Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I"

Transcripción

1 Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante el método las M s. Interpretar los resultados que arroja el método de las M s al modelo de programación lineal. 2 D.R. Universidad TecMilenio 1

2 Introducción del tema Hasta la sesión anterior se revisaron problemas de maximización en donde las restricciones eran mayor que, por lo que la solución a estos problemas se daba con los métodos que hemos visto, pero qué pasa cuando nuestro problema es de minimización o tiene alguna restricción menor que o igual que? En esta sesión revisaremos el modelo de las M s, el cual nos ayuda a resolver los problemas con alguna de las características mencionadas. 3 Método de las M's Es una variación del método Simplex que consiste en penalizar la presencia de variables artificiales, mediante la introducción de una constante M definida como un valor muy grande, aunque finito. 4 D.R. Universidad TecMilenio 2

3 Método de las M's En problemas de maximización se penaliza con el valor muy grande de M negativo ( - M ). M). En problemas de minimización se penaliza con el valor muy grande de M positivo ( +M ). [ ] 5 Método de las M's La primera solución del Método Simplex, en tal caso, debe de incluir a todas las variables artificiales que fueron necesarias en el arreglo del modelo de programación lineal por resolverlo. [ ] 6 D.R. Universidad TecMilenio 3

4 Método de las M's A medida que se cumplen las etapas de cálculo en el Método Simplex, las variables artificiales deberán de ir saliendo de la misma, como consecuencia del coeficiente M. 7 Variables artificiales y excedentes - Los ejemplos vistos en el Método Simplex incluyen restricciones del tipo menor o igual ( ). - También pueden existir restricciones de mayor o igual ( ) e incluso restricciones de tipo igualdad (=). - Para utilizar el Método Simplex, cada una de éstas se debe convertir a una forma especial también. 8 D.R. Universidad TecMilenio 4

5 Variables artificiales y excedentes Una variable artificial es una variable con costo muy alto $M, que no tiene significado físico en términos de un problema de programación lineal del mundo real. Permite crear una solución factible básica para principiar el algoritmo Simplex. Restricción original: 25X + 30Y = 900 Restricción con variable artificial: 25X + 30Y + a1 = Variables artificiales y excedentes Una variable excedente sí tiene un significado físico y es la cantidad arriba del nivel mínimo requerido, que se establece en el valor del lado derecho de la restricción mayor o igual que. El costo, al igual que las variables excedentes, es de $0. Restricción original: 5X1 + 13X2 +8X 8X Restricción con variable artificial y variable excedente: 5X1 + 13X2 + 8X3 e1 + a2 = D.R. Universidad TecMilenio 5

6 Consideremos el siguiente ejemplo: MAX Z = 4X + Y Sujeto a: 3X + Y = 3 4X + 3Y 6 X + 2Y 2 X 0, Y 0 [ ] 11 Fase 1.- Convertir las desigualdades en igualdades, introduciendo variables de holgura, artificiales y excedentes en las restricciones, según corresponda: 3X + Y + a1 = 3 4X + 3Y e1 + a2 = 6 X + 2Y + h1 = 2 X, Y, h1, a1, a2, e1 0 Las variables de la base las conforman h1, a1 y a2, mientras que e1 no formará parte de la base, al ser incluida con un signo negativo en las igualdades. 12 D.R. Universidad TecMilenio 6

7 Fase 2.- Convertir a problema de maximización e igualar la función objetivo a cero: - Agregamos las M s a la función objetivo y lo convertimos en problema de Maximización: Min Z = 4X + Y + MA1 + MA2 Max -Z = -4X - Y - MA1 -MA2 - Igualamos a cero la función objetivo: -Z + 4X + Y + MA1 + MA2 = 0 13 Fase 3.- Escribir la tabla inicial Simplex, considerando: - En las columnas están todas las variables del problema, incluidas las variables de holgura, artificiales y excedentes. - Las variables de holgura son las que de inicio están en la solución y las artificiales, es decir, son las variables base. - En las filas se escriben los coeficientes de las igualdades obtenidas, una fila para cada restricción. - La última fila contiene los coeficientes de la función objetivo. 14 D.R. Universidad TecMilenio 7

8 La tabla inicial Simplex para el ejemplo es: Variables en la solución Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a a h Z 4 1 M 0 M 0 0 Función objetivo Valor óptimo 15 Si observamos la tabla, podemos ver que la solución no es consistente con el resultado de las variables de la base, pues el valor óptimo de la solución debe tener un valor de 9M en lugar de 0: -Z + 4X + Y + MA1 + MA2 = 0 Sustituyendo: -Z + (4 * 0) + (1 * 0) + (M * 3) + (M* 6) = 0 Z = 9M 16 D.R. Universidad TecMilenio 8

9 Se requiere canonizar la tabla de la siguiente forma: Sustituir A1 ya2y en el renglón de Z usando las ecuaciones donde las columnas a1 y a2 tienen el valor de 1: Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a a h Z 4 1 M 0 M Se debe aplicar la siguiente fórmula: Nuevo Renglón Z = Renglón anterior - (M*Renglón a1 + M*Renglón a2) Columna Valor Renglón a1 Renglón a2 Nuevo Valor Anterior X (M*3 + M*4) = 4 7M Y (M*1 + M*3) = 1 4M a1 M 1 0 M (M*1 + M*0) = 0 e (M*0 + M* 1) = M a2 M 0 1 M (M*0 + M*1) = 0 h (M*0 + M*0) = 0 Solución (M*3 + M*6) = 9M 18 D.R. Universidad TecMilenio 9

10 La tabla inicial Simplex canonizada para el ejemplo, es: Variables en la solución Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a a h Z 4 7M 1 4M 0 M 0 0 9M Función objetivo Valor óptimo 19 Fase 4.- Encontrar la variable de decisión que entra en la base y la variable de holgura que sale de la base. - La variable de decisión que entra en la base se determina observando la fila la de los coeficientes de la función objetivo (Z). - Escogemos la variable con el coeficiente negativo mayor. - Si existiesen dos o más coeficientes iguales que cumplan la condición anterior, entonces se elige uno cualquiera de ellos. 20 D.R. Universidad TecMilenio 10

11 Condición de Salida: Cuando en la fila de la función objetivo Z no existan valores negativos. Cuando ocurra significa que hemos encontrado la solución óptima Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a a h Z 4 7M 1 4M 0 M 0 0 9M Variable que entra a la base: X 21 Para determinar la variable a salir de la base, se divide cada valor de la solución por el término correspondiente de la variable de decisión, siempre que estos últimos sean mayores que cero. Se escoge la fila con el menor cociente positivo Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a / 3 = 1 a / 4 h / 1 = 4 Z 4 7M 1 4M 0 M 0 0 9M Variable que sale de la base: a1 Pivote Operacional 22 D.R. Universidad TecMilenio 11

12 Fase 5.- Encontrar los coeficientes de la nueva tabla. - Los coeficientes de la variable que entra (X), se obtienen dividiendo los coeficientes de la fila de la variable que sale (a1), por el pivote operacional (3). Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 a1 (X) 3 / 3 1 / 3 1 / 3 0 / 3 0 / 3 0 / 3 3 / 3 a h Z 4 7M 1 4M 0 M 0 0 9M 23 Para las demás filas, los nuevos valores se calculan de la siguiente forma: - Nueva fila= (Coeficiente actual de la fila) [(Coeficiente anterior en la columna de la variable entrante) X (Coeficiente de la nueva fila del pivote)] 24 D.R. Universidad TecMilenio 12

13 Para la variable a2 X Y a1 e1 a2 h1 Solución Valores actuales de la fila a2 (A) Coeficiente anterior de X en a2 (B) Nueva Fila Pivote o nuevos valores 1 1/3 1/ para X (C) Nueva fila de a2: A (B* C) 0 1/3 4/ Para la variable h1 X Y a1 e1 a2 h1 Solución Valores actuales de la fila h1 (A) Coeficiente anterior dex enh1 (B) Nueva Fila Pivote o nuevos valores 1 1/3 1/ para X (C) Nueva fila de h1: A (B* C) 0 1/3 1/ D.R. Universidad TecMilenio 13

14 Para la función objetivo Z Valores actuales de la fila Z (A) 4 7M Coeficiente anterior de X en Z (B) 4 7M X Y a1 e1 a2 h1 Solución 1 4M Nueva Fila Pivote o nuevos valores para X (C) Nueva fila de Z: A (B* C) 0 ( 1 5M) /3 0 M 0 0 9M M 7M 7M 7M 7M 7M 4 7M 1 1/3 1/ ( 4+7 M/3 M M 27 La nueva tabla Simplex con los valores de los coeficientes, sería: Base Variables de Decisión Variables Agregadas Solución X Y a1 e1 a2 h1 X 1 1/3 1/ a2 0 1/3 4/ h1 0 1/3 1/ Z 0 ( 1 5M)/3 ( 4+7M)/3 M M Nuevo valor óptimo 28 D.R. Universidad TecMilenio 14

15 A partir de la nueva tabla Simplex, el método realizará una segunda iteración, dado que existe una variable con valor negativo, en este caso la variable Y. Siguiendo el Método Simplex, se realizarían dos iteraciones más, en donde la solución óptima para el problema de minimización es: X = 2 / 5 Y = 9 / 5 Z = 17 / 5 [ ] 29 Cierre Existen problemas de minimización y restricciones que pueden ser <, >, o=, las cuales hacen que nuestro modelo de solución Simplex tenga modificaciones, para poder resolver los problemas que tengan alguna o algunas de las características anteriores, se debe usar el método de las M s. 30 D.R. Universidad TecMilenio 15

16 Para aprender más En el siguiente sitio Web encontrarás una explicación más amplia del tema. Además, encontrarás diversos ejemplos, en los que puedes aplicar los modelos de aplicación lineal. 31 Referencias bibliográficas Libro Taha, Hamdy A. (2004). Investigación de Operaciones. (7ª Ed.) México. Pearson Educación. Capítulo D.R. Universidad TecMilenio 16

17 Créditos Diseño de contenido: Ing. Armando Calzada Mezura, MA, PMP Coordinador académico del área: Lic. José de Jesús Romero A. MC y MED Edición de contenido: Lic. Gabriela Montserrat Elizondo García Edición de texto: Lic. Francisco Javier Vernis Vega Diseño Gráfico: Ing. Nuria Aguirre Villalobos 33 D.R. Universidad TecMilenio 17

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2 METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2

Más detalles

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística robabilidad y stadística robabilidad y stadística Tema 3 Técnicas de Conteo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Analizar los principios de conteo utilizados en probabilidad.

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Tema # 7. método simplex matricial o revisado

Tema # 7. método simplex matricial o revisado IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Unidad I: Programación Lineal

Unidad I: Programación Lineal Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 3 Propiedades periódicas de los elementos químicos OBJETIVO - Identificar la clasificación y propiedades periódicas de los elementos químicos. 2 D.R. Universidad TecMilenio 1 INTRODUCCIÓN En

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Titulo: SISTEMAS DE INECUACIONES (INECUACIONES SIMULTANEAS) Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Universidad Tec Milenio: Profesional Contabilidad. Tema # 5.

Universidad Tec Milenio: Profesional Contabilidad. Tema # 5. Tema # 5. Capital de trabajo 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Aplicar los aspectos básicos de administración, registro contable y control del efectivo, cuentas por

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 14. CÁLCULO DEL PESO MOLECULAR OBJETIVO Calcular los pesos moleculares de los compuestos químicos D.R. Universidad TecMilenio 1 INTRODUCCIÓN Las reacciones químicas son representadas mediante

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

MQ1 - Métodos Cuantitativos 1

MQ1 - Métodos Cuantitativos 1 Unidad responsable: 860 - EEI - Escuela de Ingeniería de Igualada Unidad que imparte: 732 - OE - Departamento de Organización de Empresas Curso: Titulación: 2016 GRADO EN INGENIERÍA EN ORGANIZACIÓN INDUSTRIAL

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Creación de empresas de alto valor agregado

Creación de empresas de alto valor agregado Creación de empresas de alto valor agregado Tema 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar la existencia de una necesidad. Distinguir si la idea de negocio constituye

Más detalles

Método Simplex: Encontrado una SBF

Método Simplex: Encontrado una SBF Método Simplex: Encontrado una SBF CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () Método Simplex: Encontrado una SBF euresti@itesm.mx 1 / 31 Determinación de SBF Determinación de SBF El método

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

7 Código: MAT 2 Duración del Ciclo en Semanas: 2 Duración /Hora Clase: 50 Académico:

7 Código: MAT 2 Duración del Ciclo en Semanas: 2 Duración /Hora Clase: 50 Académico: Nombre de la Asignatura: MATEMÁTICA 2 a) Generalidades Número de Orden: Pre- Requisito (s): 7 Código: MAT 2 Duración del Ciclo en Semanas: 16 MAT 1 Ciclo 2 Duración /Hora Clase: 50 Académico: minutos Área:

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA DE ESTUDIO ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: INVESTIGACIÓN DE OPERACIONES DEPARTAMENTO: CIENCIAS BÁSICAS DE LA INGENIERÍA ASIGNATURA: INVESTIGACIÓN

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

Operaciones algebraicas elementales (Unidad I del curso Matemáticas Básicas).

Operaciones algebraicas elementales (Unidad I del curso Matemáticas Básicas). I. Identificadores de la asignatura Clave: UMA1007 95 Créditos: 8 Materia: Programación Lineal Departamento: Ciencias Sociales Instituto: Ciencias Sociales y Administración Programa: Licenciatura en Economía

Más detalles

Contabilidad. Objetivos de aprendizaje del tema

Contabilidad. Objetivos de aprendizaje del tema Tema # 2. Una visión general al proceso contable 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Aplicar los conocimientos adquiridos para registrar correctamente las transacciones

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos 4.1-1 Resolver las siguientes desigualdades: a) 57; b) 41; c) 10; d) 431; e) 5; 3 f) 434 a) 5 7 1 S / 1 1, b) 1 1 1 4 1 S /, 1 1 1 c) 10 S /,

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

Universidad Tec Milenio: Profesional Contabilidad. Tema # 4.

Universidad Tec Milenio: Profesional Contabilidad. Tema # 4. Tema # 4. Empresas de servicios y comerciales 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar las principales diferencias de los registros contables en las empresas de

Más detalles

Universidad Tec Milenio: Profesional Contabilidad. Tema # 7.

Universidad Tec Milenio: Profesional Contabilidad. Tema # 7. Tema # 7. Fuentes de financiamiento 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar la forma como los activos están financiados por pasivo y capital contable. Reconocer

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

2.- Ecuaciones de primer grado

2.- Ecuaciones de primer grado 3º ESO E UNIDAD 8.- ECUACIONES. SISTEMAS DE ECUACIONES PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Universidad Tec Milenio: Profesional Contabilidad. Tema # 9.

Universidad Tec Milenio: Profesional Contabilidad. Tema # 9. Tema # 9. administrativa 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las herramientas actuales que apoyan la administración de los negocios. Distinguir las diferencias

Más detalles

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos: INECUACIONES. Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:, se lee" menor que",se lee" menor o igual que",se lee" mayor que",se lee

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Titulo: SISTEMAS DE ECUACIONES Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal.

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA UNIDAD CURRICULAR: INVESTIGACIÓN DE OPERACIONES PROFESOR: JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-1-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-1-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-1-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

Inecuaciones lineales y cuadráticas

Inecuaciones lineales y cuadráticas Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

Cómo resolver el Método Simplex, con penalizaciones, o gran M

Cómo resolver el Método Simplex, con penalizaciones, o gran M Cómo resolver el étodo Simple, con penalizaciones, o gran aterial de apoyo realizado por Sebastián Fellenberg C Estudiante de Ingeniería Industrial Universidad de las Américas Chile Introducción Antes

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles