MULTIPLICACIÓN DE NÚMEROS NATURALES (II) Multiplicación de números de tres cifras y de tres factores: problemas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MULTIPLICACIÓN DE NÚMEROS NATURALES (II) Multiplicación de números de tres cifras y de tres factores: problemas"

Transcripción

1 IES Comercio de Logroño Recuperación Taller de Matemáticas MULTIPLICACIÓN DE NÚMEROS NATURALES (II) Multiplicación de números de tres cifras y de tres factores: problemas 1. Halla las siguientes multiplicaciones: Para multiplicar tres o más números, se multiplican los dos primeros y el resultado obtenido se multiplica por el tercer factor. (El resultado de la multiplicación será el mismo si se multiplica el primer número por la multiplicación de los otros dos.) Así: = = 30 2 = 60; o también: = = 5 12 = Halla las siguientes multiplicaciones: = 12 7 = 84; = = = = = 3. Repite las mismas operaciones multiplicando antes los factores segundo y tercero: = 4 21 = 84; = = = = = 4. En un restaurante hay 3 salones, en cada salón caben 12 mesas y en cada mesa pueden sentarse 6 comensales. Cuántas personas pueden comer a la vez? 5. Un tren tiene 14 vagones con 7 compartimentos cada uno, y 8 plazas en cada compartimento. Cuántos viajeros caben en ese tren? Si en el último viaje quedaron 10 compartimentos vacíos y el resto estaban completos, cuántas plazas se ocuparon? Números Naturales 05

2 6. La profesora de Matemáticas manda resolver 3 problemas cada semana, después los recoge y evalúa. Si hay 27 alumnos que entregan siempre los problemas, cuántos problemas recoge la profesora a la semana? 7. Habrás calculado que la profesora de Matemáticas evalúa 81 problemas semanalmente; si el primer trimestre del curso consta de 12 semanas, cuántos problemas evalúa la profesora durante el primer trimestre? 8. En una floristería se preparan 150 ramos cada semana. En cada ramo hay 8 claveles, 6 tulipanes, 9 lirios y 12 margaritas. Cuántas flores se necesitan de cada clase? Cuántas se necesitan en total? 9. Un ciclista recorre 9 metros por cada pedalada que da. Cuántos metros recorrerá si da 308 pedaladas? 10. Si el mismo ciclista da 36 pedaladas por minuto, cuántos metros recorrerá en una hora? 11. Cada uno de los 18 empleados de un banco atiende durante un día de trabajo a 25 clientes. Si el mes pasado trabajaron 21 días a cuántos clientes atendieron durante ese mes? 12. Contesta: a) Cuántos minutos tiene un día? b) Cuántos minutos tiene un año? Números Naturales 05

3 IES Comercio de Logroño Recuperación Taller de Matemáticas POBLEMAS DE DIVISIÓN DE NÚMEROS NATURALES 1. Divide en partes iguales 333 cromos entre 9 niños. 2. Entre 3 pintores deben pintar 72 metros de pared. Cuántos metros debe pintar cada uno? 3. Laura tiene 310 monedas de 20 céntimos de euro. Cuántos euros tiene Laura? 4. Resuelve los siguientes problemas: a) Reparte 100 euros entre 4 personas. A cuánto toca cada una? b) Coloca 200 libros en 8 estanterías con el mismo número de libros en cada una. Cuántos libros habrá en cada estantería? c) Cuántas horas son 240 minutos? d) En un paquete hay 50 monedas de 10 céntimos de euro. Cuántos euros son? 5. En una urbanización, 12 personas están pintando una valla. Si la valla tiene 648 tablas, podrán repartir el trabajo en partes iguales? A cuántas tablas tocarán? 6. En un comedor escolar las mesas son de 8 asientos. Cuántas mesas serán necesarias para que coman 224 alumnos a la vez? 7. En una peña formada por 25 amigos han jugado a la primitiva y les han tocado 1800 euros. A cuánto toca cada uno? Números Naturales 8

