FUNDAMENTOS DE LA TEORÍA DE LA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDAMENTOS DE LA TEORÍA DE LA"

Transcripción

1 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FCULTD DE INGENIERÍ U N M PROBBILIDD Y ETDÍTIC Iee Paticia Valdez y lfao ieev@sevido.uam.mx FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO PREVIO: REPO DE CONJUNTO 1

2 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios NOTCIONE DE CONJUNTO Y DIGRM DE VENN Cojuto uivesal: U Cojuto vacío: Ø ubcojuto: B Uió de cojutos: B Itesecció de cojutos: B Complemeto del cojuto especto de U: o bie: LGUN LEYE DE CONJUNTO Paa cualquie cojuto : Ø Paa u cojuto U, U si todos los elemetos de peteece a U B si y solo si B y B Paa cualquie cojuto : i B y B C, etoces: C 2

3 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios LGUN LEYE DE CONJUNTO Leyes de idetidad: Ø Ø Ø U U U Leyes de Moga: ( B) B ( B) B Leyes asociativas: ( B C) ( B) C ( B C) ( B) C Leyes distibutivas: ( B C) ( B) ( C) ( B C) ( B) ( C) PRODUCTO CRTEINO Dados dos cojutos y B, su poducto catesiao se defie como: X B { (x,y) x, y B } Ejemplo: { x x 3, x N } B { y y es ua vocal } X B { (1,a), (1,e), (1,i), (1,o), (1,u), (2,a), (2,e), (2,i), (2,o), (2,u), (3,a), (3,e), (3,i), (3,o), (3,u) } B X { (a,1), (a,2), (a,3), (e,1), (e,2), (e,3), (i,1), (i,2), (i,3), (o,1), (o,2), (o,3), (u,1), (u,2), (u,3), } 3

4 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO PREVIO: TÉCNIC DE CONTEO PRINCIPIO FUNDMENTL DEL CONTEO 1/2 Paa u expeimeto que costa de k evetos sucesivos dode: el pime eveto puede esulta de m 1 maeas distitas, el segudo eveto puede esulta de m 2 maeas distitas... El k-ésimo k eveto puede esulta de m k maeas distitas. El úmeo total de esultados paa el expeimeto completo está dado po: m 1 m 2... m k 4

5 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios Ejemplo 1: PRINCIPIO FUNDMENTL DEL CONTEO 2/2 E u soteo cada paticipate debe elegi e ode cuato imágees de ete 25. Duate el soteo se descube ua po ua cuato imágees imágees (si epetició) y gaa quiees aciete a las cuato e el mismo ode e que salieo. cuátos posibles esultados puede tee el soteo? No. de esultados (25) (24) (23) (22) 303,600 Ejemplo 2: E u soteo cada paticipate debe elegi cuato úmeos del 1 al 25. Duate el soteo se seleccioa cuato úmeos co epetició y gaa quiees aciete a los cuato úmeos e el mismo ode e que salga. s cuátos posibles esultados puede tee el soteo? No. de esultados (25) (25) (25) (25) ,625 Nótese que e este caso, si es el úmeo total de elemetos difeetes dispoibles y es el úmeo de objetos que se seleccioaá co epetició, etoces el úmeo total de esultados posibles es:. PERMUTCIONE Pemutacioes simples: i se tiee u cojuto de objetos difeetes, las pemutacioes so subcojutos de objetos, e dode ua pemutació es distita de ota si difiee e al meos u elemeto o e el ode de estos. Codició: <. Paa escoge el 1e. elemeto hay fomas distitas. Paa escoge el 2do. elemeto hay (-1) fomas distitas. Paa escoge el 3e. elemeto hay (-2) fomas distitas.... Paa escoge el -ésimo. elemeto hay [ - ( -1 ) ] fomas distitas, o bie, (-+1). Po el picipio fudametal del coteo, el úmeo total de pemutacioes es: P(,) (-1) (-2)... (-+1) Que tambié se puede expesa de la foma: P(, ) P! ( )! 1/4 5

6 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios PERMUTCIONE 2/4 i e las pemutacioes etoces: P(,)! de cuátas maeas se puede acomoda ua euió de cico pesoas e ua fila de cico sillas? !120 Pemutacioes ciculaes: objetos puede distibuise e u cículo de (-1)( 1)(-2)...(3)(2)(1) fomas distitas PC ( 1)! de cuátas maeas se puede acomoda ua euió de cico pesoas e ua mesa edoda? (5-1)!4! 25 Nótese que la pimea pesoa puede colocase e cualquie luga, po lo que de las P(,) hay que desecha las que so iguales, po lo que PC! / (-1)! PERMUTCIONE Pemutacioes co epetició: i se tiee u cojuto de objetos difeetes, se foma cojutos de objetos, e dode se pemite la epetició y además se pemite: <, > ó Paa escoge el 1e. elemeto hay fomas distitas. Paa escoge el 2do. uevamete elemeto hay fomas distitas. Paa escoge el 3e. elemeto hay fomas distitas.... Paa escoge el -ésimo. elemeto hay fomas distitas, Po el picipio fudametal del coteo, el úmeo total de pemutacioes es: PR(,)... veces 3/4 lo que tambié se expesa de la foma: PR Nótese que e este caso, después de obseva cada esultado se devuelve d el elemeto al cojuto, y paa el siguiete esayo hay ota vez esultados posibles; po lo que se dice que se toma muestas co eemplazo. 6

7 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios PERMUTCIONE Pemutacioes co gupos de objetos iguales: i e u cojuto de tamaño,, existe m 1 objetos iguales m 2 objetos iguales... m k objetos iguales, dode m 1 +m m k El úmeo de pemutacioes de objetos es: Ejemplo: Pm 1, m2,.., m k m! m 1 2!!... cuátos códigos difeetes de siete letas puede fomase co tes letas X, dos letas Y y dos letas Z? 7 7! P3,2, !2!2! m k! 4/4 COMBINCIONE i se tiee u cojuto de objetos difeetes, las combiacioes so subcojutos de objetos, e dode ua combiació es distita de ota si difiee e al meos u elemeto, si impota el ode de éstos. Codició: <. El úmeo total de pemutacioes es: Peo como paa cada combiació hay! pemutacioes, se tiee que: Despejado: Que tambié se puede expesa de la foma: C(, ) C P (, ) P P C! C! ( )! P 1!!! ( )!!!( )! 7

8 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios Ejemplo 1: COMBINCIONE E u soteo cada paticipate debe elegi cuato úmeos distitos del 1 al 25. Duate el soteo se saca cuato úmeos si epetició y gaa quiees aciete a los cuato úmeos si impota el ode e que salga. cuátos posibles esultados puede tee el soteo? Puesto que o impota el ode e que sale los úmeos, se tata de combiacioes: C 4 25! 4!(25 4)! 25! 4!(21)! 12,650 Ejemplo 2: COMBINCIONE De cuátas maeas puede escogese u comité compuesto po 3 hombes y tes mujees, de u gupo de 7 hombes y 5 mujees 1. Los 3 hombes se puede elegi de 35 fomas distitas. 2. Las 3 mujees se puede elegi de 10 fomas distitas. 3. Po el picipio fudametal del coteo, el úmeo de comités distitos es de: C 3 C 3 7! 3!(7 3)! C C3 5! 3!(5 3)!

9 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios COMBINCIONE Combiacioes co epetició: i se tiee u cojuto de objetos difeetes, se foma cojutos de objetos, e dode se pemite la epetició, si impota el ode de los elemetos; aquí tambié, ua combiació es distita de ota si difiee e al meos u elemeto, y además se pemite: < y >. CR C + 1 ( + 1)! ( + 1)!! ([ + 1] )!! ( 1)! E ua ua se tiee seis esfeas difeetes Cuátas combiacioes oes de cuato esfeas, co epetició, se puede foma? CR ( )! 9! 4! (6 1)! 4!5! 6 4 o bie: 126 CR 9! 4!(9-4)! C4 C4 126 COMBINCIONE Combiacioes co epetició: i se tiee u cojuto de objetos difeetes, se foma cojutos de objetos, e dode se pemite la epetició, si impota el ode de los elemetos; aquí tambié, ua combiació es distita de ota si difiee e al meos u elemeto, y además se pemite: < y >. CR C + 1! ( + 1)! ([ + 1] )! ( + 1)!! ( 1)! E ua ua se tiee seis esfeas, dos ojas, 3 blacas y ua ega. Cuátas combiacioes de cuato esfeas, co epetició, se puede foma? CR 6 4 C + 1 ( + 1)! ( + 1)!! ([ + 1] )!! ( 1)! 9

10 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios Ejemplos: NÚMERO COMBINTORIO!!( )! Popiedades de los úmeos combiatoios 0 1; 1; 1; ; { { { { { TEOREM DEL BINOMIO Y EL TRIÁNGULO DE PCL Teoema del biomio: ( a + b) 0 a Popocioa los coeficietes de cada témio del desaollo del biomio; cada celda e él tiágulo coespode al úmeo combiatoio C(,) dode es el egló y es la pocisió del témio, paa 0, 1,...,. Ejemplo, paa 5: (x+y) 5 x 5 +5x 4 y 3 +10x 3 y 2-10x 2 y 3 +5xy 4 +y 5 b 10

11 Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios DIGRM DE ÁRBOL Es ua técica gáfica paa ecota el úmeo de posibles esultados paa u expeimeto que costa de evetos sucesivos. Ejemplo: l laza ua moeda tes veces, los posibles esultados e seie se puede cota e este ábol. 11

Nombre del estudiante:

Nombre del estudiante: UNIVERSIDAD DE OSTA RIA ESUELA DE IENIAS DE LA OPUTAIÓN E INFORÁTIA I-0 ESTRUTURAS DISRETAS PROF. KRYSIA DAVIANA RAÍREZ BENAVIDES II Semeste 06 Fecha: /09/06 SOLUIÓN EXAEN PARIAL I Nombe del estudiate:

Más detalles

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n.

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n. Matemática Disceta: Método combiatoio MATEMATICA DISCRETA 3 Método Combiatoio 3 Técicas básicas Sea S u cojuto fiito o vacío Se desiga po S el cadial de S (el úmeo de elemetos de S) Picipio de adició:

Más detalles

APÉNDICE: TÉCNICAS DE CONTEO

APÉNDICE: TÉCNICAS DE CONTEO APÉNDICE: TÉCNICAS DE CONTEO Métodos de eumeació La ciecia es la estética de la iteligecia Gastó Bachelad La ESTADÍSTICA es la estética de la atualeza MOVE Co la fialidad de especifica el total de esultados

Más detalles

CAPÍTULO VI PERMUTACIONES Y COMBINACIONES

CAPÍTULO VI PERMUTACIONES Y COMBINACIONES ERMUTAIONES Y OMBINAIONES 8 AÍTULO VI ERMUTAIONES Y OMBINAIONES Ates de iicia el estudio de este capítulo, coviee eflexioa sobe el siguiete poblema: Imagie que u peató debe i de u puto A de la ciudad a

Más detalles

Fundamentos de la teoría de la probabilidad

Fundamentos de la teoría de la probabilidad Fudametos de la teoía de la pobabilidad M. e A. Vícto D. Piilla Moá Facultad de Igeieía, UNAM Resume Feómeos detemiista y aleatoio. Feómeos aleatoios discetos y cotiuos. Espacio muestal de u feómeo aleatoio.

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Aprendiendo a contar. Introducción

Aprendiendo a contar. Introducción Apediedo a cota Apediedo a cota Itoducció Todos los días os vemos ivolucados e ua divesidad de situacioes e los que teemos que ecota, el úmeo de maeas posibles e que se ha de aegla u cieto cojuto de objetos.

Más detalles

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época.

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época. el blog de mate de aida MATEMÁTICAS I. Númeos complejos. Pág. 1 AMPLIACIÓN DEL CAMPO NUMÉRICO Diofato, u adelatado a su época. Este tiágulo está costuido co ua cueda e la que se ha ealizado doce udos a

Más detalles

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática.

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática. Técicas de cotar MATEMÁTICA DISCRETA I F. Iformática. UPM MATEMÁTICA DISCRETA I () Técicas de cotar F. Iformática. UPM 1 / 18 Pricipios básicos de recueto Pricipios básicos Cardial de u cojuto Cotar los

Más detalles

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales.

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales. Pof. Adea Campillo Aálisis Matemático II Topología elemetal Recodemos cómo se defie u etoo de ceto R adio E = { R / < } Sabemos que ( R : < < < < < Esfea abieta e R Si geealizamos el cocepto de etoo e

Más detalles

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una Tema 2 Combiatoria 2.1 Pricipios básicos de recueto 2.1.1 Cardial de u cojuto Defiició 2.1.1. Diremos que el cardial de u cojuto A es si se puede establecer ua biyecció f : {1,..., } A. Se deota A. Se

Más detalles

APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS

APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DEPARTAMENTO DE MATEMÁTICAS APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS P R E S E N T A M.S.I. JOSÉ FRANCISCO VILLALPANDO

Más detalles

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro). I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos.

Más detalles

Resumen de combinatoria

Resumen de combinatoria Resume de combiatoria 1. Pricipio básico Ua tupla so símbolos ordeados (! 1 ;! 2 ; :::;! ). La i esima compoete es! i. Dos tuplas distitas tiee al meos ua compoete distita. Se costruye u cojuto de tuplas

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

En esta parte cambiamos el nombre de algunos objetos ya conocidos. Contaremos las formas de ordenar los elementos de un conjunto.

En esta parte cambiamos el nombre de algunos objetos ya conocidos. Contaremos las formas de ordenar los elementos de un conjunto. Capítulo 4 Coteo E esta parte cambiamos el ombre de alguos objetos ya coocidos. Cotaremos las formas de ordear los elemetos de u cojuto. 4.1. Espacio muestral. Sucesos Defiició 4.1. U experimeto es ua

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO TÉNIS DE ONTEO Para determiar el espacio muestral o el tamaño del espacio muestral, es ecesario desarrollar alguas técicas de eumeració las cuales so: El Diagrama de Árbol álisis ombiatorio. DIGRMS DE

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

Identificación n de SIStemas

Identificación n de SIStemas Idetificació de SIStemas Idetificació e Lazo Ceado ISIS J. C. omez Idetificació e Lazo Ceado A eces es ecesaio ealiza los expeimetos de idetificació e lazo ceado co etoalimetació. Las azoes puede se ue

Más detalles

COMBINATORIA BÁSICA. Selecciones básicas sobre conjuntos Variaciones Permutaciones Combinaciones. Coeficientes binomiales. Binomio de Newton.

COMBINATORIA BÁSICA. Selecciones básicas sobre conjuntos Variaciones Permutaciones Combinaciones. Coeficientes binomiales. Binomio de Newton. COMBINATORIA BÁSICA Picipios ásicos de ecueto Picipio de dició Picipio de multiplicció Picipio de iclusió-exclusió Picipio del complemetio Seleccioes ásics soe cojutos Vicioes Pemutcioes Comicioes Coeficietes

Más detalles

Sesión preparatoria CO+ Combinatoria, juegos y estrategia

Sesión preparatoria CO+ Combinatoria, juegos y estrategia Sesió preparatoria CO+ Combiatoria, juegos y estrategia Atoio Arada y Jua Gozález-Meeses (sobre uas otas de Rafael Espíola, Jua Gozález-Meeses y Atoio Pallares) 26 de oviembre de 200 Combiatoria La combiatoria

Más detalles

Tema 3: Técnicas de contar

Tema 3: Técnicas de contar Tema 3: Técicas de cotar Objetivo específico: Dado u cojuto fiito podemos cotar sus elemetos si hacer la lista de dichos elemetos? Aplicacioes: Probabilidades (se cueta casos favorables y casos posibles)

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

Objetivos. Sucesiones numéricas. Series numéricas.

Objetivos. Sucesiones numéricas. Series numéricas. TEMA 3 Objetivos. Sucesioes uméics. Seies uméics. Mej os coceptos de sucesió y seie y utiiz s seies de potecis p epeset s fucioes. Sucesioes de úmeos ees: mootoí, cotció y covegeci Se m sucesió de úmeos

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Tema 5 Modos de convergencias de sucesiones de variables aleatorias

Tema 5 Modos de convergencias de sucesiones de variables aleatorias Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada

Más detalles

INTEGRACIÓN ENTRE RELACIONES DE RECURRENCIA Y FUNCIONES GENERATRICES

INTEGRACIÓN ENTRE RELACIONES DE RECURRENCIA Y FUNCIONES GENERATRICES INTEGRACIÓN ENTRE RELACIONES DE RECURRENCIA Y FUNCIONES GENERATRICES Malva Albeto de Toso; Yaia Fumeo Uivesidad Nacioal del Litoal Uivesidad Tecológica Nacioal Pov. de Sata Fe (Agetia) mtoso@satli.com.a

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS º ITIS Mtemátic discet Relció 4 NÚMEROS NATURALES Y ENTEROS. Pob po iducció que si c es u úmeo el, c, y N, etoces ( + c) + c.. Pob ) c) c) d) ( + ) ( + )(+ ) i = 6 3 ( + ) i = 4 (i+ ) = ( + ) 7 ( ) e)

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales. Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Medida de Probabilidad

Medida de Probabilidad Medida de Probabilidad Memo Garro Resume E este artículo etramos de lleo e el estudio del cocepto de medida de probabilidad. Para llegar a él seguiremos dos camios complemetarios: e primer térmio, partiremos

Más detalles

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo

Más detalles

Notas de Combinatoria Daniel Penazzi

Notas de Combinatoria Daniel Penazzi Notas de Combiatoria Daiel Peazzi El Pricipio de Adició: Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas, y A y B so excluyetes, etoces el úmero

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA. TEMA : TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.. Itroducció...... Itroducció histórica...... Defiició de factorial.... Técicas de recueto...... Pricipio del producto...... Pricipio de adició o regla

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

1. El teorema del binomio. Problemas y soluciones

1. El teorema del binomio. Problemas y soluciones El teoema del binomio: Poblemas con la solución. El teoema del binomio. Poblemas y soluciones.). Cuántos posibles caminos P Q hay en este caso? P Q.). De cuántas fomas se pudieon epati las medallas en

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS Se defie como pogesió itmétic u sucesió de úmeos eles,,,...... e los que l difeeci ete témios cosecutivos es costte costte A l difeeci ete témios cosecutivos se le deomi d. Puede

Más detalles

CAPITULO 1. Teorema del Binomio

CAPITULO 1. Teorema del Binomio CAPITULO 1 Teorema del Biomio Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes que ivolucre u úmero fiito

Más detalles

Educación Estocástica La enseñanza y aprendizaje de la probabilidad y la estadística

Educación Estocástica La enseñanza y aprendizaje de la probabilidad y la estadística I Ecuetro Colombiao de Educació Estocástica La eseñaza y apredizaje de la probabilidad y la estadística COMBINATORIA PARA LA ESCUELA Bejamí Sarmieto y Felipe Ferádez Uiversidad Pedagógica Nacioal (Colombia)

Más detalles

1.3 Introducción a la combinatoria

1.3 Introducción a la combinatoria .3 Itroducció a la combiatoria Aprederemos e esta secció técicas básicas para cotar, aplicadas a diferetes aspectos: Cotar los elemetos de u cojuto, como por ejemplo los elemetos de A B o los de A B, co

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

CONTEO. 1. Principios básicos

CONTEO. 1. Principios básicos CONTEO BASADO EN EL LIBRO NOTAS DE ÁLGEBRA DE ENZO GENTILE. Pricipios básicos El Pricipio de Adició Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas,

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G.

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G. Resolució N 2 Axiomas de Probabilidades Profesor: Ivá Rapaport Z Auxiliar: Abelio Jiméez G Ejercicios Resueltos 1 Cierta efermedad se trasmite e forma geética de los padres a los hijos, del siguiete modo:

Más detalles

TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN

TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN TEMA 3: EL ESCUENTO SIMPLE Y EQUIVALENCIA E CAPITALES 1.- INTROUCCIÓN El escueto es ua opeació fiaciea muy utilizaa e el ámbito mecatil. Las empesas cuao se ve co ificultaes e liquiez puee acui al escueto

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scietia Et Techica ISSN: 01-1701 scietia@utp.edu.co Uivesidad Tecológica de Peeia Colombia GONZALEZ PINEDA, CAMPO ELIAS; MILENA GARCIA, SANDRA; OSORIO ACEVEDO, LUIS EDUARDO LA SERIE GEOMETRICA Y SU DERIVADA

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

LA SERIE GEOMETRICA Y SU DERIVADA

LA SERIE GEOMETRICA Y SU DERIVADA Scietia et Techica Año XVII, No 7, Abil de 0. Uivesidad Tecológica de Peeia. ISSN 0-70 96 LA SERIE GEOMETRICA Y SU DERIVADA The Geometic seies ad it deivative RESUMEN E este atículo hallaemos el valo al

Más detalles

Matemáticas Discretas Principios fundamentales de conteo

Matemáticas Discretas Principios fundamentales de conteo Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Pricipios fudametales de coteo Cursos Propedéuticos 00 Ciecias Computacioales INAOE Coteido Itroducció Reglas de la suma el producto Permutacioes

Más detalles

P(A) > 0. Para cualquier otro suceso B (B A A ), se dfi define la probabilidad condicionada de B dado A o probabilidad de B condicionada a A como

P(A) > 0. Para cualquier otro suceso B (B A A ), se dfi define la probabilidad condicionada de B dado A o probabilidad de B condicionada a A como Tema 4. Probabilidad Codicioada: Teoremas básicos. Idepedecia de Sucesos 4.. Probabilidad Codicioada. Defiició El objetivo de este tema es aalizar cómo afecta el coocimieto de la realizació de u determiado

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

Coeficientes Binomiales

Coeficientes Binomiales Uiversidad de los Ades Facultad de Ciecias Ecoómicas y Sociales Escuela de Estadística Coeficietes Biomiales Prof. Gudberto José Leó Ragel MÉRIDA- VENEZUELA, 5 Profesor Gudberto Leó Uiversidad de Los Ades

Más detalles

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet CI2612: Algoritmos y Estructuras de Datos II Blai Boet Aálisis probabiĺıstico Uiversidad Simó Boĺıvar, Caracas, Veezuela Objetivos Espacio de probabilidad Ituitivamete, utilizamos la idea de probabilidad

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

1. El teorema del binomio

1. El teorema del binomio El teorema del biomio. El teorema del biomio.. Producto El producto de úmeros aparece e todas las situacioes e que queremos cotar cosas u opcioes. Imagiaquequeremoscotarel úmerode camiosdistitosque podemostomarparairde

Más detalles

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V Retas Fiacieas. aloació de ua eta 2. ALORACIÓN DE UNA RENTA: ALOR ACTUAL Y ALOR FINAL aloa ua eta e el dieiieto T cosiste e halla la sua del valo iacieo, e dicho dieiieto, de cada uo de los capitales que

Más detalles

Combinatoria, juegos y estrategia

Combinatoria, juegos y estrategia Combiatoria, juegos y estrategia Jua Gozález-Meeses y Atoio Pallares (sobre uas otas de Rafael Espíola) 3 de febrero de 200 Combiatoria La combiatoria es ua herramieta que os permite eumerar agrupacioes

Más detalles

2. Medición de Índices de Refracción. Neil Bruce

2. Medición de Índices de Refracción. Neil Bruce . Medició de Ídices de Refacció Neil Buce Laboatoio de Optica Aplicada, Ceto de Ciecias Aplicadas y Desaollo Tecológico, U.N.A.M., A.P. 70-86, México, 0450, D.F. Objetivos Istumeta e el laboatoio métodos

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

Figura 8.1: Ejemplos de conjuntos de índices.

Figura 8.1: Ejemplos de conjuntos de índices. Capítulo 8 Cojuto de ídices Defiició 8.1 (Cojuto de ídices) Sea I u cojuto, tal que para cada i I se tiee u cojuto A i U. El cojuto I se deomia cojuto de ídices y cada i I es u ídice. (a) Los ídices so

Más detalles

ANALISIS CONVEXO CAPITULO CONVEXIDAD

ANALISIS CONVEXO CAPITULO CONVEXIDAD CAPITULO 2 ANALISIS CONVEXO 2.1 CONVEXIDAD Bajo este título geérico, se itroduce e esta secció las ocioes de cojuto covexo, fució cócava y fució covexa. Coceptos todos ellos que juega u destacado papel

Más detalles

,,,, { }: en determinado término. Por ejemplo, en la primera sucesión el primer término (

,,,, { }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( Fcultd de Cotduí y Admiistció. UNAM Pogesioes Auto: D. José Muel Bece Espios MATEMÁTICAS BÁSICAS PROGRESIONES SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA DE PROGRESIONES Y TEOREMA DEL BINOMIO Profesor: David Elal OLivero Primer año Pla Comú de Igeiería Primer Semestre

Más detalles

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0 Pueba de cceso a la Univesidad. JUNIO 0. Instucciones: Se poponen dos opciones y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

Unidad 1 Operaciones con Números Reales y Complejos

Unidad 1 Operaciones con Números Reales y Complejos UNIDAD : Opeacioes co Númeos Reales Uidad Opeacioes co Númeos Reales y Complejos Itoducció Los distitos cojutos de úmeos eales que se utiliza se deduce a pati de sucesivas ampliacioes del cojuto de úmeos

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES áctica : MEDIDA DEL CAMO MAGNÉTICO CREADO OR CONDUCTORES OJETIVO Obseva la elació existete ete coietes elécticas y campos magéticos. Medi y aaliza el campo magético ceado e el exteio de distitos coductoes

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ. CINEMÁTICA DEL MOVIMIENTO EN EL PLANO: dos dimensiones, horizontal y vertical.

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ. CINEMÁTICA DEL MOVIMIENTO EN EL PLANO: dos dimensiones, horizontal y vertical. MCOSPB CIENCIS NTULES FÍSIC -- 10 -- 013. N.S.Q INSTITUCIÓN EDUCTIV ESCUEL NOML SUPEIO DE QUIBDÓ CINEMÁTIC DEL MOVIMIENTO EN EL PLNO: dos dimesioes, hoizotal y vetical. O sea: Esfea: cayedo de ua mesa

Más detalles

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas.

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas. ANÁLISIS MATEMÁTICO BÁSICO. PROPIEDADES DE LAS SUCESIONES. U tipo importate de sucesioes so las llamadas sucesioes moótoas. Defiició.. a: Ua sucesió de úmeros reales ( ) = se llama moótoa creciete si +

Más detalles

EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT.

EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT. EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT. ---------------------------------------------------------------------------- La altura de ua ota musical os permite distiguir si u soido es agudo

Más detalles

A B. Figura 1. Representación de los puntos en el espacio

A B. Figura 1. Representación de los puntos en el espacio 1. Pao catesiao E puto es u eemeto básico e geometía co e cua se oga idica ua posició e e espacio y costui eemetos geométicos como a ecta y e pao. Paa pode tabaja co os putos se utiiza a eta mayúscua paa

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario?

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario? Técicas de Coteo El Pricipio Básico de Coteo Vamos a ua cafetería que vede hamburguesas. U aucio os dice que co los igredietes lechuga, tomate, salsa de tomate y cebolla, podemos preparar ua hamburguesa

Más detalles

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3.

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3. Tema 3: Itroducció a la probabilidad Tema 3: Itroducció a la probabilidad 3.1 Itroducció Equiprobabilidad Métodos combiatorios Objetivos del tema: l fial del tema el alumo será capaz de: Compreder y describir

Más detalles

{ }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( ), es 10. El término enésimo o general es a

{ }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( ), es 10. El término enésimo o general es a Pági del Colegio de Mtemátics de l ENP-UNAM Pogesioes Auto: D. José Muel Bece Espios PROGRESIONES UNIDAD I I. SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes

Más detalles

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA COLEGIO INGLÉS DEPARTAMENTO NIVEL: CUARTO MEDIO PSU. UNIDAD: COMBINATORIA PROFESOR: NATALIA MORALES A. ROLANDO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. La combiatoria estudia las diferetes formas

Más detalles

Distribución Multinomial

Distribución Multinomial Uiversidad de Chile. Rodrigo Assar Facultad de Ciecias Físicas y Matemáticas M A34B 3 Adrés Iturriaga Departameto de Igeiería Matemática. Víctor Riquelme Distribució Multiomial Resume E el presete artículo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

LAZOS DE AMARRE DE FASE

LAZOS DE AMARRE DE FASE LAZOS DE AMARRE DE FASE Maco Atoio Péez Ciseos *, Mak Readma * Divisió de Electóica Computació, CUCEI, Uivesidad de Guadalajaa, México. Cosulto Cotol Sstems Piciples RESUMEN: Este atículo peteece a la

Más detalles

TEOREMAS DE ESPACIO VECTORIAL

TEOREMAS DE ESPACIO VECTORIAL TEOEMAS DE ESPACIO ECTOIAL 1.-Sea u ojuto o vaío y se ( k,, ) u ampo. Se die que es u espaio vetoial sobe k si está defiidas dos leyes de omposiió, llamadas adiió y multipliaió po ua esala, tales que:

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

---oo0oo--- Como usamos las nueve letras de la palabra, sólo varía el orden : De nuevo son permutaciones, de 8 participantes en este caso :

---oo0oo--- Como usamos las nueve letras de la palabra, sólo varía el orden : De nuevo son permutaciones, de 8 participantes en este caso : DU]Q>!!3_]RY^Qd_bYQ 10 os &XiQWRVQ~PHURVGHFLQFRFLIUDVGLIHUHQWHVSXHGHQIRUPDUVHFX\DVFLIUDVVHDQWRGDVLPSDUHV" Las cifras impares so 1, 3, 5, 7, y 9, cico e total, luego como queremos formar úmeros de cico

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles