión de un vapor

Ciclo de refrigeración por la compresión de un vapor Facultad de Ingeniería. División de Ciencias Básicas Ciclo de refrigeración por la compresión de un vapor Rigel Gámez Leal Introducción El campo de la refrigeración incluye los refrigeradores domésticos,

Más detalles