R-C CARGA Y DESCARGA DE UN CONDENSADOR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "R-C CARGA Y DESCARGA DE UN CONDENSADOR"

Transcripción

1 RC CARGA Y DESCARGA DE UN CONDENSADOR CONTENIDOS Estado trastoro de carga y descarga. Cálculo de la costate de tempo. Método de cuadrados mímos. Errores que se comete durate la evaluacó de τ OBJETIVOS Determar la capacdad equvalete de u crcuto RC. Calcular la costate de tempo e u crcuto RC e el proceso de carga y de descarga. Obteer gráfca y aalítcamete la costate de tempo. VI.1 FUNDAMENTOS TEÓRICOS VI.1.1 Itroduccó Supogamos que teemos dos placas paralelas de área A, separadas ua dstaca d, y a u potecal V 1 y V dsttos y co cargas Q y Q. U sstema de esta aturaleza costtuye lo que se deoma capactor o codesador, y se defe la capacdad o capactaca de u codesador a la catdad de carga por udad de potecal; esto es : C = Q / V (1) ( la catdad de carga Q que aparece es la de cualquera de las placas pues ambas so guales e módulo ) Evdetemete C es ua costate del sstema cuya catdad depede del materal deléctrco y de la geometría del msmo (por ejemplo, ua esfera cargada rodeada de u materal deléctrco costtuye u codesador y la capacdad vale C = 4 /π.r, sedo R el rado de la esfera). S la carga del codesador se expresa e coulombos y la dfereca de potecal e voltos, la udad de capacdad resultate es el Farado; esto es : 1 Farado = 1 Coulombo / 1 Volto Puesto que el Farado es ua udad muy grade, se utlza otras meores como el mcrofarado (1µF = 10 6 F), o també ua udad aú meor como el mcromcrofarado o pcofarado (1pF = 10 1 F). Para dar ua dea de los ordees de magtud, u amplfcador a trasstores posee capactores cuyos valores oscla etre las deceas de pf y alguos mles de µf. Teedo e cueta la relacó etre potecal y campo eléctrco ε = Grad V, e el medo que separa a las placas se crea u campo eléctrco 1

2 ε = ( V V ) 1 d () Por otro lado, usado la ley de Gauss, se puede obteer que : Q σ = ε = (3) A dode σ es la desdad superfcal de carga y es la costate deléctrca del medo etre las placas que puede ser clusve vacío; reemplazado e la () y llamado V = V 1 V esta queda : V 1 V d V d Q = A (4) Q A = = C (5) V d De aquí podemos coclur lo sguete : 1) dadas dos placas de área A separadas ua dstaca d por u medo de costate deléctrca, la relacó carga a dfereca de potecal permaece costate; esto es, so proporcoales : a mayor dfereca de potecal, mayor carga. ) cuato mayor sea.a / d, mayor será la catdad de carga que tedrá el sstema por udad de dfereca de potecal; y dados el deléctrco, la separacó de las placas y su área, esta catdad permaece costate. La represetacó de u codesador e u crcuto puede ser : CAPACITORES FIJOS CAPACITORES VARIABLES Cosderemos u cojuto de capactores coectados e sere; esto es, la placa postva de uo co la egatva del sguete, a ua dfereca de potecal V, y co capacdades C 1, C, C 3,..., C. C 1 C C 3 C Q FEM

3 Al coectar la fuete V, y estado descargados, se produce u desplazameto de cargas o corretes de cargas egatvas desde la placa derecha del codesador a la placa zquerda del prmero; etoces se puede coclur que la carga del prmero es gual a la del últmo; també hay movmeto de cargas postvas desde la placa derecha del prmero a la zquerda del segudo, esto es, la carga del prmero y el segudo capactor so guales; aplcado el msmo razoameto para los demás se cocluye que cuado se coecta e sere todos adquere la msma carga, a la cual deomaremos Q. Q C 1 C C 3 Etoces, s llamamos C eq a la capacdad equvalete, se tee: V = Q, y: Ceq FEM = Λ (6) C C C C C eq 1 3 Q q 1 q q 3 C 1 C C 3 FEM S cosderamos ahora que los capactores mecoados, se ecuetra coectados e paralelo, y s C eq es la capacdad equvalete, será : Q = V. C eq C eq = C 1 C C 3... C VI.1. Estado trastoro de carga del codesador Hasta aquí o se cosderó lo que ocurría físcamete durate el tempo de carga del codesador; es decr, el estado trastoro y su relacó co las corretes, las cargas que va varado y las dferecas de potecal. Para hacer este aálss se partrá de cosderar el sguete crcuto RC : FEM V ab (1) a () R V ax A (3) x (4) C V xb b 3

4 Co la llave terruptora geeral aberta o crcula correte, ecotrádose el codesador descargado. Al cerrar la llave geeral, estado las otras dos e las poscoes 1 y 4, crculará correte por la Ressteca y por el Codesador, comezado a cargarse letamete. El proceso o es statáeo. Supogamos estar a u tempo t del co, cuado el codesador tee ua carga q, y crcula ua correte statáea; sedo V ax la dfereca de potecal etre los bores de la ressteca, y V xb la dfereca de potecal etre los bores del capactor, se tedrá : V ab = V = V ax V xb V =. R q C q. R C V = 0. R q V = R RC R 0 dq dt q V RC R = 0 (8) Esta últma es ua ecuacó dferecal para la carga de u codesador; es del tpo leal, a coefcetes costates y la codcó cal es que q = 0 al tempo t = 0. Es decr, el codesador se ecuetra descargado calmete. La solucó de la msma se obtee propoedo ua fucó del tpo q = u (t). v (t); reemplazado ésta e la (8) queda De allí resulta : v du dt u u dv V = 0 RC dt R El valor de u se extrae de la codcó : du dt u = 0 RC du/u = dt/rc ; tegrado y elgedo la costate de tegracó ula, l u = t /RC ; u= e t/rc por lo que reemplazado e la ateror se obtee : dv =V/R e t/rc dt; v =VC. e t/rc La solucó resulta ser : cte tegrado: q = u.v = e t/rc (VC. e t/rc cte) El valor de la costate se obtee de la codcó cal q = 0 e t = 0, etoces, 0 = VC cte y de allí cte = VC, y la solucó falmete es q = VC(1 e t/rc ) (9) 4

5 La ecuacó q = f(t) se gráfca de la maera sguete: q (Coulombos) q = VC = Q máx Gráfca de q = f (t) q = 0,63 Q máx t = τ t (seg) Se observa que la carga máxma se alcaza para tempos ftamete grades y vale Q = VC. La carga además, crece rápdamete al comezo; cuado t = RC = τ se alcaza el (1 1/e) = 0,63 de la carga fal. Este tempo se deoma "costate de tempo del crcuto" (τ) y su udad es segudos, s la capacdad se expresa e Farados y la ressteca e Ohms. La correte de carga correspodete se obtee hacedo la dervada co respecto a t de la carga q : = dq/dt = I máx e t/rc (10) Dode I = V/R es la correte cal y es la msma que s sólo hubese coectada ua ressteca. Los potecales sobre la ressteca y el codesador so : V ax =.R = I Re t/rc = V máx e t/rc (11) V xb = q/c = = V máx e t/rc (1) La ecuacó (10) se represeta gráfcamete así : (Amp) = I máx Gráfca de = f (t) t (seg) 5

6 Las represetacoes gráfcas de las dos dferecas de potecal, V ax (e la ressteca) y Vxb (e el codesador), e fucó del tempo, so las sguetes : V (Volt) V = V xb V ax V xb Gráfca de V = f (t) V ax t (seg) E la msma gráfca se represetó també la suma de Vax Vxb = V (tesó aplcada total). VI.1.3 Estado trastoro de descarga del codesador Supoedo el msmo crcuto represetado aterormete, co el capactor totalmete cargado, estudaremos el estado trastoro de la descarga del msmo, la varacó de la tesdad y las dferecas de potecal e los bores de la ressteca y e el codesador e fucó del tempo. Colocado las llaves terruptoras e las poscoes y 4, la correte crculará por la ressteca dspadose e forma de calor (efecto Joule), a partr de las cargas acumuladas e el codesador, que ahora actuaría de f.e.m. La tesó V será ahora cero, quedado la suma de caídas de potecal de la sguete maera : V ab = 0 = V ax V xb =.R q/c (13) Sedo q e, los valores statáeos de carga y correte. Ordeado dq q dt RC =0 (14) Esta es la ecuacó dferecal de la descarga del codesador. La solucó de esta ecuacó es la sguete : q = Q e t/rc (15) = Q/RC. e t/rc = I e t/rc (16) Dode : Q = carga máxma adqurda por el capactor (Coulomb) I = tesdad máxma que crculó por el crcuto (Ampere) RC = τ = costate de tempo del sstema (seg) Las dferecas de potecal será guales y de sgos dsttos : V ax = V xb = Q/C e t/rc (17) 6

7 Las respectvas represetacoes gráfcas de las ecuacoes (15), (16) y (17), se muestra a cotuacó : q Q máx I máx t(seg) t(seg) V Vax Suma = 0 resstvo V=0 capactvo t(seg) V xb V VI.1.4 Determacó de la costate de tempo ( τ ) S para el crcuto e carga del codesador, teíamos que la correte e fucó del tempo era : = I máx. e t/rc = V/R e t/rc Aplcado logartmos eperaos a ambos membros: l = l I máx l (e t/rc ) l = l I máx t/rc (18) co RC = τ. La cual es equvalete a ua ecuacó leal como la sguete : y = b m.x (19) 7

8 Que es la ecuacó de ua recta de ordeada al orge "b" y pedete egatva "m" ; sedo "x" el tempo, "y" la correte eléctrca statáea, y "m" gual a la versa de "τ". Dcha ecuacó se puede represetar por : t (seg) b = l I máx α m = 1/τ 1 y = l E la práctca, se puede tomar valores de e fucó del tempo t, y cofeccoar la sguete tabla de datos : x = t(s) (A) y = l x.y x 1 0 seg I máx y = l I máx x y x.y x Gráfcamete podemos obteer el valor de la costate de tempo τ, determado el valor de la pedete de la recta. Luego, además s coocemos R, podemos determar el valor de C (capacdad equvalete del crcuto); y a la versa, coocedo C, podemos determar R a partr de τ Esta gráfca se puede realzar ya sea tomado los valores de tesdad cuado va varado el tempo e la carga del codesador, o e su descarga. Exste u problema, y es el de obteer el valor de Imáx (a tempo cero). Debdo a la erca del strumeto de medcó, la respuesta del msmo o es statáea, por lo que el equlbro del sstema de medcó se alcaza luego de haber trascurrdo u certo tempo, cuado la correte es algo meor que la máxma. Este problema se solucoa mdedo la correte que crcula por el crcuto coectado solamete la ressteca. 8

9 La gráfca que se muestra a cotuacó, dca co líea de putos la stuacó mecoada ates, referda a la erca del strumeto de medcó y su valor desplazado del tempo cero. (A) E el strumeto t (seg) VI.1.5 Determacó del valor de la costate de tempo τ por el método de cuadrados mímos Supogamos haber obtedo expermetalmete u cojuto de "" meddas de la magtud "y" y "" meddas de la magtud "x" a las cuales supoemos relacoadas etre sí lealmete a través de la ecuacó y = m.x b. Nos propoemos averguar cual es la recta que más se aproxma a todos los putos; o lo que es lo msmo, los valores de "m" y "b" (pedete y ordeada al orge) a partr de la sguete tabla de valores : y = l y x y x 1 y 1 x y x 3 y x y t (seg) x Cosderemos el par (x, y); a x le correspode el valor expermetal y el cual debdo a la dspersó o será el msmo que el determado por la recta propuesta como se dca e la gráfca de arrba y = f (x). El dado por la fucó valdrá y(x) = mx b ; y la dfereca será : y y(x ) = y (mx b) que correspode a la separacó etre el puto expermetal y el dado por la recta teórca. De esta forma, podemos formar dferecas, ua para cada par de valores (x, y) y a las cuales deseamos hacer mímas. El problema es que dvdualmete es mposble; tampoco podríamos hacerlo co la suma de 9

10 ellas porque cualquer recta gualmete dstacada de los putos por defecto y por exceso dará ua suma ula. Ua solucó es mmzar la suma de los cuadrados de estas dferecas; esto es : Σ [y y(x )] = Σ [y (mx b)] = mímo Las varables que hay que teer e cueta aquí so la pedete "m" y la ordeada al orge "b", ya que de ellas depede el que las rectas se acerque más a todos los putos. Las solucoes so : m = ( x. y ) x. = 1 = 1 = 1. ( x ) x = 1 = 1 y (0) b = = 1 ( x ). y x. ( x y ). = 1 = 1 = 1 ( x ) = 1 = 1 x. (1) Dode "m" y "b" so los valores que determa uívocamete ua recta que más se aproxma a todos los valores expermetales ( x, y ) y se calcula a partr de los msmos. Co la fórmula (0) determamos "m"; luego : m = 1 / τ = 1 / RC obteemos τ VI.1.6 Errores que se comete e la determacó de τ VI Error de clase del amperímetro Afecta a la medcó de, y por lo tato al cálculo de y = l = Clase Fodo esc..100 meddas Luego : y = l 10

11 VI.1.6. Error de aprecacó e el croómetro Segú el tpo de croómetro utlzado, podemos tomar por ejemplo : x = ± 0,1 seg. (o el valor que se pueda aprecar segú la caldad del strumeto) VI Errores casuales o accdetales Los errores casuales se produce e cada lectura de las catdades y t; como la medcó se realza e u régme trastoro, esto es "" varía co el tempo "t", o es posble determar varas lecturas para ua msma stuacó y por lo tato o puede determarse los errores casuales para cada valor "" leído. Por dcho motvo se aplca el método de los cuadrados mímos m = 1 / τ m S se propaga los errores que se comete al calcular "m", tedremos : ( 1) m = f f m= x x y y y x x sedo f = f (x,y) = y = mx b ( x ) ( 1) x ( 1) x x ( x ) x ( x ) y () El verdadero valor de τ será : τ = τ calculado ± τ τ calculado = 1 / m (m se calcula co la ecuacó 0) Como τ varía co "m", tedremos que : τ m τ = m= esto es así, ya que la dervada : m m ( τ = 1/ m ) 1 = m m Por lo tato : [.()](1/m ) τ = m ecuacó = y falmete quedará : m τ = τ calculado [ecuacó () ] (1 /m ) (3) 11

12 VI. PROCEDIMIENTOS Istrumetos y equpos ecesaros : Fuete de tesó cotua Amperímetro Resstecas y capactores Llaves terruptoras Croómetro Coductores y elemetos de coexó. Crcuto práctco : Datos de la expereca : Fuete de tesó :... volts c.c. Amperímetro : Clase... Rago medcó... Amp. Ra :... Ω Capactor/es :... e coexó... Croómetro : aprecacó...seg Resstecas :... e coexó... Tabla de valores obtedos e la expereca x 10 6 (A) x = t(seg) y = l x y x Σ x = Σ y = Σ x y Σ x 1

13 Determacó gráfca de τ CALCULOS a) Determacó aalítca de τ : m = b = b) Cálculo de la capacdad equvalete del sstema : c) Cálculo del error cometdo e el cálculo de τ: c.1) Error de clase : y = l fodo escala clase amp =. 100 = y = l... c.) Error de aprecacó del croómetro : x =...seg c.3) Errores casuales (propagacó de errores) : m = 1 / τ ± m τ = τ calculado τ 1 τ =τ calcu. ± ( ecuacó) τ = τ calc. ± ( ecuacó ) 1/m m 13

2 - TEORIA DE ERRORES : Calibraciones

2 - TEORIA DE ERRORES : Calibraciones - TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Análisis de un circuito RC con resistencia no lineal

Análisis de un circuito RC con resistencia no lineal Aálss de u crcuto RC co ressteca o leal Joaquí Castro Z, Lucas Provezao & Emlo F. Restell () Facultad de Igeería, Cecas Exactas y Naturales, Uversdad Favaloro. joaqu_882@hotmal.com, lucasprovezao@hotmal.com,

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Sistema binario. Disoluciones de dos componentes.

Sistema binario. Disoluciones de dos componentes. . Itroduccó ermodámca. ema Dsolucoes Ideales Ua dsolucó es ua mezcla homogéea, o sea u sstema costtudo por ua sola fase que cotee más de u compoete. La fase puede ser: sólda (aleacoes,..), líquda (agua

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN

ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN UNIDAD 6 ANÁLISIS DE REGRESIÓN SIMPLE Y CORRELACIÓN Itroduccó a la udad El uso de la regresó leal smple es muy utlzado para observar el tpo de relacó que exste etre dos varables y poder llevar a cabo la

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax + bx + c = 0 se aalzó el sgo

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente:

Las anualidades anticipadas ocurren al inicio de cada periodo de tiempo, el diagrama de flujo de cada de estas anualidades es el siguiente: Matemátcas faceras 4.2. Aualdades atcpadas 4.2. Aualdades atcpadas UNIDAD IV. ANUALIDADES Las aualdades vecdas so aquellas que sus pagos guales ocurre al falzar cada perodo, u dagrama de flujo de cada

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

Ejemplo de cálculo de sección por el criterio de la intensidad de cortocircuito. Método ampliado.

Ejemplo de cálculo de sección por el criterio de la intensidad de cortocircuito. Método ampliado. Ejemplo de cálculo de seó por el crtero de la tesdad de cortocrcuto. Método amplado. Basádoos e el ejemplo de la ewsletter ateror amplaremos el cálculo del cortocrcuto hasta cosderar todas las mpedacas

Más detalles

UNIDAD 7 SERIES DE TIEMPO. Introducción a la unidad

UNIDAD 7 SERIES DE TIEMPO. Introducción a la unidad UNIDAD 7 SERIES DE TIEMPO Itroduccó a la udad Ua sere de tempo es el cojuto de datos que se regstra a través del tempo sobre el comportameto de ua varable de terés, geeralmete los regstros se realza e

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones 2 CÁLCULO FINANCIERO Teoría, Ejerccos y Aplcacoes 3 Uversdad de Bueos Ares Facultad de Cecas Ecoómcas Autores: Jua Ramó Garca Hervás Actuaro (UBA) Master e Ecoomía y Admstracó (ESEADE). Docete de Posgrado

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

. Usaremos una vía algebraica y una geométrica que nos

. Usaremos una vía algebraica y una geométrica que nos Título: La desgualdad etre la meda artmétca y geométrca e problemas de olmpadas. Resume: E el presete artículo se pretede mostrar la utldad de ua desgualdad ta elemetal como la relacó etre las medas artmétca

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

α 3 = α 1 + 2ρ ... α n = α 1 + (n-1)ρ

α 3 = α 1 + 2ρ ... α n = α 1 + (n-1)ρ 4 RENT RIBLE I EN PROGREIÓN RITMÉTI: álculo del alor actual: ea,,, los térmos de ua reta aual que ece e los mometos,,, respectamete upogamos que las aualdades aría e progresó artmétca, es decr que cada

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS Coceptos (cotedos soporte) Udad de trabajo sexta: Geeraldades. Retas auales costates. Retas costates fraccoadas. Retas varables. Udad de trabajo séptma Geeraldades. mortzacó de u préstamo por el sstema

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears Aál etadítco báco (II) Magdalea Cladera Muar mcladera@ub.e Departamet d Ecooma Aplcada Uvertat de le Ille Balear CONTENIDOS Covaraza y correlacó. Regreó leal mple. REFERENCIAS Alegre, J. y Cladera, M.

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

1. RESISTENCIA AL FLUJO.

1. RESISTENCIA AL FLUJO. FLUJO UNIFORME 1. RESISTENCI L FLUJO. E los flujos a superfce lbre la compoete del peso del agua e la dreccó del flujo, fuerza motora, causa la aceleracó de éste (o desaceleracó s la pedete de fodo es

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

Elaborado por: Ing. Rubén Toyama U. 1

Elaborado por: Ing. Rubén Toyama U. 1 CONTENIDO IDENTIFICACIÓN... 2 PLANIFICACIÓN DE LOS ENCUENTROS... 2 PROGRAMA ANALITICO... 3 ORIENTACIONES METODOLÓGICAS... 8. - Itroduccó.... 8..- Objetvos Geerales.... 9 2.- Desarrollo... 9 Prmer ecuetro...

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles