Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1"

Transcripción

1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié supogaos que cada ua de las aeras de efectuar puede ser seguida por cualquiera de las aeras de efectuar. Etoces el procediieto que costa de seguido por se puede hacer de aeras. Obviaete este pricipio puede extederse a cualquier úero de procediietos. Si hay procediietos y el i -ésio procediieto se puede hacer de i aeras i... etoces el procediieto que cosiste e seguido por... seguido por el procediieto puede hacerse de.... Ejeplo: U artículo aufacturado debe pasar por tres cotroles. E cada uo de ellos se ispeccioa ua característica particular del artículo y se le arca de coforidad. E el prier cotrol hay tres edicioes posibles ietras que e cada uo de los dos últios cotroles hay cuatro edicioes posibles. Por lo tato hay aeras de arcar el artículo. Pricipio de adició. Supogaos que u procediieto desigado coo se puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Supogaos adeás que o es posible que abos y se haga jutos. Etoces el úero de aeras coo se puede hacer o es +. Tabié este pricipio puede geeralizarse coo sigue: si hay procediietos y el i -ésio procediieto se puede hacer e i aeras i... etoces el úero de aeras coo podeos hacer el procediieto o el procediieto o... o el procediieto está dado por supoiedo que los procediietos o se puede realizar e fora cojuta. Ejeplo: Supogaos que plaeaos u viaje y debeos decidir etre trasportaros por autobús o por tre. Si hay tres rutas para el autobús y dos para el tre etoces hay rutas diferetes dispoibles para el viaje.

2 Variacioes Cobiacioes y Perutacioes. Variacioes de eleetos toados de e. Se llaa variacioes de eleetos toados de e a los diferetes grupos que puede forarse co los eleetos dados toados de e de odo que cada dos grupos difiera etre si ya por la aturaleza de algú eleeto ya por el orde de sucesió de los isos. Se represeta por V (. Las variacioes de eleetos toados de e será igual al úero de uestras diferetes de taaño seleccioadas ediate u uestreo si reeplazo de ua població de taaño ya que dos grupos se diferecia etre sí si existe dos eleetos diferetes y por el orde de sucesió de los isos (objetos ordeados. El uestreo que se cosidera es si reeplazo pues las variacioes e las que o se especifique ada se etederá que so si repetició. Así: V ( ( ( ( + ( Variacioes co repetició de eleetos toados de e. Se llaa variacioes co repetició de eleetos toados de e a los diferetes grupos que puede forarse co los eleetos dados toados de e e los que evetualete puede aparecer eleetos repetidos y co la codició de que dos grupos sea distitos etre sí si tiee distitos eleetos o está situados e distitos lugares. Se represeta por V (. Coo veos tabié aquí se tiee e cueta el orde de los eleetos de cada grupo y de hecho e lo úico e que se diferecia de las variacioes ates defiidas es que evetualete algú eleeto puede aparecer repetido e u iso grupo. Es decir que el uestreo que haceos es co reeplazo. Así: V ( veces

3 Perutacioes de eleetos Perutacioes de eleetos diferetes so los distitos grupos que puede forarse etrado e cada uo de ellos los eleetos dados difiriedo úicaete e el orde de sucesió de sus eleetos. Se represeta por P. Coo se ve por la defiició las perutacioes de eleetos so el úero de ordeacioes diferetes de estos eleetos. Así: Perutacioes co repetició P V ( ( ( Llaareos perutacioes co repetició de eleetos distitos tal que el priero aparece veces; el segudo veces;...; el -ésio veces co a las distitas disposicioes que puede forarse co los eleetos distitos de tal fora que e cada disposició cada eleeto aparezca... veces y esto e u orde deteriado co y 0 i.... Se represeta por P.... i Coo se tiee e cueta el orde deteriar el úero de disposicioes distitas que se puede forar co los eleetos es el iso que deteriar el úero de particioes diferetes de taaño e las cuales se puede dividir los eleetos de fora que el prier grupo tega taaño (úero de... el -ésio (úero de. Así: P... ( i i

4 Cobiacioes de eleetos toados de e. Llaareos cobiacioes de eleetos toados de e a los diferetes grupos que se puede forar figurado de estos eleetos e cada uo de odo que cada dos grupos difiera e la aturaleza de por lo eos u eleeto. Coo se ve o se tiee e cueta el orde de los eleetos e la disposició. Se represeta por C (. El úero de grupos que podreos forar de taaño será igual al úero de subpoblacioes de taaño de ua població co eleetos puesto que e las subpoblacioes o teíaos e cueta el orde de los eleetos extraídos. Así: C ( C ( V ( V( ( Cobiacioes co repetició de eleetos toados de e. Llaareos cobiacioes co repetició de eleetos toados de e a todas las disposicioes distitas que se puede forar toado eleetos de los etre los que evetualete puede aparecer eleetos repetidos y co la codició de que dos disposicioes será distitas etre sí si tiee distitos eleetos. Coo se ve o se tiee e cueta el orde e la disposició. Se represeta por C (. El úero de disposicioes distitas que se puede forar toado eleetos etre los será igual al úero de subpoblacioes diferetes de taaño seleccioadas de ua població de taaño ediate u uestreo co reeplazo pues puede aparecer eleetos repetidos. Así: C ( + + ( + (

5 A cotiuació se ejeplificará cada ua de las situacioes descritas ateriorete. Cosidere 4 { 34 } y toareos uestras de taaño. La extracció se realizará bajo cuatro codicioes diferetes: 4 Co reeplazo y co orde: V ( 6. Estas dieciséis uestras so: ( ( ( 3 ( 4 ( ( ( 3 ( 4 ( ( ( ( ( ( ( ( Si reeplazo y co orde: V(. ( Estas doce uestras so: ( (3 (4 ( (3 (4 (3 (3 (43 (4 (4 (34 4 Si reeplazo y si orde: C( 6. ( Estas seis uestras so: ( (3 (3 (4 (4 (33 Co reeplazo y si orde: C( Estas diez uestras so: + ( 4 + ( ( ( ( (3 (3 (33 (4 (4 (34 (44

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

Ejercicios de Combinatoria,

Ejercicios de Combinatoria, Ejercicios de Cobiatoria, 0 0 00 E ua caja hay bolas blacas, todas iguales e taaño, y otras bolas, de igual taaño que las ateriores pero todas de diferete color (o hay dos que tega el iso) De cuátas foras

Más detalles

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA el blog de ate de aida. MATEMÁTICAS ESO: COMBINATORIA ág. COMBINATORIA Los étodos de coteo so estrategias utilizadas ara deteriar el úero de osibilidades diferetes ue existe al realizar u exerieto. MÉTODO

Más detalles

que llamaremos variaciones ordinarias de m elementos tomados de n en n. Esta expresión es fácil de obtener razonando por recurrencia.

que llamaremos variaciones ordinarias de m elementos tomados de n en n. Esta expresión es fácil de obtener razonando por recurrencia. c abc b d abd b acb a c d acd b adb d c adc c bac a d bad a bca b c d bcd a bda d c bdc b cab a d cad a cba c b d cbd a cda d b cdb b dab a c dac a dba d b c dbc a dca c b dcb bac sigifica que la priera

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Uiversidad del Perú, DECANA DE AMERICA) MEDIDAS DE DISPERSION 14/06/008 Ig. SEMS .3 MEDIDAS DE DISPERSIÓN Todos los valores represetativos discutidos e las seccioes

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

EJERCICIOS Y PROBLEMAS DE COMBINATORIA

EJERCICIOS Y PROBLEMAS DE COMBINATORIA EJERCICIOS Y PROBLEMAS DE COMBINATORIA E estas hojas se preseta ua colecció variada de ejercicios y probleas de cobiatoria. Los ejercicios está ezclados de fora que o se prevea si se trata de variacioes,

Más detalles

Sesión preparatoria CO+ Combinatoria, juegos y estrategia

Sesión preparatoria CO+ Combinatoria, juegos y estrategia Sesió preparatoria CO+ Combiatoria, juegos y estrategia Atoio Arada y Jua Gozález-Meeses (sobre uas otas de Rafael Espíola, Jua Gozález-Meeses y Atoio Pallares) 26 de oviembre de 200 Combiatoria La combiatoria

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Resumen de combinatoria

Resumen de combinatoria Resume de combiatoria 1. Pricipio básico Ua tupla so símbolos ordeados (! 1 ;! 2 ; :::;! ). La i esima compoete es! i. Dos tuplas distitas tiee al meos ua compoete distita. Se costruye u cojuto de tuplas

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

PRÁCTICAS Nº 10 Y 11

PRÁCTICAS Nº 10 Y 11 PRÁCTICA Nº 10 Y 11 CONTRATE DE HIPOTEI E INTERVALO DE CONFIANZA ETADÍTICA E INTRODUCCIÓN A LA ECONOMETRÍA º LADE CURO 008-09 Profesorado: Prof. Dra. Mª Dolores Gozález Galá Prof. M ª Mar Roero Mirada

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL

DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL 475 DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL 476 Diseños uestrales ÍNDICE Páia 1. Diseño de la Muestra... 477 1.1 Marco de la ecuesta... 477 1.2 Foració de uidades de uestreo... 477 1.3 Estratificació...

Más detalles

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA COLEGIO INGLÉS DEPARTAMENTO NIVEL: CUARTO MEDIO PSU. UNIDAD: COMBINATORIA PROFESOR: NATALIA MORALES A. ROLANDO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. La combiatoria estudia las diferetes formas

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO.

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO. IES SANTIAGO RAMÓN Y CAJAL PRIMER TRIMESTRE EJERCICIOS DE REPASO Falta ejercicios del Tea Estos ejercicios so eraete orietativos - Hallar los siguietes líites: a) b) c) - E ua progresió geoétrica sabeos

Más detalles

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una Tema 2 Combiatoria 2.1 Pricipios básicos de recueto 2.1.1 Cardial de u cojuto Defiició 2.1.1. Diremos que el cardial de u cojuto A es si se puede establecer ua biyecció f : {1,..., } A. Se deota A. Se

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Una aplicación del procedimiento Hot Deck como método de imputación

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Una aplicación del procedimiento Hot Deck como método de imputación UNIVESIDAD NACIONA MAYO DE SAN MACOS FACUTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE ESTADÍSTICA Ua aplicació del procediieto Hot Deck coo étodo de iputació Capítulo III. Método de iputació ot deck TABAJO MONOGÁFICO

Más detalles

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática.

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática. Técicas de cotar MATEMÁTICA DISCRETA I F. Iformática. UPM MATEMÁTICA DISCRETA I () Técicas de cotar F. Iformática. UPM 1 / 18 Pricipios básicos de recueto Pricipios básicos Cardial de u cojuto Cotar los

Más detalles

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }.

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }. 1. SUCESIONES DE NÚMEROS REALES. A lo largo de este tea vaos a cosiderar que e cojuto ρν o cotiee al eleeto 0. Por tato ρν={1,, 3, }. DEF Llaareos sucesió de Núeros Reales a toda aplicació f: ρν ΙΡ. Es

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO TÉNIS DE ONTEO Para determiar el espacio muestral o el tamaño del espacio muestral, es ecesario desarrollar alguas técicas de eumeració las cuales so: El Diagrama de Árbol álisis ombiatorio. DIGRMS DE

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA ANÁISIS IENSIONA Y SEEJANZA INÁICA PROOIPOS Y OEOS os procediietos aalíticos basados e las ecuacioes geerales de la ecáica de los fluidos, o perite resolver, adecuadaete, todos los probleas que se preseta

Más detalles

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales.

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales. DIEÑO ANÁLII DE DATO II. NOVIEMBRE 00 Problea.- Relacioaos la variable X co la variable. Dispoeos de las putuacioes observadas e de las putuacioes residuales. ) Deteriar R. OL: Calculeos la sua de cuadrados

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II)

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II) PÍTULO 5: SEGMENTOS PROPORIONLES (II) Date Guerrero-haduví Piura, 2015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 5: SEGMENTOS PROPORIONLES (II) Esta obra está bajo ua

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Combinatoria, juegos y estrategia

Combinatoria, juegos y estrategia Combiatoria, juegos y estrategia Jua Gozález-Meeses y Atoio Pallares (sobre uas otas de Rafael Espíola) 3 de febrero de 200 Combiatoria La combiatoria es ua herramieta que os permite eumerar agrupacioes

Más detalles

Tema 3: Técnicas de contar

Tema 3: Técnicas de contar Tema 3: Técicas de cotar Objetivo específico: Dado u cojuto fiito podemos cotar sus elemetos si hacer la lista de dichos elemetos? Aplicacioes: Probabilidades (se cueta casos favorables y casos posibles)

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

Carlos González y Dulcinea Raboso 4 de Noviembre, 2017

Carlos González y Dulcinea Raboso 4 de Noviembre, 2017 Carlos Gozález y Dulciea Raboso 4 de Noviembre, 207 Combiatoria Problema Cuátas formas hay de elegir u capitá y u capitá suplete e u equipo de fútbol de dieciocho compoetes? Problema 2 Llamamos palabra

Más detalles

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a Capítulo Coceptos de Óptica Física.1 Frete De Oda El frete de oda se puede defiir coo ua superficie iagiaria que ue todos los putos e el espacio que so alcazados e u iso istate por ua oda que se propaga

Más detalles

I N T R O D U C C I Ó N

I N T R O D U C C I Ó N Mateática Discreta usado ISETL Álvaro guirre Miria Varó Teas que desarrollareos: Sucesioes. Fucioes por recurrecia. Teoría cobiatoria. I N T R O D U C C I Ó N Coezareos co el tea sucesioes del prograa

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

MATEMÁTICAS: 4ºB de ESO Capítulo 13: Combinatoria

MATEMÁTICAS: 4ºB de ESO Capítulo 13: Combinatoria MATEMÁTICAS: 4ºB de ESO Capítulo 3: Cobiatoria www.aputesareaverde.org.es Revisores: Adrés Hierro y Sergio Herádez Ilustracioes: Baco de Iágees de INTEF y María Molero 372 Cobiatoria: 4ºB de ESO Ídice.

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

P en su plano, siendo C las correspondientes

P en su plano, siendo C las correspondientes PRINIPIO DE OS TRBJOS VIRTUES El Pricipio de los Trabajos Virtuales se expresa diciedo: Para ua deforació virtual ifiitaete pequeña de u cuerpo que se ecuetra e equilibrio, el trabajo virtual de las fuerzas

Más detalles

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!!

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!! . SERIES MM_III. EDO HOMOGÉNEAS: SOLUCIONES TIPO SERIE.. Clasificació de las siglaridades de a EDO hoogéea de º orde lieal.. Solcioes ptos siglares de a EDO hoogéea de º orde lieal..3 Método de Frobeis..4

Más detalles

Educación Estocástica La enseñanza y aprendizaje de la probabilidad y la estadística

Educación Estocástica La enseñanza y aprendizaje de la probabilidad y la estadística I Ecuetro Colombiao de Educació Estocástica La eseñaza y apredizaje de la probabilidad y la estadística COMBINATORIA PARA LA ESCUELA Bejamí Sarmieto y Felipe Ferádez Uiversidad Pedagógica Nacioal (Colombia)

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA. TEMA : TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.. Itroducció...... Itroducció histórica...... Defiició de factorial.... Técicas de recueto...... Pricipio del producto...... Pricipio de adició o regla

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

1.3 Introducción a la combinatoria

1.3 Introducción a la combinatoria .3 Itroducció a la combiatoria Aprederemos e esta secció técicas básicas para cotar, aplicadas a diferetes aspectos: Cotar los elemetos de u cojuto, como por ejemplo los elemetos de A B o los de A B, co

Más detalles

MATEMÁTICAS 4º ESO. TEMA 2: COMBINATORIA

MATEMÁTICAS 4º ESO. TEMA 2: COMBINATORIA Fracscaos T.O.R. Cód. 87 MATEMÁTICAS º ESO. TEMA : COMBINATORIA.. La regla de la sua el producto.. Varacoes s repetcó.. Varacoes co repetcó.. Perutacoes s repetcó.. Cobacoes s repetcó.. Núeros cobatoros.7.

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

DESTILACIÓN FRACCIONADA

DESTILACIÓN FRACCIONADA UNIVERSIA NACIONAL EXPERIMENTAL RANCISCO E MIRANA ÁREA E TECNOLOGÍA COMPLEJO ACAÉMICO EL SABINO OPERACIONES UNITARIAS II ESTILACIÓN RACCIONAA 7. MÉTOO MCCABE THIELE. udaeto: McCabe y Thiele ha desarrollado

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

El error en general podemos definirlo como la diferencia que tenemos entre el valor obtenido y el verdadero.

El error en general podemos definirlo como la diferencia que tenemos entre el valor obtenido y el verdadero. Prof. Arturo Aaya M. Se pretede e este capítulo dar ua eplicació de la Teoría de Errores, lo ás soera posible y fudaetalete práctica, que pueda servir al aluo cuado efectúe sus trabajos e el Laboratorio

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD

Tema 7: FLEXIÓN: HIPERESTATICIDAD Tea 7: Flexió: Hiperestaticidad Tea 7: FEXÓN: HPERESTTCDD Prof.: Jaie Sato Doigo Satillaa E.P.S.-Zaora (U.S.) - 008 Tea 7: Flexió: Hiperestaticidad 7..- NTRODUCCÓN Segú vios e la secció 4.4 ua viga o ua

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Matemáticas Discretas Principios fundamentales de conteo

Matemáticas Discretas Principios fundamentales de conteo Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Pricipios fudametales de coteo Cursos Propedéuticos 00 Ciecias Computacioales INAOE Coteido Itroducció Reglas de la suma el producto Permutacioes

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

ANUALIDADES ESPECIALES: ANTICIPADAS Y DIFERIDAS

ANUALIDADES ESPECIALES: ANTICIPADAS Y DIFERIDAS UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS DE VILLA NUEVA CURSO MATEMATICA FINANCIERA Lic. Mauel de Jesús Capos

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

A4 Programación lineal. Problemas de transporte, asignación y emparejamiento

A4 Programación lineal. Problemas de transporte, asignación y emparejamiento 40 Materials David Puolar Morales A4 Prograació lieal. Probleas de trasporte, asigació y epareaieto Defiició 55. Problea de trasporte. Se deoia problea de trasporte a todo problea lieal cuya expresió foral

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició

Más detalles

UNIVERSIDAD AUTÓNOMA METROPOLITANA Unidad Iztapalapa División de Ciencias Básicas e Ingeniería

UNIVERSIDAD AUTÓNOMA METROPOLITANA Unidad Iztapalapa División de Ciencias Básicas e Ingeniería UNIVERSIDAD AUTÓNOMA METROPOLITANA Uidad Iztapalapa Divisió de Ciecias Básicas e Igeiería Optialidad de pruebas de hipótesis secueciales co grupos de taaño aleatorio Tesis que preseta XÓCHITL ITXEL POPOCA

Más detalles

Modelación conceptual

Modelación conceptual TEMA 2 Modelació coceptual OBJETIVOS ESPECÍFICOS Defiir y aplicar los coceptos fudaetales relacioados co la represetació de la iforació. Describir las características de la odelació coceptual y su relació

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Apéndice. A.1. Definición y notaciones.

Apéndice. A.1. Definición y notaciones. Apédice. Apédice A.1. Defiició y otacioes. Los polioios de Zerike so u cojuto ifiito de fucioes polióicas, ortogoales e el circulo de radio uidad. So uy útiles para represetar la fora del frete de oda

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión.

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión. ESCUELA DE GOBIERNO Y GESTIÓN PÚBLICA UNIVERSIDAD DE CHILE GUÍA SUCESIONES Y SERIES. Escriba los cico primeros térmios de la sucesió dada a) a = + b) a = ( ) c) b = (+) d) c = - (-). Sea a la sucesió defiida

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA ENCUENTRO NÚMERO UNO TECNICAS DE CONTEO. 28 DE SEPTIEMBRE DE 2014 MANAGUA FINANCIADO

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS Uo de los efoques para determiar si u programa es correcto es establecer ua actividad de testig. Esta cosiste e seleccioar u cojuto de datos de etrada

Más detalles

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario?

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario? Técicas de Coteo El Pricipio Básico de Coteo Vamos a ua cafetería que vede hamburguesas. U aucio os dice que co los igredietes lechuga, tomate, salsa de tomate y cebolla, podemos preparar ua hamburguesa

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

En diferentes campos de la actividad científica se encuentran casos en los que ciertos experimentos u observaciones, pueden repetirse varias veces

En diferentes campos de la actividad científica se encuentran casos en los que ciertos experimentos u observaciones, pueden repetirse varias veces CAPÍTULO 5 SUCESOS ALEATORIOS E diferetes capos de la actividad cietífica se ecuetra casos e los que ciertos experietos u observacioes, puede repetirse varias veces bajo siilares codicioes, dado para cada

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

CARLOS SANCHEZ CHINEA. MARCHENA (Sevilla) INTEGRAL DE LEBESGUE-STIELTJES

CARLOS SANCHEZ CHINEA. MARCHENA (Sevilla) INTEGRAL DE LEBESGUE-STIELTJES CARLO ANCHEZ CHINEA ARCHENA evia 998 INTEGRAL DE LEBEGE-TIELTJE 0 Objetivos y procediietos de a eposició Cases aditivas de cojutos La case de Bore La edida de Lebesue 3 uas de Darbou ropiedades de ootoía:

Más detalles

Diédrico 15. Abatimientos

Diédrico 15. Abatimientos α 2 Dibujar las proyeccioes y verdadera agitud de u robo áureo, apoyado e el plao α, cuya diagoal ayor AC, que ide 70, tiee su vértice C e la traza horizotal, α1, del plao y a la izquierda del vértice

Más detalles

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal MATEMÁTICA JRC La disciplia es la parte ás iportate del éito POLINOMIOS EN R EXPRESIÓN ALGEBRAICA.- Es u cojuto de úeros letras, elazadas por cualquiera de las cuatro operacioes, adeás de la poteciació

Más detalles