Repaso de conceptos de álgebra lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Repaso de conceptos de álgebra lineal"

Transcripción

1 MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso de conceptos de álgebra lineal Notación vectorial y matricial Vectores Matrices Espacios de vectores Transformaciones lineales Autovalores y autovectores

2 Notación vectorial y matricial Un vector columna x de d dimensiones y su transpuesta se escriben así: y Una matriz rectangular de n x d dimensiones y su transpuesta se escriben así: y El producto de dos matrices es: donde Vectores (1) El producto interno de dos vectores (o producto escalar ) se define por: La norma de un vector (o magnitud, longitud ) es: La proyección ortogonal del vector y sobre el vector x es: Donde el vector u x tiene norma 1 y la misma dirección que x El ángulo entre los vectores x e y está definido por: Dos vectores x e y son: Ortogonales si x T y = 0 Ortonormales si x T y=0 y x = y = 1

3 Vectores (2) Un conjunto de vectores x 1, x 2,, x n son linealmente dependientes si existe un conjunto de coeficientes a 1, a 2,, a n (con al menos uno diferente de cero) tales que Intuitivamente, esto quiere decir que hay por lo menos un vector redundante, que podemos expresar como combinación de los otros. Por ejemplo, si a 1 0: x 1 = c 2 x 2 + c 3 x c n x n con c k =-a k / a 1 Alternativamente, un conjunto de vectores x 1, x 2,, x n son linealmente independientes si Matrices El determinante de una matriz cuadrada A de d x d dimensiones es: - donde A ik es el menor, matriz formada cogiendo A y eliminando su fila i y su columna k - El determinante de una matriz es igual al de su transpuesta: A = A T La traza de una matriz cuadrada A de d x d dimensiones es la suma de los elementos de su diagonal: El rango de una matriz es el número de filas (o columnas) linealmente independientes Se dice de una matriz cuadrada que es no singular si y sólo si su rango es igual al número de filas (o columnas) - El determinante de una matriz no singular es distinto de 0 Se dice de una matriz cuadrada que es ortonormal si AA T = A T A = I

4 Matrices Dado una matriz cuadrada A: -Si x T A x > 0 para todo x 0, entonces se dice que A es definida positiva (ejemplo: matriz de correlación) - Si x T A x 0 para todo x 0, entonces se dice que A es semidefinida positiva La inversa de una matriz cuadrada A se denomina A -1, y es una matriz tal que A -1 A = A A -1 = I - La inversa de A existe si y sólo si A es no singular (su determinante no es cero) En algunos problemas cuando la inversa de A no existe (porque A no es cuadrada, o es singular), se utiliza la pseudoinversa A, que se define como: A = [A T A] -1 A T con A A = I (notad que en general A A I) Espacios de vectores El espacio n-dimensional en el cual todos los vectores de n dimensiones residen se denomina un espacio de vectores Se dice que un conjunto de vectores { u 1, u 2,, u n } es una base de un espacio vectorial si cualquier vector x puede ser expresado como una combinación lineal de los {u i } - Los coeficientes { a 1, a 2,, a n } se denominan componentes del vector x con respecto a la base { u i } - Para ser una base, es necesario y suficiente que los n vectores { u i } sean linealmente independientes Se dice que una base { u i } es ortogonal si Se dice que una base { u i } es ortonormal si - Por ejemplo la base cartesiana de coordenadas es una base ortonormal

5 Espacios de vectores Dados n vectores {v 1, v 2,, v n } linealmente independientes, podemos construir una base ortonormal {w 1, w 2,, w n } por el procedimiento de ortonormalización de Gram-Schmidt w 1 w j = v 1 = v j i j i= 1 v j w i w 2 i w i La distancia entre dos puntos en un espacio vectorial se define como la norma del vector diferencia entre los dos puntos: Transformaciones lineales Una transformación lineal es un mapeo del espacio vectorial X N al espacio vectorial Y M, y se representa por una matriz - Dado un vector x Є X N, el correspondiente vector y de Y M se calcula así: - Notad que la dimensión de los dos espacios no tiene por qué ser la misma - Para problemas de reconocimiento de patrones típicamente tendremos M < N (proyección en un espacio de menor dimensión) Se dice que una transformación lineal representada por la matriz cuadrada A es ortonormal cuando AA T = A T A = I - Esto implica que A T = A -1 - Las transformaciones ortonormales preservan la norma de los vectores: - Las transformaciones ortonormales se pueden ver como rotaciones del sistema de ejes de referencia - Los vectores fila de una transformación ortonormal forman una base de vectores ortonormales con

6 Autovectores y autovalores (1) Dada una matriz cuadrada A de N x N dimensiones, decimos que v es un autovector si existe un escalar λ tal que A v = λ v Entonces, se dice que λ es autovalor de A Cálculo l de los autovectores t solución trivial solución no trivial ecuación característica La matriz formada por los autovectores columna se denomina matriz modal M La matriz Λ es la forma canónica de A: una matriz diagonal con los autovalores en su diagonal 0 0 Autovectores y autovalores (2) Propiedades - Si A es no singular Todos los autovalores son diferentes de cero - Si A es real y simétrica Todos los autovalores son reales Dos autovectores asociados a diferentes autovalores son ortogonales entre sí -Si A es definida positiva Todos los autovalores son positivos -Si A es semidefinida positiva Todos los autovalores son mayor o igual que cero

7 Interpretación de los autovectores y autovalores (1) Si consideramos la matriz A como una transformación lineal, entonces un autovector representa una dirección invariante en el espacio vectorial Cualquier punto en la dirección de v es transformado por A en otro punto que está en la misma dirección, y su módulo es multiplicado por el correspondiente autovalor λ Por ejemplo, la transformación que rota los vectores de 3 dimensiones en torno al eje Z tiene un solo autovector, que es [0 0 1] T, siendo 1 es su autovalor correspondiente Repaso de conceptos de probabilidad y estadística Definición y propiedades de la probabilidad Variables aleatorias - Definición de variable aleatoria - Función de distribución acumulada - Función de densidad de probabilidad - Caracterización estadística de variables aleatorias Vectores aleatorios - Vector promedio - Matriz de covarianzas Distribución de probabilidad gaussiana

8 Variables aleatorias Cuando consideramos un proceso aleatorio, normalmente nos interesa saber alguna medida o atributo numérico que genera una secuencia de valores modelizables. Ejemplos: Cuando muestreamos una población nos puede interesar por ejemplo el peso y la altura Cuando calculamos el rendimiento de dos ordenadores nos interesa el tiempo de ejecución de un programa de test Cuando tratamos de reconocer un avión intruso, nos puede interesar medir los parámetros que caracterizan la forma del avión Variables aleatorias Definimos una variable aleatoria X que puede tomar un conjunto de valores {xi} como una función X( ) que asigna un número real x a cada resultado ζ en el espacio de muestreo de un experimento aleatorio x= X( ζ ). - Esta función X( ) realiza un mapeo de todos los posibles elementos en el espacio de muestreo a la recta real (números reales). - La función X( ) que asigna valores a cada resultado es fija y determinista - La aleatoriedad en los valores observados se debe a la aleatoriedad del argumento de la función X( ), es decir, el resultado ζ del experimento map - Las variables aleatorias pueden ser: - Discretas: por ejemplo, el resultado en el lanzamiento de un dado - Continuas: por ejemplo, el peso de un individuo escogido al azar

9 Función de distribución acumulada (fda) Dada una variable aleatoria X, se define su función de 1 lb = Kg distribución acumulada F x (x) como la probabilidad del evento {X < x} F x x( (x) = P[X < x] para - < x < + De manera intuitiva, F x (b) representa la proporción de veces en la que X( ζ ) < b Propiedades de la función de distribución acumulada fda del peso de una persona si a b Función acotada y monótonamente creciente fda del resultado de un dado Función de densidad de probabilidad (fdp) La función de densidad de probabilidad de una variable aleatoria continua X, si existe, se define como la derivada de F x (x) 1 lb = Kg fdp El equivalente a la fdp para variables aleatorias discretas es la función de masa de probabilidad ( fmp ): fdp del peso de una persona fmp fmp del resultado de un dado

10 Función de densidad de probabilidad (fdp) Propiedades de la función de densidad de probabilidad donde si Densidad de probabilidad versus probabilidad fdp Cuál es la probabilidad de que alguien pese 200 libras =90.8 Kg? - De acuerdo a la fdp, es cerca de Suena razonable, no? Ahora, cuál es la probabilidad de que alguien pese libras = Kg? - De acuerdo a la fdp, es cerca de Pero, intuitivamente, la probabilidad debería ser cero Probabilidad en un punto es cero. fdp del peso de una persona Cómo explicamos esta paradoja? - La fdp no define una probabilidad, sino una DENSIDAD de probabilidad! - Para obtener una verdadera probabilidad, debemos integrar en un intervalo - La pregunta original es incorrecta, nos deberían haber preguntado: Cuál es la probabilidad de que alguien pese libras, más / menos 2 libras?

11 Caracterización estadística de variables aleatorias La fdp o fmp son SUFICIENTES para caracterizar completamente una variable aleatoria. Sin embargo, una variable aleatoria puede ser PARCIALMENTE caracterizada por otras medidas Valor esperado (media) Representa el centro de masa de la densidad Varianza Representa la dispersión alrededor de la media Desviación estándar Es la raíz cuadrada de la varianza, por lo que tiene las mismas unidades que la variable aleatoria Momento de orden N Vectores aleatorios La noción de vector aleatorio es una extensión de la noción de variable aleatoria - Una variable vectorial aleatoria X es una función que asigna un número real a cada posible valor ζ del espacio de muestreo S - Consideraremos siempre a un vector aleatorio como un vector columna Las nociones de fda y fdp se sustituyen por fda conjunta y fdp conjunta - Dado un vector aleatorio X = [x 1 x 2 x N ] T definimos - La función de distribución acumulada conjunta como: x1 x2 x3 - La función de distribución de probabilidad conjunta como:

12 Vectores aleatorios El término fdp marginal se usa para representar la fdp de un subconjunto de los componentes del vector - Se obtiene integrando la fdp en las componentes que no son de interés - Por ejemplo, si tenemos un vector X = [x 1 x 2 ] T, la fdp marginal de x 1, dado la fdp conjunta f x1 x2 (x 1, x 2 ) es: Caracterización estadística de vectores aleatorios Al igual que en el caso escalar, un vector aleatorio está completamente caracterizado por su fda conjunta o su fdp conjunta Alternativamente, podemos describir parcialmente un vector aleatorio por medio de medidas similares a las definidas para el caso escalar Vector promedio T Matriz de covarianza

13 Matriz de covarianza La matriz de covarianza indica la tendencia de cada par de atributos (las componentes del vector aleatorio) de variar juntas, es decir, co-variar La matriz de covarianza C tiene varias propiedades importantes: - Si x i y x k tienden a aumentar juntas, entonces c ik > 0 -Si x i tiende a disminuir cuando x k aumenta, entonces c ik < 0 -Si x i y x k no están correlacionadas, entonces c ik = 0 - c ik σ i σ k donde σ i es la desviación estándar de x i - c ii = σ i2 = VAR(x i ) Matriz de covarianza Los componentes de la matriz de covarianza se pueden escribir como: c ii = σ 2 i y c ik = ρ ik σ i σ k - donde ρ ik es el llamado coeficiente de correlación

14 Correlación versus independencia Se dice que dos variables aleatorias x i y x k no están correlacionadas si E [x i x k ] = E [x i ] E [x k ] - En este caso también se dice que estas variables aleatorias son linealmente independientes (no confundir con la noción de independencia lineal de vectores). Se dice que dos variables aleatorias x i y x k son independientes, su distribución conjunta será el producto de las marginales. P [x i, x k ] = P [x i ] P [x k ] La distribución Gaussiana o Normal (1) La distribución multivariable Normal o Gaussiana N(μ, Σ) se define como En una sola dimensión, esta expresión se reduce a

15 La distribución Gaussiana o Normal (2) Las distribuciones gaussianas son muy utilizadas ya que: - Los parámetros (μ, Σ) son suficientes para caracterizar completamente la distribución gaussiana - Si los atributos t no están correlacionados ( c ik = 0 ), entonces son también independientes La matriz de covarianza es entonces diagonal, con las varianzas individuales en la diagonal - Las densidades marginales y condicionadas son también Gaussianas - Cualquier transformación lineal de N variables conjuntamente Gaussianas, nos da un vector cuya distribución ib ió es también Gaussiana - Si la distribución del vector X = [X 1 X 2 X N ] T es Gaussiana, y A es una matriz, entonces la distribución de Y=AX es también Gaussiana. Para el caso particular de que A sea una matriz invertible, entonces: La distribución Gaussiana o Normal (3) Dada la matriz de covarianza Σ de una distribución gaussiana - Los autovectores de Σ son las direcciones principales de la distribución - Los autovalores son las varianzas de las correspondientes direcciones principales La transformación lineal definida por los autovectores de Σ lleva a componentes que están descorrelacionadas, independientemente de la forma de la distribución En el caso particular de que la distribución sea gaussiana, entonces las variables transformadas serán estadísticamente independientes con y Estadísticamente Independientes

16 El Teorema Central del Límite El teorema dice que si y = Σ x k, siendo x k N variables aleatorias independientes con distribuciones individuales arbitrarias, entonces la distribución de y tiende a ser Gaussiana según se va haciendo mayor N. En el límite N, termina siendo una Gaussiana perfecta. En otras palabras, cualquier variable que sea la contribución de muchos factores aleatorios independientes tiende a ser Gaussiana. Ejemplos: ruido en aparatos medidores, Ejemplo numérico: calculamos un histograma Ejemplo numérico: calculamos un histograma a partir de 500 valores de y generados con y = Σ x k

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto de los bloques. Resolución de

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

1 Vectores de R n. Tema 1. Álgebra matricial. 1.2 Dependencia lineal

1 Vectores de R n. Tema 1. Álgebra matricial. 1.2 Dependencia lineal Diplomatura en Estadística 1 Tema 1. Álgebra matricial 1. Vectores 1.1 Definiciones básicas 1.2 Dependencia lineal 2. Matrices 2.1 Rango de una matriz 2.2 Matrices cuadradas 3. Vectores y valores propios

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

El espacio R n. Tema El conjunto R n El espacio vectorial R n

El espacio R n. Tema El conjunto R n El espacio vectorial R n Tema 1 El espacio R n En este primer tema de la asignatura recordaremos algunos conceptos ya estudiados acerca del conjunto R n y las estructuras sobre él definidas. Se presentarán por tanto bastantes

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

MAT022 : CRONOGRAMA SEMESTRE

MAT022 : CRONOGRAMA SEMESTRE MAT022 : CRONOGRAMA SEMESTRE 2015-2 Semana Cálculo Complementos Semana 1 Repaso de derivadas: regla de la cadena, derivación Matrices. Álgebra Básica de Matrices. Clase 1 paramétrica, regla de L'Hopital.

Más detalles

MATEMÁTICAS 2º BACHILLERATO

MATEMÁTICAS 2º BACHILLERATO MATEMÁTICAS 2º BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes

Más detalles

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA 1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( ) 1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES MATRICES 1. MATRICES Y TIPOS DE MATRICES 2. OPERACIONES CON MATRICES 3. PRODUCTO DE MATRICES 4. MATRIZ TRASPUESTA 5. MATRIZ INVERSA 6. RANGO DE MATRICES DETERMINANTES 7. DETERMINANTES DE ORDEN 2 Y 3 8.

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

PROGRAMA GENERAL DE AMPLIACIÓN DE MATEMÁTICAS TRIGONOMETRIA ESFERICA PROGRAMA ASIGNATURA DIPLOMATURA: NAVEGACIÓN MARÍTIMA.

PROGRAMA GENERAL DE AMPLIACIÓN DE MATEMÁTICAS TRIGONOMETRIA ESFERICA PROGRAMA ASIGNATURA DIPLOMATURA: NAVEGACIÓN MARÍTIMA. PROGRAMA ASIGNATURA DIPLOMATURA: NAVEGACIÓN MARÍTIMA. ASIGNATURA: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRÍA ESFÉRICA. CURSO: 1º. TEMPORALIDAD: 2 DO CUATRIMESTRE. CRÉDITOS: TOTAL: 7,5 (8,25) TEÓRICOS: 4,5

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

ap l i c a c i o n e s d e l a s

ap l i c a c i o n e s d e l a s Unidad 9 ap l i c a c i o n e s d e l a s transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Relacionará algunas transformaciones especiales con movimientos geométricos de vectores

Más detalles

MATRICES. Rango de una matriz. Matriz Inversa. Determinante de una matriz cuadrada. Sistemas de Ecuaciones Lineales. Nociones de espacios vectoriales

MATRICES. Rango de una matriz. Matriz Inversa. Determinante de una matriz cuadrada. Sistemas de Ecuaciones Lineales. Nociones de espacios vectoriales MATRICES Rango de una matriz Matriz Inversa Determinante de una matriz cuadrada Sistemas de Ecuaciones Lineales Nociones de espacios vectoriales MATRICES -DEFINICIÓN DE MATRIZ. -ALGUNOS TIPOS DE MATRICES.

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S D I S T R I B U C I O N E S B I D I M E N S I O N A L E S 1 INTRODUCCIÓN: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles