Mm R 2 v= mv 2 R 24 5,98 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mm R 2 v= mv 2 R 24 5,98 10"

Transcripción

1 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610 m s 1. Calcule: a) El módulo del momento lineal del satélite y el módulo del momento angular del satélite respecto al centro de la ierra. b) El período de la órbita y la altura a la que se encuentra el satélite. Datos: Masa de la ierra M 5, kg adio de la ierra 6, m Constante de Gravitación Universal G 6, N m kg - a) La expresión de la velocidad de un satélite en una órbita alrededor de la ierra es: Luego el radio de la órbita es: F c F G mv G Mm v G M G M 5, , , v (7610 ) m Se obtiene la expresión de la energía mecánica del satélite en la órbita: E m E c +E p 1 mv G Mm 1 G Mm Mm G 1 G Mm Como se conoce el radio de la órbita, se puede aprovechar esta expresión para calcular el valor de la masa del satélite: m E m 6, ( 4, ) 155 6, kg 4 5,98 10

2 Se calculan los módulos del momento lineal y del momento angular: p mv , kg m/s L mv6, , , kg m /s b) Como el satélite viaja a velocidad constante, esta será igual al espacio dividido entre el tiempo: v e π π v π 6, s 1h 4 minutos La altura sobre la superficie se calcula restando el radio de la ierra del radio de la órbita: h6, , , m517,44 Km. Llamando g 0 y V 0 a la intensidad de campo gravitatorio y al potencial gravitatorio en la superficie terrestre respectivamente, determine en función del radio de la ierra: a) La altura sobre la superficie terrestre a la cual la intensidad de campo gravitatorio es g 0 /. b) La altura sobre la superficie terrestre a la cual el potencial gravitatorio es V 0 /. 1. a) El valor de la gravedad se reduce a la mitad cuando se adquiere cierta altura: M g 0 G M ; ( siendo r+h) G r G M r 1 1 r r r +h h ( 1) b) Hacemos lo mismo lo mismo con el potencial: V 0 G M ; G M r r 1 1 ; r ; h ; h r. Sabiendo que la aceleración de la gravedad en un movimiento de caída libre en la superficie de la Luna es un sexto de la aceleración de la gravedad en la superficie de la ierra y que el radio de la Luna es aproximadamente 0,7 (siendo el radio terrestre), calcule:

3 a) la relación entre las densidades medias ρ Luna / ρ ierra ; b) la relación entre las velocidades de escape de un objeto desde sus respectivas superficies (v e ) Luna / (v e ) ierra. 1. a) Hay que escribir las expresiones que se piden en función de los datos que se tienen: g M g G g ρ M V G g 4 4π G π La relación entre las densidades es: g L g 6 ; L 0, 7 ρ L ρ g L 4π G L g L g g L 4πG g 1 6g ( 0,7 ) 6 0,7 0,6 b) Se procede igual que en el apartado anterior, calculamos en primer lugar, la expresión de la velocidad de escape: 0E ; 0 1 mv e G Mm ; g G v e G g La relación entre ambas será: v el v e g L L g (0, 7) g 0,7 0, 1 6g a) Cuál es la aceleración de la gravedad en la superficie de un planeta esférico cuyo radio es la mitad del de la ierra y posee la misma densidad media? b) Cuál sería el período de la órbita circular de un satélite situado a una altura de 400 km respecto a la superficie del planeta? Datos: adio de la ierra 671 km Aceleración de la gravedad en la superficie de la ierra g 9,8 m s - a) Se introducen los datos que se conocen en la fórmula del campo gravitatorio:

4 M P V p ρ ; M p V p M V 4 π p M 4 ( π ) M M 8 g p G M p G M p G M 1 g 4,9 m s b) Se calcula la velocidad que debe tener en satélite para mantenerse en órbita a esa altura: F c F N ; m v Mm G r r v G M p r Como no se conoce el valor del producto se expresa como: v g p p r g p G M p p p g p p 4,9 1, , 58 m s El período es el tiempo que tarda en dar una vuelta completa: πr v π ( ) 5078 s1h 4 min 8 s 941, Problema 5.- Un satélite de masa 0 kg se coloca en órbita circular sobre el ecuador terrestre de modo que su radio se ajusta para que dé una vuelta a la ierra cada 4 horas. Así se consigue que siempre se encuentre sobre el mismo punto respecto a la ierra (satélite geoestacionario). a) Cuál debe ser el radio de su órbita? b) Cuánta energía es necesaria para situarlo en dicha órbita? Datos: Constante de Gravitación Universal G 6, N m kg Masa de la ierra M 5, kg adio de la ierra 671 km a) Cuando un cuerpo está en órbita alrededor de un planeta, se cumple que la fuerza centrípeta coincide con la fuerza atracción entre el cuerpo que orbita y el planeta: F c F N ; m v Mm G v r r G M r Por otra parte, se conoce el período del planeta 4 h:

5 πr v r v π π ( 6, , ,71 10 ) 1, m 6 b) Se denomina E COM a la energía que hay que comunicar para que alcance esa órbita: E P +E COM E Orb 1 G Mm + E COM 1 G Mm r E COM 1 m ( 1 1 r ) 1 6, , ( , ) 5, J 6. A qué velocidad debe ser puesta en órbita una nave espacial para que circunde la ierra prácticamente a ras del suelo? Datos: radio de la ierra 6, m masa de la ierra kg. enemos un objeto orbitando circularmente la ierra prácticamente a ras de tierra, por tanto el radio de la órbita es aproximadamente el radio de la ierra. Dado que se trata de un movimiento circular bajo una fuerza gravitatoria tenemos: m v G M m Sustituyendo los datos del problema: v G M. v( 6, Nm kg kg ) m 6, m 7,9 10 s 7. La aceleración de la gravedad en Marte es,7 m/s. Si el diámetro del planeta es 6, m. Determinar la velocidad de escape. Dado que el diámetro es de m, el radio del planeta será: m. Por tanto, la velocidad de escape será: v e g ,7 m/s. 8. Calcular la velocidad a la que debe viajar un satélite geoestacionario; Dato: M kg. Dado que G M m m v r r, despejamos la velocidad v( G M 1/ ). O, de otra manera, conocido el período 4 h sabemos que v π r π 4, m/ s Un cierto rifle tiene una velocidad de salida de 600 m/s. Si se dispara desde la superficie de la Luna en dirección vertical hacia arriba, escaparía la bala del campo gravitatorio de la Luna? Suponga la masa de la Luna 7,5 10 kg y su radio 1 78km. Si no escapa calcula la altura máxima.

6 Para averiguar si la bala escapará de la Luna, calcularemos la velocidad de escape. Esta viene dada por: v G M L e G m/ s L Dado que la bala tiene una velocidad de salida menor que la velocidad de escape, la bala no podrá escapar del campo gravitatorio lunar. La mayor distancia con respecto al centro de la Luna a la que la bola podría llegar se obtiene también a través de la conservación de la energía: 1 m v G M L m G M L m L 1856 km La altura sobre la superficie lunar será: h - L km km 118 km 10. Cómo se relaciona la velocidad de lanzamiento de un objeto desde la ierra con la velocidad de lanzamiento del mismo objeto desde otro planeta con mismo radio pero masa 80 veces mayor? Sabiendo que la velocidad de lanzamiento es: v G M m ( 1 1 ) v P G M P m ( 1 1 ) 80 M m ( 1 1 ) por tanto, la relación será v P 80 v 11. Si tenemos dos planetas con idéntica masa, cómo se relacionan las velocidades de escape de ambos planetas si uno tiene doble radio que el otro? La velocidad de escape viene dada por: v e G M si los radios se relacionan por ' y las masas son iguales v e G M y v e ' G M ' G M Por tanto: v e ' v e 1. Desde un lugar situado a una distancia del centro de la ierra igual a las 5/4 partes del radio terrestre se desea poner en órbita un satélite terrestre. Qué velocidad inicial hay que comunicarle? Cuál será su periodo? Cuál será el valor de la aceleración de la gravedad en su interior? Para calcular la velocidad orbital del satélite sólo hay que igualar la fuerza gravitatoria newtoniana de la ierra y la fuerza centrífuga del satélite: G M m m v r r. De la igualdad anterior se deduce que: v G M r. Ya que según el enunciado r 5 4 y como además, g 0 G M, se concluye:

7 v 4 5 g m/s. El periodo será: π r 5 π v v 7,05 s. La aceleración de la gravedad en el interior del satélite es nula, por existir equilibrio entre las fuerzas gravitatoria y centrífuga. 1. El primer satélite español Minisat, que fue lanzado en 1997 desde las Islas Canarias, se encuentra actualmente en una órbita circular alrededor de la ierra con un periodo de revolución de 10,5 horas. a) Calcula el radio de la órbita. b) Calcula la energía mecánica del satélite. c) Calcula el radio de la órbita que debería tener el satélite para que su periodo de revolución fuera el doble que el actual. Datos: G 6, Nm / kg ; M 5, kg; m satélite 100kg a) Para calcular el radio de la órbita empleamos la segunda ley de Newton en conjunción con la ley de la gravitación universal: r r v m 4π m a F m movimiento circular s v ω π / s Gravitatoria s ( ) , , , π 4π 4π 7, 4 10 m. b) La energía mecánica del satélite es segunda ley de Newton m m m v s 1 s s m sv 1 m E E E m v, concluimos que: s C + P s. Dado que, como acabamos de ver, de la 1 m m m m E msv s s s s , , , ,19 10 J. c) Empleamos la tercera ley de Kepler obtenida en el apartado (a) y llamamos (a) y (a) respectivamente al período y al radio allí calculados: ( ) (a) (a) (a) 1,59, 4 10,86 10 m 4π 4π 4π 14. Saturno es el sexto planeta del Sistema Solar, es el segundo en tamaño después de Júpiter y es el único con un sistema de anillos visible desde la ierra. Su masa es 95, veces la masa terrestre, y su radio es 9,5 veces el radio de la ierra. Determina: a) El valor de la aceleración de la gravedad en su superficie en relación con el terrestre, (g S /g ). b) El periodo de revolución de itán, uno de sus satélites, sabiendo que se encuentra a una distancia de km de Saturno y en órbita circular. c) El periodo de revolución de Saturno alrededor del Sol sabiendo que la ierra tarda 65 días en completar una órbita y que podemos considerar ambas órbitas circulares. Datos G 6, Nm /kg, M 5, kg; 670 km,

8 situado Distancia ierra-sol1, km, Distancia Saturno-Sol1, km. a) La aceleración de la gravedad g r P en la superficie de un planeta de masa M P y radio P se obtiene aplicando la m segunda ley de Newton conjuntamente con la ley de la gravitación universal a un cuerpo de masa sobre la superficie del planeta bajo el único efecto de su gravedad: r r Pm P mgp Fgravitatoria mgp g P. Así pues, el cociente entre las gravedades en Saturno y la ierra es: S S S S S ( 9,5 ) g M 95, M 95, 1,05 g M M 9, 5 P P b) Para calcular el período de la órbita de itán empleamos de nuevo la segunda ley de Newton en conjunción con la ley de la gravitación universal teniendo en cuenta que el radio la órbita de itán es S h 9,5 6,7 10 1, 10 1, 8 10 m + + : r r m m a F m movimiento circular v S itán v ω π/ 4π S itán Gravitatoria itán. ( ) ( ) 4π 1, π 6 1, s 17días , , 5, c) Para obtener el período de revolución de Saturno a partir del de la ierra empleamos la tercera ley de Kepler deducida en el apartado (b) realizando el cociente entre ambos períodos: 4π S/Sol S Sol S/Sol S 8 4π /Sol /Sol 1, Sol 9 ( 1, ) ( ) S días El 19 de octubre de 006 se lanzó un nuevo satélite de la familia Meteosat, el MetOp-A. Este satélite tiene una masa de kg y describe una órbita polar (órbita que pasa por los polos y es perpendicular al plano del ecuador) a una altura de 800 km sobre la superficie de la ierra. Calcule: a) A qué velocidad orbita. b) Cuántas veces pasa por el Polo Norte diariamente. c) Cuánto vale su energía mecánica. DAOS: M 5, kg; km; G 6, N m kg a) Se iguala la fuerza de atracción gravitatoria a la fuerza centrípeta que mantiene al satélite en órbita:

9 F C F G ; m v Mm G v r r G M r Se sustituyen los datos, teniendo en cuenta que la distancia a la que orbita debe medirse desde el centro de la ierra hasta la órbita: v 6, , , m s 1 b) Se calcula su período dividiendo la longitud de la órbita entre la velocidad con que se recorre: πr v π 7, ,5 s 774 Dividiendo la duración del día entre el período se obtiene el número de veces que pasa por un mismo punto: nº veces t día , ,5 16. res masas puntuales, m 1 1 kg, m kg y m kg, están situadas en los vértices de un triángulo equilátero de lado a m, en una región del espacio en la que no hay otro campo gravitatorio que el creado por las masas. Determina: a) El trabajo que se ha hecho para llevar las masas desde el infinito hasta la configuración actual (este trabajo coincide con la energía potencial gravitatoria de la configuración). b) El potencial gravitatorio en el punto medio del segmento que une m 1 y m. c) El módulo de la fuerza de atracción gravitatoria que experimente la masa m 1. Dato: G 6, N m /kg P-1. a) m Calculamos la energía potencial que cada masa tiene por ocupar su posición con respecto a las otras dos masas: a a θ m 1 a m E p G m i m j i, j r E p G( m 1 m a + m 1 m a + m m a ) Sustituyendo los valores de las masas y las distancias dados:

10 E p 4, J b) Para calcular la distancia de m al punto medio del lado opuesto del triángulo, consideramos el triángulo que resulta al dividir el equilátero por la mitad. La distancia que queremos conocer es la altura de este triángulo h: ha senθ 1,5 m El potencial en dicho punto será la suma de los potenciales que crean cada una de las masas. El potencial en dicho punto será la suma de los potenciales que crean cada una de las masas: V G m i i r V G ( m 1 a / +m a/ +m asenθ ), J /kg c) Dibujamos las fuerzas que actúan sobre la masa m 1 : m Aplicamos la fórmula de la fuerza teniendo en cuenta que tiene carácter vectorial: a F 1, θ m 1 F 1, m F 1, G m 1 m a (1,0 ) F 1, G m 1 m a (cosθ, sen θ ) F F 1, + F 1, G (,0 ) +G ( 1, ) G ( 7 6, ) N F 9, N

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Describa las características de la interacción gravitatoria entre dos masas puntuales. b) Razone en qué punto, situado entre dos masas puntuales m 1 y m 2 (m 1 =m 2 ), sería nula la fuerza

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 1) (P Jun94) Se lanza verticalmente un satélite de masa m = 2000 kg desde la superficie de la Tierra, y se pide: a)energía total

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con Opción A. Ejercicio 1 Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente- Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios FUERZAS Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 (a) Cuál es la fuerza gravitatoria o peso de una

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física

Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física 1 Cuestiones C1. Se quiere medir g a partir del período de oscilación de un péndulo formado por una esfera de cierta masa

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA PAU FÍSICA LA RIOJA - CUESTIONES 1. Si un cuerpo pesa 100 N cuando está en la superficie terrestre, a qué distancia pesará la mitad? Junio 95 2. Sabiendo que M Luna = M Tierra

Más detalles

Campo gravitatorio 7. Fobos

Campo gravitatorio 7. Fobos Campo gravitatorio 7 121*.Marte, el planeta rojo, debido a su atmósfera, tiene dos satélites de diferente tamaño y masa, Fobos y Deimos (ver foto), nombre de los caballos que tiraban del carro del dios

Más detalles

v m 2 d 4 m d 4 FA FCP m k

v m 2 d 4 m d 4 FA FCP m k Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS.

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. E4A.S2013 Un satélite artificial de 1200 kg se eleva a una distancia de 500 km de la superficie de la Tierra y se le da un impulso mediante cohetes propulsores

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES Refracción Astronómica La densidad de la atmósfera aumenta al acercarse a la superficie terrestre,

Más detalles

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1 OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Problemas adicionales de Física Cuántica (2010/2011)

Problemas adicionales de Física Cuántica (2010/2011) Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

I.-Instrucciones: Contesta correctamente.

I.-Instrucciones: Contesta correctamente. I.-Instrucciones: Contesta correctamente. 1.- Enumera los planetas de nuestro sistema solar, realiza un esquema donde los representes (identifica y representa su tamaño y el valor de la gravedad) En qué

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m PROBLEMAS DE FÍSICA º BACHILLERATO Campos eléctrico y magnético /0/03. A una distancia r de una carga puntual Q, fija en un punto O, el potencial eléctrico es V = 400 V y la intensidad de campo eléctrico

Más detalles

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Masas estelares. Estrellas binarias

Masas estelares. Estrellas binarias Capítulo 7 Masas estelares. Estrellas binarias 7.1. Masas estelares # Masa magnitud fundamental de las estrellas Determina la producción de energía ( ) evolución Constante durante la mayor parte de la

Más detalles

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física. martes, 19 de marzo de 13

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física.  martes, 19 de marzo de 13 FÍSICA MECÁNICA Dino E. Risso Carlos K. Ríos Departamento de Física http://maxwell.ciencias.ubiobio.cl/~drisso/wiki/ ANALISIS DIMENSIONAL Es una técnica para analizar las expresiones matemáticas de un

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

Problemas de Selectividad:Física. Juan P. Campillo Nicolás

Problemas de Selectividad:Física. Juan P. Campillo Nicolás Problemas de Selectividad:Física Juan P. Campillo Nicolás 18 de septiembre de 2016 2 Capítulo 1 Interacción gravitatoria 1.1. Conceptos previos. Ley de Gravitación Universal: La fuerza con que se atraen

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Ejercicios Física PAU Comunidad de Madrid 2000-2015. Enunciados. Revisado 22 septiembre 2014 2003-Septiembre

Ejercicios Física PAU Comunidad de Madrid 2000-2015. Enunciados. Revisado 22 septiembre 2014 2003-Septiembre Ejercicios Física PAU Comunidad de Madrid 000-05. Enunciados. enrique@fiquipedia.es Revisado septiembre 04 00-Septiembre 05-Modelo A. Pregunta.- Un planeta de igual masa que la ierra, describe una órbita

Más detalles

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia ACTIVIDADES Actividades DEL del FINAL final DE LA de UNIDAD la unidad. Explica por qué no se puede conocer el valor absoluto de la energía de un cuerpo. Porque la energía no puede medirse directamente;

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004 FÍSICA CUESTIONES Y PROBLEMAS BLOQUE II: INTERACCIÓN GRAVITATORIA PAU 2003-2004 1.- Resume la evolución de las distintas concepciones del universo hasta establecer las leyes cinemáticas de Kepler que describen

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

LAS FUERZAS Y LAS MÁQUINAS

LAS FUERZAS Y LAS MÁQUINAS FICHA 1 ACTIVIDADES DE 1 ara qué se utiliza el dinamómetro. 2 ara los dinamómetros A y B indica: a) Cuál es el valor mínimo y el máximo que pueden medir? Cuál es su precisión? Cuál es el valor de la fuerza

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.9 Ecuaciones diferenciales reducibles a primer orden.9.1 Introducción En el siguiente ejemplo aparece una ecuación diferencial de orden mayor que uno.

Más detalles

Capítulo 23. Microscopios

Capítulo 23. Microscopios Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1 I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 28-9-Tema 1 Departamento de Física 1) Dado el campo vectorial F = y i+x j, calcule su circulación desde (2,1, 1) hasta

Más detalles

Es la que posee un cuerpo por el mero hecho de ocupar un lugar en el espacio, es decir, por tener una cierta altura.

Es la que posee un cuerpo por el mero hecho de ocupar un lugar en el espacio, es decir, por tener una cierta altura. 3. Energía Es la capacidad que tienen los cuerpos de producir trabajo. Por lo tanto, las unidades de energía son las mismas que las de trabajo. Así, la unidad de energía en el sistema internacional es

Más detalles

Que tenemos: v velocidad de la lluvia con respecto de la Tierra. vlluvia - velocidad de la lluvia con respecto del auto. vauto= 50 km/h θ = 60 grados

Que tenemos: v velocidad de la lluvia con respecto de la Tierra. vlluvia - velocidad de la lluvia con respecto del auto. vauto= 50 km/h θ = 60 grados Cinemática. Repaso. Problema 6.72 Un auto viaja hacia el Este con una rapidez de 50 km/h. Esta lloviendo verticalmente con respecto a la Tierra. Las marcas de la lluvia sobre las ventanas laterales del

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles