Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático"

Transcripción

1 qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco. Teorema de Gauss. El potencal electrostátco. Ecuacones del potencal. La condcón de equlbro para conductores homogéneos y sus consecuencas. Campo eléctrco Ley de Coulomb, accón a dstanca, nfluenca local, concepto de campo Problema del autocampo Defncón de campo eléctrco debdo a una dstrbucón de carga ~E(~r) = V ρ(~r 0 )(~r ~r 0 ) ~r ~r 0 3 d 3 ~r 0 Ejemplo: hallar el campo eléctrco producdo por un anllo de rado R cargado con carga Q sobre el eje z Camno ntutvo de = λds 4πε0 = λds 4πε0 z 2 + R 2 Líneas de campo Ez = q cos θ 4πε0 z 2 + R 2 = qz 4πε0 [z 2 + R 2 ] 3/2 Camno formal ρ(~r 0 )=λδ(r 0 R)δ(z 0 ) ~r ~r 0 = z~u z R cos θ~u x R sn θ~u y ~r ~r 0 = p z 2 + R 2 E z = λδ(r 0 R)δ(z 0 )zr 0 dr 0 dφdz 0 [z 2 + R 2 ] 3/2 Teorema de Gauss La evaluacón del campo eléctrco parece complcada ncluso en problema sencllos S hay smetría puede aprovecharse ésta para la determnacón del campo eléctrco medante el teorema de Gauss, que en su forma ntegral nos dce que: ~E(~r) d S(~r) ~ = q S es una superfce cerrada (real o magnara) y q la carga total encerrada Johann Carl Fredrch Gauss ( ) Uno de los matemátcos más grandes de la hstora Publcó sus trabajos más mportantes en las áreas: Geometría no eucldana y dferencal Estadístca (ncluyendo mínmos cuadrados) Teoría del potencal Magnetsmo terrestre

2 Flujo del campo eléctrco El flujo es proporconal al número de líneas de campo que atravesa una superfce determnada Φ E = X AE cos θ En forma vectoral, crcunferenca de rado r= Ángulo plano y ángulo sóldo α superfce esférca de rado r= Ω Φ E = X ~A ~E La ntegral sobre una superfce cerrada es: Φ E = ~E d A ~ α = l r α Ω = S T =2π Ω T =4π Ángulo sóldo Demostracón del T. Gauss Φ E = ~E(~r) d S ~ = ρ(~r 0 )(~r ~r 0 ) ~r ~r 0 3 d 3 ~r 0 d S ~ ntercambando la ntegral de superfce por la de volumen, Φ E = " (~r ~r 0 ) d S(~r) ~ # ρ(~r 0 ~r ~r 0 3 )d 3 ~r 0 Ω = A cos θ = Aˆn ˆr Φ E = dω(~r 0 )ρ(~r 0 )d 3 ~r 0 S no hay cargas Φ E =0 Carga puntual Cuál es el flujo a través de cada superfce cerrada? S? S 2? S 3? S 4? Superfce esférca de rado r que encerra una carga q en el orgen Calculemos el flujo a través de la esfera Φ E = H E ~ d S ~ Φ E = H EdS = E H ds q = E4π E = q Generalcemos a cualquer superfce 2

3 Hlo ndefndo Plano ndefndo Flujo a través de la superfce del clndro Φ E = σa =2EA Φ E = q = λl = E2πrl E = λ 2π r Campo en la superfce del plano aslante E = σ 2 Forma dferencal del teorema de Gauss ~E d ~ S = ~ ~Ed 3 ~r = ~ ~E(~r) = ρ(~r) ρd 3 ~r ρd 3 ~r Fuerza entre dos masas F G = G mm Campo gravtatoro W f = W f = Campo gravtatoro y electrostátco ~F ~ds = q F C = K qq Campo eléctrco ~F g = m~g ~ Fe = q ~ E Trabajo como dferenca de energía potencal (gravtatora o electrostátca) ~F ~ds = m Fuerza entre dos cargas ~g ~ds = U = U U f ~E ~ds = U = U U f Potencal eléctrco Superfces equpotencales Se defne el potencal eléctrco como la energía potencal por undad de carga,.e. V = U q W = R f ~F d~s = q 0 R f V = V f V = R f De la defncón de potencal, ~E ~ds En forma dferencal, dv = E ~ ds ~ = Edscos θ = E s ds Por lo tanto E s = dv ds ~E = ~ V ~E d~s = U Dado que cuando E y ds son perpendculares no hay varacón de potencal, las superfces equpotencales son perpendculares a las líneas de campo. 3

4 El campo y el potencal De la expresón del campo eléctrco en térmnos del potencal, ~E = ~ V ~ ~ E =0 se deduce que el campo electrostátco (el de las cargas en reposo) es rrotaconal. Esto, en térmnos ntegrales ndca que la crculacón del campo eléctrco es nula, sea cual sea la trayectora: ~E d ~ l =0 El prncpo de superposcón de aplca de forma más convenente al potencal ~E = ~E + ~E 2 + = ~ V ~ V 2... ~E = ~ (V + V ) Pero Expresón ntegral para V ~E(~r) = ~r ~r 0 ~r ~r 0 = ~ 0 3 ρ(~r 0 )(~r ~r 0 ) ~r ~r 0 3 d 3 ~r 0 ~r ~r 0 = ~ Luego E(~r) ~ = Por tanto V (~r) = ~r ~r 0 ρ(~r 0 ) ~r ~r 0 d3 ~r 0 ρ(~r 0 ) ~r ~r 0 d3 ~r 0 Ecuacones de Posson y Laplace De la ley de Gauss, y la defncón en térmnos del potencal Ecuacón de Posson V = ρ ~ ~ E = ρ ~E = ~ V Ecuacón de Laplace V =0 Conductores (perfectos) El campo es cero en el nteror del conductor Las cargas en un conductor están en la superfce La superfce de un conductor es una superfce equpotencal: el campo eléctrco es perpendcular a la superfce de un conductor En regones con más curvatura hay más acumulacón de carga Campo eléctrco en la superfce de un conductor El flujo a través del clndro de la fgura es Φ E = σa = EA por el teorema de Gauss, luego el campo en la superfce del conductor es: E = σ Fuerza sobre la superfce de un conductor cargado El campo sobre la superfce del conductor (fuera del conductor) sabemos que vale E a = σ por el teorema de Gauss, mentras que el campo en el nteror es nulo, E b =0 La fuerza sobre un elemento de carga es fds = σdse El campo en a y b lo podemos escrbr como E a = E resto + σ E b = E resto σ 2 2 La densdad de fuerza sobre la superfce de un conductor cargado es: f = σ2 2 4

5 Cargas nducdas Al ntroducrse una carga q dentro de una superfce conductora hueca, debe nducrse una carga en la superfce nterna del conductor de manera que se anule el campo en el volumen del msmo. 5

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico Electromagnetsmo El campo de las cargas en reposo: el campo electrostátco Andrés Cantarero. Curso 2005-2006. ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electrostátco.

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TECNOLOGIA DE LA ENERGIA TERMICA RADIACION S-S Marano Manfred Tecnología de la Energía Térmca 1 RADIACION S-S Indce 1. Objetvos 2. Alcance 3. Desarrollo Energía radante Absortvdad, reflectvdad y transmsvdad

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

Cálculo de momentos de inercia

Cálculo de momentos de inercia Cálculo de momentos de nerca Cuando el cuerpo es homogéneo y unforme el cálculo de momento de nerca es una ntegral - Dvdmos el cuerpo en elementos de masa nfntesmal dm, todos a la msma dstanca r del eje

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

q 1 modifica las propiedades físicas del espacio que le rodea de forma que, cuando se coloca la carga q 1 en las proximidades de la carga q 2

q 1 modifica las propiedades físicas del espacio que le rodea de forma que, cuando se coloca la carga q 1 en las proximidades de la carga q 2 Físca para encas e Ingenería APÍTULO 80 AMPO LÉTRIO 1 80-1 ampo electrostátco Las fuerzas de atraccón o de repulsón entre dos cargas eléctrcas F = k q q r 1 1 = 1 q 1 q r 1 r 1 r 1 r 1 [1] se manfestán

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: epartamento de Físca, UTFSM Físca General II / Prof: A. Brunel. FIS120: FÍSICA GENERAL II GUÍA#6: Campo magnétco, efectos. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

6. Flujo Eléctrico y Ley de Gauss

6. Flujo Eléctrico y Ley de Gauss 6. Flujo Eléctrico y Ley de Gauss Recordemos que dibujamos las ĺıneas de campo eléctrico con un número de ĺıneas N: N A E El número de ĺıneas N se llama flujo eléctrico: Φ E = N = E A [ Nm2 C ] Flujo Eléctrico

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

FIS1533/FIZ I1

FIS1533/FIZ I1 FIS1533/FIZ0221 - I1 Facultad de Física Pontificia Universidad Católica de Chile Segundo Semestre 2016-16 de Septiembre Tiempo para responder: 120 minutos Nombre: Sección: Buenas Malas Blancas Nota Instrucciones

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS120: FÍSICA GENERAL II GUÍA#7: Campo magnétco, orgen. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr los sguentes objetvos: Analzar los fenómenos que organ los campos

Más detalles

sistemas de conductores

sistemas de conductores Energía y presón electrostátca en sstemas e conuctores Antono González Fernánez Dpto. e Físca Aplcaa III Unversa e evlla nopss e la presentacón Las fórmulas para la energía electrostátca pueen aplcarse

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo)

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo) Cnemátca y dnámca del Cuerpo ígdo (no se ncluye el movmento de precesón y el del gróscopo) El cuerpo rígdo El cuerpo rígdo es un caso especal de un sstema de partículas. Es un cuerpo deal en el cual las

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

Magnetostática

Magnetostática Magnetostátca Ejercco 1: un haz de sótopos (masa m=8,96 x 10 27 kg; carga q=+3,2 10 19 ) ngresa por el punto A de la fgura a una regón del espaco donde exste un campo magnétco de valor B = 0,1T. La energía

Más detalles

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1 1. Carga y Campo léctrico Carga eléctrica. Conservación de la carga. Ley de Coulomb. Campo eléctrico. Potencial. Ley de Gauss. Conductor cargado en equilibrio electrostático. Carga eléctrica Dos tipos:

Más detalles

Capítulo V Dinámica del cuerpo rígido

Capítulo V Dinámica del cuerpo rígido Capítulo V Dnámca del cuerpo rígdo 5. Dnámca de un sstema de masas puntuales Hasta el momento hemos estudado la nteraccón de dos cuerpos puntuales. Corresponde ahora analzar lo que ocurre cuando tenemos

Más detalles

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 01/05 Transporte de Masa

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 01/05 Transporte de Masa FENÓMENOS DE TRSPORTE EN METLURGI EXTRCTIV Clase 01/05 Transporte de Masa Prof. Leandro Vosn, MSc., Dr. cadémco Unversdad de Chle. Jefe del Laboratoro de Prometalurga. Investgador Senor - Tohoku Unversty,

Más detalles

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FI533 - Electricidad y Magnetismo // -28 Profesor: Giuseppe De Nittis - gidenittis@uc.cl. Fórmulas y constantes.. Ley de Gauss Ayudantía 6 Ley

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011 Clase 8 Flujo Eléctrico y ley de Gauss Flujo eléctrico El signo del flujo eléctrico Por su definición el flujo eléctrico a través de una cierta superficie puede ser positivo, negativo o nulo. De hecho

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Potenciales y campos eléctricos

Potenciales y campos eléctricos Potencales y campos eléctrcos Obetvo El obetvo de este expermento es determnar las líneas (o superfces) equpotencales es decr el lugar geométrco donde el potencal eléctrco es constante. Estos potencales

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético A. Observacón de la fuerza electromotrz nducda por la varacón de flujo magnétco Objetvo: Observacón de la presenca de fuerza electromotrz en un crcuto que sufre varacones del flujo magnétco y su relacón

Más detalles

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA Francisco Fernández La duda es la escuela de la inteligencia. Curso 2012-2013 F. Bacon 1 Ley de Coulomb Ley de Coulomb: La magnitud de la

Más detalles

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE UNIVRSIDAD NACIONAL D INGNIRIA Curso: FISICA II CB 3U 1I Imagna. stas sentado cerca de Ruperta, una joven muy lnda que usa un perfume muy agradable. Pero Ruperta tene su amorcto, él llega y tenes que rte.

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 015-1 Reposición de primer parcial: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 5pts) Calcula el campo el eléctrico E magnitud y dirección) a

Más detalles

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-8. Estátca Analítca. Introduccón: Necesdad de elmnar de las ecuacones mecáncas las fuerzas vnculares. Conceptos ncales a.

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita.

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita. PROBLEMA DE INTEGRALE DE UPERFICIE. (20 I.T.I.MECÁNICA). -2008-09- 1.-Encontrar los puntos sngulares de la semesfera superor: x 2+y 2+z 2=R 2.z 0 a) Cuando tomamos como parámetros la longtud y la lattud.

Más detalles

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas.

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas. Tea 4 Ssteas de partículas 4.. Estátca y equlbro. 4... Condcones de equlbro. Las condcones de equlbro conssten en que para que un sstea esté en equlbro, la fuerza total externa aplcada debe ser nula: F

Más detalles

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2)

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2nd. Semestre 2010 Electrostática, Varias cargas puntuales CAMPO ELECTRICO DE VARIAS CARGAS

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Descripción de la deformación y de las fuerzas en un medio continuo

Descripción de la deformación y de las fuerzas en un medio continuo Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos

Más detalles

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL POSGRADOS DE CIENCIAS DE LA TIERRA Y DE CIENCIA E INGENIERÍA DE LA COMPUTACIÓN UNAM AUTOR: ISMAEL HERRERA REVILLA 1 Basado en el Lbro Mathematcal

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS Departamento de Físca - UBU enero de 2017 1 CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS En esta hoja podrán vsualzar el campo magnétco creado por una, dos tres o cuatro correntes rectlíneas

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

Distribución del potencial electrostático en una placa cuadrada utilizando el método de elementos finitos

Distribución del potencial electrostático en una placa cuadrada utilizando el método de elementos finitos Dstrbucón del potencal electrostátco en una placa cuadrada utlzando el método de elementos fntos Jaro Madrgal Argáez 1 Jame Barbosa Pérez Manuel Julo García 3 Resumen Este artículo expone la solucón al

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

CAPÍTULO VII ANÁLISIS ELECTROMAGNÉTICO DEL MOTOR DE CHAPAS

CAPÍTULO VII ANÁLISIS ELECTROMAGNÉTICO DEL MOTOR DE CHAPAS Capítulo VII. Análss Electromagnétco del Motor de Chapas 7 CAPÍTULO VII ANÁLII ELECTROMAGNÉTICO DEL MOTOR DE CHAPA 7. INTRODUCCIÓN En este capítulo se deducrán unas expresones que permtan hallar en cualquer

Más detalles

LEY DE FARADAY. - Panel de montaje con potenciómetro, interruptor, conexiones y resistencia de protección.

LEY DE FARADAY. - Panel de montaje con potenciómetro, interruptor, conexiones y resistencia de protección. LEY DE FARADAY MATERIAL NECESARIO - Solenode construdo con cable de bobnado de 0.3 mm con dos arrollamentos: arrollamento nterno (prmaro) para hace pasar corrente) y arrollamento externo (secundaro) para

Más detalles

Fundamentos Físicos de la Ingeniería Examen Final / 2 julio 2002

Fundamentos Físicos de la Ingeniería Examen Final / 2 julio 2002 Fundamentos Físcos de la Ingenería Examen Fnal / julo 1. Una lanca motora, que naega río arrba, se encontró con una balsa arrastrada por la corrente. Una ora después de este encuentro, el motor de la lanca

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

Consecuencias del Primer Principio 22 de noviembre de 2010

Consecuencias del Primer Principio 22 de noviembre de 2010 Índce 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓEZ RAFAEL NIETO Consecuencas del rmer rncpo 22 de novembre de 2010 1. Ecuacón calórca del gas deal 1 Cuestones y problemas: C 2.4,10,11,12,16,19 1.1,3 subrayados

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

Campo producido por un sistema de cargas puntuales

Campo producido por un sistema de cargas puntuales lectcdad Magnetsmo / lectostátca Defncón os conductoes en electostátca. Campo de una caga puntual. Aplcacones de la e de Gauss Integales de supeposcón. Potencal electostátco. Defncón e Intepetacón. cuacones

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

ESPECTROSCOPIA DE HADRONES

ESPECTROSCOPIA DE HADRONES ESPECTROSCOPIA DE HADRONES. Modelo quark de los hadrones: SU() de sabor. El color de los quarks. Masas de los hadrones 4. Multpletes de SU(4) Físca Nuclear y de Partículas Espectroscopa de hadrones El

Más detalles

Pseudo-resumen de Electromagnetismo

Pseudo-resumen de Electromagnetismo Pseudo-resumen de Electromagnetismo Álvaro Bustos Gajardo Versión 0.6β, al 27 de Octubre de 2011 1. Cargas. Ley de Coulomb 1.1. Carga eléctrica La carga eléctrica es una propiedad cuantitativa de la materia,

Más detalles

ECUACIONES DE POISSON Y LAPLACE

ECUACIONES DE POISSON Y LAPLACE ECUACIONES DE POISSON Y LAPLACE Partiendo de: D ρ (forma punto de Ley de Gauss ( D E ( E (3 por sustitución de (3 en ( y luego en ( se tiene: D ( E ( ρ Ésta es la ecuación de Poisson para un medio NO homogéneo

Más detalles

Electromagnetismo Radiación electromagnética 4 Aberturas. Antenas usuales Método de Momentos

Electromagnetismo Radiación electromagnética 4 Aberturas. Antenas usuales Método de Momentos Electromagnetsmo 017 adacón electromagnétca 4 Aberturas. Antenas usuales Método de Momentos Plan de la clase: Electromagnetsmo 017 adacón electromagnétca 4 1 Prncpo de Huygens-Krchhoff Campo emtdo por

Más detalles

INTEGRACIÓN MÚLTIPLE. Introducción. El volumen bajo una superficie. V V Ci

INTEGRACIÓN MÚLTIPLE. Introducción. El volumen bajo una superficie. V V Ci INTEGRCIÓN MÚLTIPLE Introduccón La ntegral defnda undmensonal aporta las herramentas necesaras para calcular áreas y volúmenes. hora ben, por lo que se refere al cálculo de volúmenes, no da respuesta al

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

Capítulo xx Campos y potenciales electrostáticos. Ecuación de Laplace

Capítulo xx Campos y potenciales electrostáticos. Ecuación de Laplace Capítulo xx Campos potencales electrostátcos. Ecuacón de Laplace Obetvos Estudo de los potencales eléctrcos para dstntas confguracones de campos con dversas condcones de borde en dos dmensones. Determnacón

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 1.

Problemas de Electromagnetismo. Tercero de Física. Boletín 1. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 1. 17.- Dos pequeñas esferas conductoras iguales, cada una de masa m, están suspendidas de los extremos

Más detalles

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placa"de"aire" Placa"de"vidrio" a" #σ"

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placadeaire Placadevidrio a #σ Electromagnetismo I Semestre: 15- Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución Tarea 6 Solución por Christian Esparza López 1. Problema: (pts)

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS INGENIERÍA EN SISTEMAS AMBIENTALES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS INGENIERÍA EN SISTEMAS AMBIENTALES NSTTUTO POLTÉCNCO NACONAL ESCUELA NACONAL DE CENCAS BOLÓGCAS NGENERÍA EN SSS AMBENTALES HORAS DE TEORÍA 5 ASGNATURA TERMODNÁMCA BÁSCA HORAS DE PRÁCTCA 4 SEMESTRE 3 CRÉDTOS 14 OBJETVO: EL ESTUDANTE MANEJARÁ

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez -

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 11 1. Fórmulas y constantes 1.1. Conductores

Más detalles