4 8. La cuota de 10 meses de un gimnasio cuesta 300. Cuánto cuesta cada mes? 9. Divide, aproximadamente (puedes hacerlo a ojo, utilizar una regla o un transportador): a) el segmento en 3 partes iguales; b) el rectángulo en 5 partes iguales; c) el círculo en 8 partes iguales. 10. En una granja se han recogido 4800 huevos. Si se envasan por docenas (de 12 en 12), cuántos envases serán necesarios? 11. A continuación, esos envases se meten en cajas en las que caben 20 docenas en cada una. Cuántas cajas se completarán? Cuántas docenas quedas sueltas? 12. Resuelve los siguientes problemas: a) Cuántas docenas de huevos pueden formarse con 360 huevos? b) Reparte 324 canicas entre 7 niños. Sobra alguna? c) Cuántas semanas tiene un año? Sobra algún día? d) Luís tiene 350 monedas de 20 céntimos de euro; Cristina tiene 8 monedas de 2 euros. Cuál de ellos tiene más dinero? Números Naturales 8

5 IES Comercio de Logroño Recuperación Taller de Matemáticas MÚLTIPLOS Y DIVISORES DE UN NÚMERO Los múltiplos de un número se obtienen multiplicando dicho número por 1, 2, 3, 4, 5 es decir, por cualquier número entero. Los múltiplos de un número lo contienen una cantidad exacta de veces. Por tanto, un número es múltiplo de otro cuando al dividir el mayor entre el menor la división da exacta. Ejemplos: Múltiplos de 4 son: 4 1 = 4, 4 2 = 8, 4 3 = 12, 4 4 = es múltiplo de 4 porque 24 : 4 = 6; 30 no es múltiplo de 4 porque 30 : 4 no da exacto. 1. Calcula los 10 primeros múltiplos de 3, 5 y 7 completando la siguiente tabla: Escribe cuatro múltiplos de los siguientes números: a) 3 b) 6 c) 10 d) Escribe los números que sean: a) Múltiplos de 5 y menores que 40. c) Múltiplos de 8 y menores que 70. b) Múltiplos de 4 y menores que 60. d) Múltiplos de 11 y menores que Contesta sí o no haciendo debajo de cada pregunta las operaciones que necesites: a) Es 72 múltiplo de 6? e) Es 330 múltiplo de 11? b) Es 27 múltiplo de 4? f) Es 120 múltiplo de 10? c) Es 84 múltiplo de 3? g) Es 88 múltiplo de 6? d) Es 15 múltiplo de 10? h) Es 125 múltiplo de 5? 5. De los siguientes números indica los que sean múltiplos de 6. Razona tu respuesta Números 10

6 Divisores de un número Cuando al dividir un número entre otro la división es exacta se dice que el segundo es divisor del primero. Así, como 18 : 3 = 6, el número 3 es divisor de 18. También, como 18 : 9 = 2, el número 9 es divisor de 18. Como la división 18 : 5 no es exacta, el número 5 no es divisor de 18. (Un número tiene siempre varios divisores. En concreto, los números 2, 3, 6 y 9 son divisores de 18. El número 18 tiene dos divisores más, que son 1 y 18.) Un número siempre tiene, al menos, dos divisores que son 1 y el mismo número. Los divisores de un número son aquellos números menores o iguales que él tales que la división de dicho número por ellos es exacta (el resto es cero). Ejemplo: y 8 son divisores de 24 porque las divisiones 24 : 6 y 24 : 8 son exactas. 5 y 7 no son divisores de 24 porque las divisiones 24 : 5 y 24 : 7 no son exactas. Observa: 4 es divisor de es múltiplo de 4. 8 es divisor de es múltiplo de Completa la siguiente tabla para determinar todos los divisores de 12. División 12:1 12:2 12:3 12:4 12:5 12:6 12:7 12:8 12:9 12:10 12:11 12:12 cociente resto Los divisores de 12 son: 7. Halla todos los divisores de: a) 10 e) 15 b) 22 f) 14 c) 24 g) 33 d) 19 h) Busca un número de dos cifras (distinto de 13 y 19) cuyos únicos divisores sean él mismo y la unidad. 9. Busca todas las formas posibles de dividir una clase de 24 alumnos en equipos de igual número de personas sin que sobre nadie. Números 10

1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 405 732 327 234. Dos mil veinte Treinta y nueve

1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 405 732 327 234. Dos mil veinte Treinta y nueve Objetivo Nombre: Fecha: SISTEMA DE NUMERACIÓN DECIMAL 1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 40 732 327 234 2. Escribe con palabras los siguientes números:

Más detalles

Lee y ordena estos números : : : :... Escribe el menor y mayor número de siete cifras significativas

Lee y ordena estos números : : : :... Escribe el menor y mayor número de siete cifras significativas TEMA 1 - LOS NUMEROS Y LAS OPERACIONES Escribe los números siguientes: Medio millón:... Tres millones y medio:... Diez millones cien mil:... Cuatro millones cuatrocientos... Seis millones treinta mil:...

Más detalles

TEMA 1. NÚMEROS NATURALES Y POTENCIAS

TEMA 1. NÚMEROS NATURALES Y POTENCIAS TEMA 1. NÚMEROS NATURALES Y POTENCIAS 1. Escribe como se leen los siguientes números naturales: a) 15.684.985 = b) 59.800.197.400 = c).500.01.01 = d) 180.00.505 = e) 68.967 = f) 14.14.15.65 = g) 1.000.001.001.001=

Más detalles

APRENDER MATEMÁTICAS TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3

APRENDER MATEMÁTICAS TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3 TEMA 1 JUAN LUIS CHAMIZO BLÁZQUEZ - CARMEN GORDO CUEVAS PEDRO M. RIVERA LEBRATO 3 NÚMEROS NATURALES Los números naturales son los que sirven para contar. Los números naturales se representan de menor a

Más detalles

NÚMEROS Y OPERACIONES

NÚMEROS Y OPERACIONES NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.

Más detalles

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO)

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) 1 NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación correspondiente

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

DIVIDIR. 3x...=18 4x...=28...x6=36...x5=20. 4x...=12 8x...=24...x7=35...x2=8. 4x...=24 poreso 24:4=... 5 x... = 20 por eso 20 :5=...

DIVIDIR. 3x...=18 4x...=28...x6=36...x5=20. 4x...=12 8x...=24...x7=35...x2=8. 4x...=24 poreso 24:4=... 5 x... = 20 por eso 20 :5=... NOMBRE: DIVIDIR DIVIDE01. Divide los recuadros en las partes que se indican y completa luego las divisiones de la derecha como se señala en el ejemplo. ATENCIÓN! Las partes deben ser todas iguales! DIVIDE

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 52 EJERCICIOS Sistema de numeración decimal 1 Escribe con cifras: a) Trece unidades y ocho milésimas 13,008 b) Cuarenta y dos cienmilésimas 0,00042 c) Trece millonésimas 0,000013 2 Expresa

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Glosario. equation: ecuación. divide: dividir. grouping problem: problema de agrupar. divided by: dividido por. division: división.

Glosario. equation: ecuación. divide: dividir. grouping problem: problema de agrupar. divided by: dividido por. division: división. DIVISION A divide: dividir Cuando separamos objetos en grupos iguales usamos la palabra dividir. Por ejemplo, para repartir 12 galletas equitativamente entre 2 personas, dividimos 12 en 2 partes iguales

Más detalles

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS NATURALES Evaluación A 1. Realiza las siguientes operaciones. a) 234 + 57 + 2 345 = b) 456 93 = c) 876 49 = d) 875 : 35 = 2. Al dividir un número entre 27 el cociente es 12 y el resto es 9. De

Más detalles

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 ACTIVIDADES TEMA 1 1.- Escribe con palabras los siguientes números: 1.034.456: 20.004.080: 100.060.201: 35.001.001: 2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 3.- Ordena de

Más detalles

34 Lección número cuarenta Lección no. 40

34 Lección número cuarenta Lección no. 40 Lección número cuarenta Lección no. 40 Multiplicación con decenas. Si José tiene 13 billetes de $ 20, en total en total tiene $ 260 porque: sumando 13 veces 20 nos da ese resultado 20 + 20 + 20 + 20 +20

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24 1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000

Más detalles

LOS NUMEROS Y LAS OPERACIONES

LOS NUMEROS Y LAS OPERACIONES LOS NUMEROS Y LAS OPERACIONES Sistema de numeración decimal. Lectura de números 1. Escribe los números siguientes: Medio millón:... Cuatro millones cuatrocientos... Tres millones y medio:... Seis millones

Más detalles

MATEMÁTICAS 2º ESO LOS NÚMEROS ENTEROS

MATEMÁTICAS 2º ESO LOS NÚMEROS ENTEROS MATEMÁTICAS 2º ESO LOS NÚMEROS ENTEROS BLOQUE I Ejercicio 1.- Representa y escribe: a) Los números negativos mayores que 5. b) Los números positivos menores que 5. c) Todos los números enteros que verifican

Más detalles

8. LA DIVISIÓN. Un reparto se puede expresar de forma abreviada mediante una división:

8. LA DIVISIÓN. Un reparto se puede expresar de forma abreviada mediante una división: 8. LA DIVISIÓN La división y sus términos Si repartimos 12 caramelos entre 6 chicos y chicas, a cada uno le corresponden dos caramelos. Estamos repartiendo la cantidad total del caramelos que tenemos en

Más detalles

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES Una división es exacta cuando su resto es cero. En una división exacta se cumple: Dividendo= divisor x cociente -. Completa la tabla. Haz los cálculos de mentalmente: Ejemplo: 3196 47 376 68 00 resto 3196=

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

6º. El Quinzet 11.17

6º. El Quinzet 11.17 6º. El Quinzet 11.1 (1) Tres manzanas cuestan 1. Cuántas manzanas puedo comprar con 5? (2) Cuál es la décima parte de 30? (3) Cuántos cuartos de hora hay en 5 horas? (4) Diez cuartos de hora, cuántas horas

Más detalles

LA DIVISIÓN. La división exacta. Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno?

LA DIVISIÓN. La división exacta. Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno? LA DIVISIÓN Términos de la división exacta La división exacta Jorge reparte, a partes iguales, 48 chicles entre 6 amigos. Cuántos chicles tocan a cada uno? Dividendo Divisor 48 6 8 Cociente Corresponden

Más detalles

Matemáticas 5º primaria F.G. Lorca Ficha 1. Nombre : Fecha:

Matemáticas 5º primaria F.G. Lorca Ficha 1. Nombre : Fecha: Matemáticas 5º primaria F.G. Lorca Ficha 1 1.- Lee estos números: 789: 5.456: 23.568 345.678: 678.243: 2.- Millón Centena de M decena de M Millar centenas decenas unidades 7 6 8 5 4 8 9 7. 685.489: 7 millones

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 2 Potencias y raíces Recuerda lo fundamental Curso:... Fecha:... POTENCIAS Y RAÍCES CONCEPTO DE POTENCIA EXPONENTE Calcula. a a a a a = a 5 { 5 VECES BASE Se lee a elevada a la quinta. 3 2 = 2 5 = 4 3

Más detalles

UNIDAD 5: LA DIVISIÓN.

UNIDAD 5: LA DIVISIÓN. UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

Lección 7: POLINOMIOS

Lección 7: POLINOMIOS Lección 7: POLINOMIOS 7.1.- POLINOMIOS Lee detenidamente en las páginas 92 y 93 del libro la cuestión 4, Polinomios, 1.- Página 93, actividad 14. 2.- Página 93, actividad 15. 3.- Página 93, actividad 16.

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS

SOLUCIONES MINIMOS 2º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS SOLUCIONES MINIMOS º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS Ejercicio nº 1.- Responde a las preguntas y justifica tu respuesta: a) El número 14 es divisor de 56? Explica por qué. b) El número 310 es

Más detalles

Unidad 1 Números racionales e irracionales

Unidad 1 Números racionales e irracionales Unidad 1 Números racionales e irracionales 1. Cuántos cuartos de hora hay en una hora? Y en una hora y tres cuartos? Y en dos horas y media?. Cuántos minutos son un cuarto de hora? Y un doceavo de hora?

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

1. Por un descuido se han roto 7 platos de 2 euros cada uno y 15 platos de 4 euros cada uno. Cuánto ha costado todos los desperfectos?.

1. Por un descuido se han roto 7 platos de 2 euros cada uno y 15 platos de 4 euros cada uno. Cuánto ha costado todos los desperfectos?. IES PROF. JUAN BAUTISTA MATEMÁTICAS 1º El Viso del Alcor Problemas. 1. Por un descuido se han roto 7 platos de 2 euros cada uno y 15 platos de 4 euros cada uno. Cuánto ha costado todos los desperfectos?.

Más detalles

2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.

2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada. TEMA 01 - NÚMEROS ENTEROS 1º. Indica el número que corresponde a cada letra. º. Representa en una recta numérica los números: (+) (-) (0) (+7) (-) (+) y luego escríbelos de forma ordenada. º. En un museo

Más detalles

1. Responde a las preguntas:

1. Responde a las preguntas: . Responde a las preguntas: a) Cuántas unidades de mil hay en 400 centenas? b) Cuántas centenas de millar hay en tres millones y medio? c) Cuántas decenas hay en 0 centenas? d) Cuántas unidades de mil

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números

Más detalles

Nombre: 90 X 40= = Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior

Nombre: 90 X 40= = Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior Calcula el termino que falta en cada operación 52.685 + = 87.652 6.753 = 6.397 + 34.476 = 56.987 39.455 = 11.247 624 X = 89.232 : 263 = 451 X 340 =294.100 144.795 : = 591 Escribe el número anterior y el

Más detalles

62,415 = ,4 + 0,01 + 0,005

62,415 = ,4 + 0,01 + 0,005 NOMBRE:... Nivel:... FECHA:... LOS NÚMEROS DECIMALES LAS UNIDADES DECIMALES 1 0,1 1 0 0,01 0,1 una décima (d) 0,01 una centésima (c) 0,001 una milésima (m) 1 U = d = 0 c = 1.000 m 1 1.000 0,001 D U, d

Más detalles

Divisibilidad Actividades finales

Divisibilidad Actividades finales DIVISIBILIDAD. CRITERIOS 1. El dividendo de una división es 214, el divisor es 21 y el cociente es 10. Es divisible 214 por 21? 2. El número 186 es divisible por 31. Comprueba si 2 186 y 3 186 son también

Más detalles

A veces, un número no se dividirá equitativamente. Cuando esto sucede, tenemos un resto.

A veces, un número no se dividirá equitativamente. Cuando esto sucede, tenemos un resto. Materia: Matemática de Octavo Tema: Operaciones en Z - División Ya averiguaste cuántos cubos de pescado va a necesitar Jonás para alimentar a las focas? Ahora que el sabe cuántas libras de pescado se necesitan,

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

Matemáticas. 4º Primaria Repaso Segundo Trimestre. Nombre:

Matemáticas. 4º Primaria Repaso Segundo Trimestre. Nombre: Escribe como se leen estas fracciones 1 4 6 1 6 7 1 9 9 Escribe las fracciones Dos sextos Un quinto Un medio Dos octavos Tres cuartos Cuatro tercios 40 X = + = Completa En una fracción, el indica las partes

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay?

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? 5º. P.Orales. El Quinzet 10.2 (1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? (2) Ayer fuimos a coger moras. Yo cogí 17 y mi hermano se comió 11. Cuántas

Más detalles

Operaciones con fracciones

Operaciones con fracciones Operaciones con fracciones Para efectuar operaciones con fracciones, o con números enteros y fracciones, no podemos actuar como cuando todos los números que intervienen son enteros; hemos de tener en cuenta

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

UNITAT 1. ELS NOMBRES NATURALS.

UNITAT 1. ELS NOMBRES NATURALS. UNITAT 1. ELS NOMBRES NATURALS. 1. Escribe en tu cuaderno los siguientes números: a) Dos millones cuatrocientos mil b) Un millón, dos mil, cinco c) Tres mil, cuatro 2. Escribe en números romanos los siguientes

Más detalles

Lección 6 Problemas con multiplicaciones y divisiones

Lección 6 Problemas con multiplicaciones y divisiones Lección 6 Problemas con multiplicaciones y divisiones En esta lección usted recordará cómo puede resolver algunos problemas con multiplicaciones y divisiones. Lea el ejemplo que se presenta a continuación:

Más detalles

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º)

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º) FICHA 1 NÚMEROS I Fecha límite de entrega: 17 de octubre 1. Rellena el cuadro: Nº en cifra Nº en letra 2.345.018 Ocho millardos 310.023 Dos billones, mil doscientos 2. Escribe en número o en letra: Tres

Más detalles

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 34

1Soluciones a los ejercicios y problemas PÁGINA 34 1Soluciones a los ejercicios y problemas PÁGINA 34 Pág. 1 M últiplos y divisores 1 Encuentra cuatro parejas múltiplo-divisor entre los siguientes números: 143 12 124 364 180 31 52 13 143 y 13 124 y 31

Más detalles

TEMA 8 PRACTICAR LA DIVISIÓN. 2.- Haz estas divisiones y comprueba que el resto es menor que el divisor 51 : 3 98 : 2 67 : 3 88 : 4

TEMA 8 PRACTICAR LA DIVISIÓN. 2.- Haz estas divisiones y comprueba que el resto es menor que el divisor 51 : 3 98 : 2 67 : 3 88 : 4 TEMA 8 PRACTICAR LA DIVISIÓN 1 En todas las divisiones el resto debe ser menor que el divisor. 1.- Realiza las siguientes divisiones 34 : 2 48 : 3 81 : 3 64 : 5 2.- Haz estas divisiones y comprueba que

Más detalles

MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado. Expresión Algebraica Constante Variable

MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado. Expresión Algebraica Constante Variable MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado MATERIA: Matemáticas 1A MAESTRO: Patricia Cornejo Ramos. I. LENGUAJE ALGEBRAICO. 1. Cuáles son las partes de una expresión algebraica? 2. Qué

Más detalles

Matemáticas y Tecnología. Unidad 2 Los números racionales

Matemáticas y Tecnología. Unidad 2 Los números racionales CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

DIVIDENDO DIVISOR COCIENTE RESTO

DIVIDENDO DIVISOR COCIENTE RESTO TEMA 1. NÚMEROS NATURALES 1. Realiza las siguientes operaciones combinadas: 20 460 25 418 256 27 5 16 60 54 :9 6 4 7 (8 4) 15: 5 ( 7 2) 4 (4 6) : 84 5 (6 : 2 5) 4 10 : 5 2. Completa la tabla calculando

Más detalles

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz. Se debe incluir

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO

EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO A continuación te presentamos una serie de ejercicios que deberás realizar y presentar obligatoriamente a tu profesor/a el día del examen. Puedes consultar

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima. OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..

Más detalles

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

Lección 3 División con números decimales

Lección 3 División con números decimales Lección 3 División con números decimales En la cooperativa de consumo se tiene un rollo de listón de 12.9 m de largo para repartir entre tres mujeres. Genoveva tiene que repartir: 12.9 m entre 3 mujeres

Más detalles

2.- Tengo 3 bolsas con 8 bolitas cada una. Cuántas bolitas hay tengo en total?

2.- Tengo 3 bolsas con 8 bolitas cada una. Cuántas bolitas hay tengo en total? Resuelve los siguientes ejercicios: 1.- Hay 4 cajas con 6 lápices cada una. Cuántos lápices hay en total? 2.- Tengo 3 bolsas con 8 bolitas cada una. Cuántas bolitas hay tengo en total? 3.- En el colegio

Más detalles

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del

Más detalles

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 63

1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 63 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 38 5. EJERCICIOS DE REFUERZO Página 63 1 1. ESQUEMA - RESUMEN Página 1.1. MÚLTIPLOS Y DIVISORES DE

Más detalles

Nombre: 40 X 5= 55+ 22= Escribe en letras los siguientes números 81.424 37.609 49.005 24.098 56.704 64.322

Nombre: 40 X 5= 55+ 22= Escribe en letras los siguientes números 81.424 37.609 49.005 24.098 56.704 64.322 Escribe en letras los siguientes números 81.424 37.609 49.005 24.098 56.704 64.322 Escribe todos los números de 4 cifras que tienen 3 millares, 5 decenas y 9 unidades 40 X 5= 55+ 22= Observa los precios

Más detalles

Completa los datos que falten en los enunciados

Completa los datos que falten en los enunciados Nombre: Completa los datos que falten en los enunciados 1.- Paula se compra unos pantalones que cuestan y una camiseta que cuesta la tercera parte que el pantalón. Cuánto dinero se gasta en total en ropa?

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Contenidos 1. Lenguaje algebraico Expresiones algebraicas Traducción de enunciados Valor numérico 2. Monomios Características Suma y resta Producto 3. Ecuaciones Solución de una

Más detalles

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números

Más detalles

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base. 21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente

Más detalles

5.070 2.560 4.000 1.587 3.220

5.070 2.560 4.000 1.587 3.220 2 RECUERDO QUE: Nuestro sistema numérico es decimal porque contamos agrupando las unidades de 10 en 10. Cada diez unidades de un orden forman una unidad de orden inmediato superior. 10u 1d 10d 1c 10c 1UM

Más detalles

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13.

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13. Ejercicios de números naturales con soluciones 1 Tres amigos han juntado 40 para comprar un regalo a otro amigo. El primero puso 12 y el segundo, 3 más que el primero. Cuánto puso el tercero? El primero

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental EL SISTEMA DE NUMERACIÓN DECIMAL LOS NÚMEROS NATURALES Nuestro sistema de numeración es decimal: 10 unidades de un orden cualquiera hacen una unidad del orden inmediato superior.

Más detalles

RESUMEN PARA EL ESTUDIO

RESUMEN PARA EL ESTUDIO RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:

Más detalles

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales.

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales. Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números racionales Mapa conceptual Cómo representar un número con muchos decimales? Racionales Matemática Por ejemplo, aproximando a la

Más detalles

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3!

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3! Expresiones algebraicas. Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3 + 5 3 (9 3) - 12 " Elementos de una expresión

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades: a) 42.

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades: a) 42. TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO: TEMA 1 : LOS NÚMEROS NATURALES 1. Escribe en números romanos las siguientes cantidades: a) 42 b) 159 c) 520 2. Escribe como se leen estas cantidades:

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES URB. LA CANTERA, S/N. 988 HTTP:/WWW.MARIAAUXILIADORA.COM º ESO SISTEMAS DE ECUACIONES º. Empareja cada sistema con su solución. a) 8 0 b) c) d) ) =, = -/ ) = 8, = ) =, = ) =, = º. De entre los siguientes

Más detalles

3. Realiza estas restas y ordena los resultados de menor a mayor.

3. Realiza estas restas y ordena los resultados de menor a mayor. Nombre: Fecha : MAT 6º - T 1 -Página 1 de 20 1. Escribe el nombre de los términos de cada operación en tu cuaderno y resuelve. 2. Coloca los sumandos en vertical y calcula. 3.617 + 935 = 27.094 + 5.318=

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

I Parte. Selección única. (4 puntos) Leo y marco con una equis (X) la respuesta correcta.

I Parte. Selección única. (4 puntos) Leo y marco con una equis (X) la respuesta correcta. Trimestre: II Nombre: Prueba: Matemáticas 5 Puntos obtenidos: Valor: 36 puntos Tema: División de números naturales Habilidades específicos: Dividir un número con o sin expansión decimal por 0, 00, 000

Más detalles

FRACCIONES. 1.- Indica qué pareja o parejas de fracciones son equivalentes:

FRACCIONES. 1.- Indica qué pareja o parejas de fracciones son equivalentes: FRACCIONES.- Indica qué pareja o parejas de fracciones son equivalentes: a) y 0 b) y c) y 0.- Escribe tres fracciones equivalentes que expresen la parte coloreada del segmento AB :.- Razona, haciendo un

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto

Más detalles

Lección 2. Conversión de fracciones en decimales. Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta:

Lección 2. Conversión de fracciones en decimales. Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta: Conversión de fracciones en decimales Lección Don Angel necesita algunas tiras de madera para hacer una silla y tiene una tabla como ésta: Cortó la tabla en 0 tiras del mismo tamaño: Cada tira es 0 ó 0.

Más detalles

NÚMEROS ENTEROS Y DIVISIVILIDAD

NÚMEROS ENTEROS Y DIVISIVILIDAD TEMA 1. NÚMEROS ENTEROS Y DIVISIVILIDAD Roger Bacon, científico inglés, en el siglo XIII, dijo: El olvido de las matemáticas perjudica a todo el conocimiento, ya que el que las ignora no puede conocer

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles