RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD"

Transcripción

1 RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros rals, tal qu, a cada lmnto dl conjunto D, qu notarmos gnéricamnt, variabl indpndint, l hac corrspondr un único lmnto d I, qu notarmos y o () llamado variabl dpndint. : D I dond D R, I R y ( ) Si corrspond a la gráica d una unción. No corrspond a la gráica d una unción. DOMINIO DE DEFINICIÓN Y CONJUNTO IMAGEN D R / Im y R / D / y D R\ D R Im 5, Im, 4, COMPOSICIÓN DE FUNCIONES San y g dos uncions rals d variabl ral, la unción compusta como g g D g Dg / ( g ( )) FUNCIÓN INVERSA O RECÍPROCA San una unción ral d variabl ral, la unción rcíproca d, y s scrib tal qu g s din El dominio d dinición d la unción pasa a sr l rcorrido d la rcíproca rcorrido d la dircta pasa a sr l dominio d dinición d la rcíproca., s y l

2 No ist la rcíproca d una unción si para un valor d la variabl y istn dos valors para la variabl. Esto s, para qu una unción tnga rcíproca a un valor d la imagn no pudn corrspondrls dos valors distintos d : Para un valor d y hay varios valors d tal () = y. No tin rcíproca. Para un valor d y hay un único valor d tal () = y. Tin rcíproca. Como un punto (a, b) d l corrspondría l punto (b, a) n, ntoncs s tndrá qu la graica d la unción dircta y la d su rcíproca son simétricas rspcto d la bisctriz primr-trcr cuadrant MONOTONÍA S dic qu la unción s monótona crcint n l intrvalo [a, b] si s vriica, 2 a, b / 2 Si la dsigualdad 2 s stricta s dic qu s strictamnt crcint. S dic qu la unción s monótona dcrcint n l intrvalo [a, b] si s vriica, 2 a, b / 2 2 Si la dsigualdad 2 s stricta s dic qu s strictamnt dcrcint. TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO [a, b] S din la Tasa d Variación Mdia d la unción n un intrvalo [a, b] como: ( b) ( a) TVM ( ),[ a, b] b a rprsnta l valor d la pndint d la rcta qu un los puntos P = [a, (a)] y Q = [b, (b)], 2 2

3 sto s, l valor d la tangnt dl ángulo qu orma la rcta con j OX +. TVM ( ),[ a, b ] Dsd l punto d vista ísico la rprsnta lo qu ha variado la unción n mdia n l intrvalo [a, b]. SIMETRÍA Función Par Una unción s dic par o simétrica rspcto dl j OX (abcisas) cuando ( ) ( ) Ejmplo: Comprobar qu la unción ( ) ( ) s par. En cto: Función Impar Una unción s dic impar o simétrica rspcto dl orign O d coordnadas cuando ( ) ( ) Ejmplo: Comprobar qu la unción ( ) 3 3 SIGNO DE UNA FUNCIÓN 3 ( ) s impar. En cto: Una unción s dinida positiva n un intrvalo [a, b] si para todo d dicho intrvalo s vriica qu () s mayor o igual a : ( ) dinida positiva n [ a, b] si [ a, b], ( ) Una unción s dinida ngativa n un intrvalo [a, b] si para todo d dicho intrvalo s vriica qu () s mnor o igual a : ( ) dinida ngativa n [ a, b] si [ a, b], ( ) PERIODICIDAD Una unción s T-priódica si para todo d su campo d istncia s tin qu: ( ) ( T) ( 2T )... ( kt) con T R Ejmplo: la unción ( ) sn s priódica d priodo T 2 pusto qu: ( 2 ) sn ( 2 ) sn ( ) ACOTACIÓN K s cotasuprior d ( ) D s ( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior. A la mnor d las cotas supriors s l dnomina suprmo. Si la unción alcanza, para algún valor d, l valor dl suprmo, ntoncs s l dnomina máimo absoluto. 3

4 Ejmplo: considrmos la unción ( ) sn, obsrvamos qu alcanza un máimo absoluto para los puntos d la orma 2 2 K s cota inrior d ( ) D s ( ) K Cualquir nº mnor qu una cota inrior también s una cota inrior. A la mayor d las cotas inriors s l dnomina ínimo. Si la unción alcanza, para algún valor d, l valor dl ínimo, ntoncs s l dnomina mínimo absoluto. Ejmplo: considrmos la unción ( ) sn, obsrvamos qu alcanza un mínimo 3 absoluto para los puntos d la orma 2 2 Si ist cota suprior s dic ntoncs qu la unción stá acotada supriormnt, si ist cota inrior s dic qu stá acotada inriormnt y si stén ambas s dic ntoncs qu stá acotada. LÍMITE DE UNA FUNCIÓN EN UN PUNTO S dic qu límit cuando tind al valor a d () s L si cuando los valors d abcisas s aproiman al valor a ntoncs las rspctivas ordnadas tindn a aproimars al valor L, s scrib: lim ( ) L a LIMITE EN EL INFINITO Dirmos qu l límit cuando tind a + d () s L si cuando los valors d abcisas s hac cada vz más grands a + ntoncs las rspctivas ordnadas tindn a aproimars al valor L, s scrib: lim ( ) L análogamnt lim ( ) L Dirmos qu l límit cuando tind a d () s si cuando los valors d abcisas tindn a ntoncs las rspctivas ordnadas tindn a, sto s, s hacn cada vz más grands (positivas o ngativas), s scrib: lim ( ) 4

5 CASOS DE INDETERMINACIÓN,,,,,, RESOLUCIÓN: p( ). INDETERMINACIÓN (cocint d uncions polinómicas) lim a q ( ) S divid l numrador y l dnominador por a aplicando Ruini. Tnr n cunta los casos n los qu hay qu distinguir límits latrals porqu sal K (signo signo? p( ) 2. INDETERMINACIÓN (cocint d unc polinómicas) lim q ( ) Para rsolvr la indtrminación s divid l numrador y l dnominador por la potncia d d mayor grado. Rgla: Cuando l grado dl numrador s mayor qu l dl dnominador l límit s más o mnos ininito, sgún l signo dl cocint + o d los términos dirctors dl numrador/dnominador. Si son d igual grado, l límit s l cocint ntr los coicints d los términos dirctors. Cuando l grado dl numrador s inrior al dl dnominador, l límit s. p( ) 3. INDETERMINACIÓN (con prsions radicals) lim a q ( ) Para rsolvr la indtrminación s multiplica y s divid por la prsión radical conjugada. 4. INDETERMINACIÓN (dirncia d ininitos dl mismo signo con prsions radicals) Para rsolvr la indtrminación s multiplica y s divid por la prsión radical conjugada. Si postriormnt quda una indtrminación ntoncs s divid num- rador y dnominador por la mayor potncia. 5. INDETERMINACIÓN S rsulv, tnindo n cunta qu lim n n n La indtrminación la rsolvrmos d la siguint orma: lim ( ) lim ( ) ( ) ( ) g g 5

6 CONTINUIDAD S dic qu una unción s continua n l punto = a, cuando al pasar por las inmdiacions d a, no s lvanta l trazo dl papl. (a), sto s, la unción stá dinida n = a lim ( ) l a ( a) l C lim ( ) ( a) a Las uncions polinomicas son continuas n todo su dominio. Las uncions racionals son continuas n todos los puntos cpto n aqullos qu anulan al dnominador. CONTINUIDAD EN UN INTERVALO CERRADO [a, b] Una unción s continua n un intrvalo crrado [a, b] cuando:. Es continua n l abirto (a, b): ( ) Ca, b 2. En l trmo = a s continua por la drcha: ( ) Ca, sto s: lim ( ) ( a) a 3. En l trmo = b s continua por la izquirda: ( ) Cb sto s: lim ( ) ( b) b TIPOS DE DISCONTINUIDAD Rcordamos qu ( ) C lim ( ) ( a) a DISCONTINUIDAD EVITABLE a lim ( ) l pro l ( a) S dnomina vitabl porqu s pud dinir una unción qu sa continua n = a asignándol l valor l n = a: ( ) si a g( ) l si a DISCONTINUIDAD DE SALTO FINITO lim ( ) l lim ( ) l pro l l a a Salto l l 6

7 DISCONTINUIDAD DE SALTO INFINITO Al mnos, uno d los límits latrals s ininito. lim ( ) o lim ( ) a a DISCONTINUIDAD ESENCIAL Dirmos qu una unción tin una discontinuidad d tipo sncial n = a, si alguno d los límits latrals no ist (no s inito ni ininito), indpndintmnt d qu la unción sté dinida o no n s punto. NO EXISTE EL lim ( ) lim sn RESULTADO Qurmos obtnr l lim ( ) g y s tal qu lim ( ) y no ist lim g( ) pro la unción g() prmanc acotada n un ntorno d a, ntoncs s vriica qu: lim ( ) g a a a a sn 3 Ejrcicio: Estudia la continuidad d la unción dinida por: 3 º) R / sn La unción no stá dinida n = por tanto Estudimos l límit cuando 3 3 lim sn lim lim sn m Tinda No ist l limit, pro stá acotada - m 3 lim ( ) lim sn 3 3 lim sn lim lim sn m Tinda No ist l limit, pro stá acotada - m En la unción prsnta una discontinuidad d tipovitabl dinindo () Ejrcicio: Estudia la continuidad d la unción dinida por: 7

8 stá bin dinida Vamos sisanula l dnominador C por star bin dinida la unción y sr continua n su campo d istncia. Vamos si s continua la unción n = : lim lim lim lim lim Por tanto no ist l lim ( ), C, prsnta n = una discontinuidad d salto inito: s 2 Ejrcicio: Estudia la continuidad d la unción dinida por: sn stá bin dinida Vamos sisanula l dnominador pro no s posibl pus Lugo 8

9 Por lo tanto, s tin qu C continua n su campo d istncia. Vamos si s continua la unción n = : lim por star bin dinida la unción y sr sn sn lim lim lim lim sn m No ist l limit pro Tinda stá acotada - m ( ) m m m m sn lim lim lim sn m No ist l lim it No ist l limit pro Tinda stá acotada - m Por tanto no ist l lim ( ) sncial TEOREMA DE BOLZANO, C, prsnta n = una discontinuidad Sa una unción continua n un intrvalo crrado a, b y tal qu n los trmos toma valors d signos opustos, sto s a b, ntoncs ist al mnos un a, b n l qu la unción s anula: punto Ca b / a b a, b /, Ejrcicio: Dmostrar qu la cuación tin una solución n l intrvalo, Considramos la unción,, tnmos qu: n l intrvalo 9

10 Hipótsisdl Torma C d Bolzano : Por lo tantoquda dmostrado qu la tin solución l l intrvalo,, / cuación sto s : TEOREMA DE DARBOUX Sa una unción continua n un intrvalo crrado a, b (supongamos qu a b ) y sa R tal qu a b, a, b ntoncs ist al mnos un punto tal qu : Ca, b, R / a b a, b / TEOREMA Sa una unción continua n un intrvalo crrado a, b ntoncs la unción stá acotada n dicho intrvalo: C a, b stá acotada n dicho intrvalo TEOREMA DE BOLZANO-WEIRSTRASS Toda unción continua n un intrvalo crrado a, b alcanza l valor máimo y l valor absoluto n dicho intrvalo: C a, b alcanza n a, b l M y l m a a M absoluto M m absoluto absoluto m absoluto Dónd pud alcanzar la unción l valor máimo y mínimo absolutos?. En los trmos dl intrvalo, para llo, valuarmos (a) y (b).

11 2. En puntos dl intrior dl intrvalo n dond s drivabl, starán, d ntr los puntos qu anulan a la primra drivada. Evaluarmos la unción n sos puntos. 3. En puntos dl intrior dl intrvalo n dond no s drivabl, con drivadas latrals d signos contrarios. Evaluarmos la unción n sos puntos. 4. D la valuación d todos los candidatos antriors dducirmos n qué puntos lo alcanza.

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1 Manul José Frnándz mjg@uniovi.s CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

a) lim x lim senx sen lim lim lim lim lim x x 2 lim Ejercicio nº 1.- Calcula: Solución: Ejercicio nº 2.-

a) lim x lim senx sen lim lim lim lim lim x x 2 lim Ejercicio nº 1.- Calcula: Solución: Ejercicio nº 2.- Ejrcicio nº.- Calcula: c) 8 sn Evaluación: Fcha: c) 8 sn sn Ejrcicio nº.- Calcula l siguint it y studia l comportaminto d la unción por la izquirda y por la drcha d : Calculamos los its latrals: Ejrcicio

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Tema 6: Funciones, límites y Continuidad

Tema 6: Funciones, límites y Continuidad Matmáticas º Bachillrato CCNN Tma 6: Funcions, límits y Continuidad.- Introducción.- Dinición d Función..- Funcions lmntals..- Opracions con uncions...- Composición d uncions...- Función invrsa o rcíproca.-

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio. Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0)

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0) RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0). DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción real de variable real es una aplicación de un subconjunto D de los números reales en un subconjunto

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 1.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones.

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 1.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones. MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO.- ANÁLISIS ª PARTE.- Límits, Continuidad, Drivadas y aplicacions..- MODELO DE PRUEBA a Concptos d unción continua n un punto y drivada d una

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t IES Frnando d Hrrra Curso 016 / 17 Sgundo trimstr Obsrvación valuabl scrita nº 1 º Bach CCSS NOMBRE: Instruccions: 1) Todos los folios dbn tnr l nombr y star numrados n la part suprior. ) Todas las rspustas

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Tema 1: Funciones, Límites y Continuidad

Tema 1: Funciones, Límites y Continuidad www.sltividad-granada.om Tma : Funions, Límits y Continuidad..- Funión Ral d variabl Ral: Una unión numéria d una variabl ral s una ly qu ha orrspondr a ada lmnto d un onjunto A un númro ral. La rprsntarmos

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

Idea Calcular la pendiente de una recta es relativamente sencillo, basta con aumenta la y entre lo que

Idea Calcular la pendiente de una recta es relativamente sencillo, basta con aumenta la y entre lo que http://matmaticas-tic.wikispacs.com m Lambrto Cortázar Vinusa 07 DERIVADAS. CCSS EJERCICIOS WIKI Ida Calcular la pndint d una rcta s rlativamnt sncillo, basta con dividir lo qu aumnta la ntr lo qu aumnta

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

Matemáticas II TEMA 7 Límites y continuidad de funciones

Matemáticas II TEMA 7 Límites y continuidad de funciones Matmáticas II TEMA 7 Límits y continuidad d funcions Límit d una función n un punto Ida inicial Si una función f stá dfinida para todos los valors d próimos a a, aunqu no ncsariamnt n l mismo a, ntoncs,

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger- 6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos página 1/5 Problmas Tma 9 Solución a problmas d drivadas - Hoja 1 - Todos rsultos Hoja 1. Problma 1 1. a) Driva y simplifica f (x)= 7 cos 7 ( x+1) b) Driva y simplifica f (x)= x +cos(x) + sn( x) c) Estudia

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

TEMA 5: INTEGRAL INDEFINIDA

TEMA 5: INTEGRAL INDEFINIDA MATEMÁTIAS II TEMA : INTEGRAL INDEFINIDA. Primitiva d una función El objtivo d st tma s l studio dl procso contrario al d drivación. Si drivamos la función partimos d f tnmos y dirmos qu s una primitiva

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones 8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada POPIEDADES DE LAS FUNCIONES DEIVABLES. Una sri d aspctos d la gráfica d una función vistos antriormnt monotonía, máimos mínimos otros qu vrmos postriormnt, pudn studiars fácilmnt mdiant drivadas. La maor

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles