ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES"

Transcripción

1 Técnicas experimentales I Práctica nº3 de Electromagnetismo 1.- ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES CAMPO ELECTROSTÁTICO CREADO POR UNA ESFERA CONDUCTORA. IMÁGENES ELÉCTRICAS DETERMINACIÓN DE LA CAPACIDAD DE CONDUCTORES ESFÉRICOS Y DEL CONDENSADOR ESFÉRICO Objetivo En esta práctica se analizan las relaciones que existen entre diferentes magnitudes electrostáticas cuando tenemos presentes medios conductores. En primer lugar mediremos el campo electrostático generado por una esfera conductora cargada y su evolución frente al voltaje aplicado para cargarla y frente a la distancia. En la segunda parte de la práctica estudiaremos la capacidad que tienen los conductores para almacenar carga eléctrica cuando se les aplica un potencial electrostático. En particular realizaremos el estudio para esferas conductoras de diferentes tamaños. Ampliaremos la experiencia a un sistema de dos conductores esféricos en influencia total, lo que nos permitirá determinar experimentalmente la capacidad del condensador esférico. Teoría El campo electrostático creado por un conductor esférico de radio R cargado con una carga Q, en puntos exteriores al conductor, es el mismo que el que crearía una carga puntual Q colocada en el centro del conductor. Por tanto puede expresarse mediante la ley de Coulomb r 1 Q E( r ) = rˆ (1) 4πε 2 0 r donde r es la distancia desde el centro de la esfera al punto donde medimos el campo. Para medir tal campo electrostático utilizaremos el medidor descrito en la práctica 1. Dado que la sonda de medición, de forma circular, tiene un diámetro de

2 Técnicas experimentales I Práctica nº3 de Electromagnetismo mm y mide exclusivamente la componente normal del campo sobre ella, necesitaremos tener campos uniformes, sobre el área de la sonda, para no cometer errores. Esta dificultad la solventamos superponiendo un plano conductor, con un agujero del tamaño de la sonda, al medidor. El efecto de este plano conductor, a potencial nulo, nos asegura que el campo sobre la sonda es normal a ella y uniforme pero debemos tener en cuenta que el campo real ahora sobre el medidor es el creado por la esfera conductora más el creado por su carga imagen, figura 1. Figura 1. Consecuentemente el campo total vendrá expresado por r 1 2Q ) E( r ) = n (2) 4πε 2 0 r donde r es ahora la distancia del centro de la esfera al plano donde está la sonda y n ) la dirección normal a dicho plano. La carga Q almacenada en un conductor aislado, en situación de equilibrio electrostático, viene dada por Q = C V (3) donde V es el potencial al cual se encuentra el conductor. El coeficiente de proporcionalidad C, llamado capacidad eléctrica del conductor, es puramente geométrico y no depende de la configuración electrostática del sistema En el caso de conductores esféricos, la aplicación del teorema de Gauss a puntos exteriores al conductor, junto con la continuidad de la función potencial, nos proporciona el siguiente valor para C C = 4πε R (4) donde ε es la permitividad dieléctrica del medio en el cual está inmerso el conductor. En 12 el caso del vacío ε 0 = A s/v m. A partir de las expresiones (3) y (4) podemos expresar el campo sobre la placa conductora en función del potencial V al cual cargamos la esfera conductora r 2R ) E( r ) = V n (5) 2 r

3 Técnicas experimentales I Práctica nº3 de Electromagnetismo 3.- Cuando en vez de un conductor aislado tenemos un sistema de n conductores, la carga almacenada en el conductor i-ésimo, Q i, viene dada por Q c Φ (6) = n i j= 1 donde Φ j es el potencial del conductor j-ésimo. Los coeficientes c ij son los coeficientes de capacidad o influencia eléctrica que dependen únicamente de la configuración geométrica del sistema. En el caso particular de un condensador, dos conductores en equilibrio electrostático y en situación de influencia eléctrica total, Q 1 = - Q 2 = Q, obtenemos una expresion similar a la 2.1 Q = C( Φ1 Φ2 ) (6) donde C recibe ahora el nombre de capacidad del condensador y de nuevo no depende de la configuración electrostática del sistema. La expresión teórica para la capacidad de un condensador esférico formado por dos conductores esféricos, concéntricos, de radios R 1 y R 2, (R 1 < R 2 ), la podemos obtener mediante la aplicación del teorema de Gauss a la región comprendida entre ambos conductores, supuesta rellena de un dieléctrico de permitividad ε, obteniendo la siguiente expresión R = 1R C 4 π ε 2 (7) R 2 - R1 De manera análoga se puede determinar la capacidad de un condensador plano obteniéndose S C = ε (8) d siendo S la superficie de las placas conductoras y d la distancia entre ellas. ij j Material básico - Esferas conductoras de diferentes radios - Condensador esférico - Resistencia de 10 MΩ - Fuente de alto voltaje, 0-10 kv - Amplificador de medida - Medidor de campo eléctrico - 2 polímetros - Cable de alta tensión - Conectores, cables, soportes, etc

4 Técnicas experimentales I Práctica nº3 de Electromagnetismo 4.- Atención: Al final del guión de la práctica 1 se adjunta manual básico medidor de campo electrostático y al final del de la práctica 2 del amplificador de medida así como de la fuente de alimentación. Es conveniente leérselo antes de hacer la práctica Precaución: En esta práctica se manejan tensiones que pueden resultar peligrosas por lo que se recomienda se extremen las precauciones básicas. - No encender los aparatos hasta que no esté el dispositivo experimental totalmente conectado. - Solicitar cualquier aclaración que sea necesaria. Medidas a realizar y montaje experimental: 1.- Evolución del campo electrostático creado por una esfera conductora frente a la tensión (carga) de la esfera. Para estudiar esta variación dispondremos del montaje experimental de la figura 2. Figura 2.- El conductor esférico de aproximadamente 2 cm de diámetro, situado sobre una de las varillas aisladas, es conectado a la fuente de alta tensión por medio de un cable de alta tensión y una resistencia de 10 MΩ, conectada directamente a la fuente como medida de protección. Esta esfera la utilizaremos como terminal de contacto para cargar la esfera que nos va a generar el campo. El polo negativo de la fuente de alimentación es conectado a masa. Seleccionamos en la fuente de alimentación un voltaje V A y al poner en contacto el terminal de contacto con la esfera, esta adquiere una carga una carga Q = C V A. Después de esta operación bajaremos el voltaje de la fuente de alta tensión a

5 Técnicas experimentales I Práctica nº3 de Electromagnetismo V para evitar la influencia eléctrica sobre el sistema. El medidor de campo electrostático nos proporcionará el valor del campo. Las medidas las realizaremos sistemáticamente de la siguiente manera: - Colocamos el medidor de campo a la distancia elegida. - Fijamos 1 kv en la fuente de alta tensión. - Ponemos en contacto brevemente el terminal de contacto con la esfera - Bajamos la tensión en la fuente de alimentación a cero. - Anotamos el valor del campo suministrado por el medidor. - Incrementamos en 1 kv la tensión aplicada en la fuente de alimentación anteriormente y repetimos las medidas, Asi hasta llegar a la tensión de 10 kv. La tabla 1 está preparada para apuntar tales medidas. A partir de la representación gráfica de E frente a V A podemos obtener experimentalmente el cociente de 2R/r 2 y compararlo con el medido. Realizaremos esta experiencia para esferas de diferentes radios y a diferentes distancias, según se indique en el laboratorio. 2.- Evolución del campo electrostático creado por una esfera conductora frente a la distancia Con el mismo montaje del apartado anterior, cargando la esfera con un potencial de 10 kv medir el campo a diferentes distancias. Se aconseja comenzar en los puntos más cercanos e irse alejando de la esfera. La tabla 2 está preparada para apuntar tales medidas. La representación gráfica de log E frente a log (r) es una línea recta de pendiente m = 2 como puede deducirse de la expresión (5) y que corresponde a la ley de la inversa del cuadrado de la distancia (Ley de Coulomb). Log E = log (2RV) - 2log r (9) Obtener dicha pendiente y comparar con el valor teórico. 3.- Determinación de la capacidad de conductores esféricos. Para determinar la capacidad C en un conductor esférico utilizaremos el montaje experimental de la figura 3. Para cargar las esferas conductoras seguiremos las mismas instrucciones del primer apartado Para medir la carga Q utilizaremos un condensador auxiliar, C M = 10 nf, conectado en paralelo a un cable BNC preparado para actuar como sonda de medida. Al poner en contacto esta sonda con el conductor problema, la carga Q se redistribuye entre

6 Técnicas experimentales I Práctica nº3 de Electromagnetismo 6.- el conductor y el condensador. La diferencia de potencial que se mide entre los terminales de este condensador V M puede relacionarse con la carga Q de la siguiente manera si C << C M ( C + C M ) V M Q = (10) Q = C V = C V (11) M Para realizar la medida de V M es necesario conectar el condensador de medida al voltímetro a través del amplificador de medida en su modo electrometer, caracterizado por tener una muy alta resistencia de entrada ( Ω), para evitar que el condensador se descargue a través del voltímetro. Es necesario ajustar el cero del amplificador antes de iniciar las medidas y descargar el condensador mediante el pulsador correspondiente, cada vez que se vaya a realizar una medida M A Figura 3.- Montaje experimental para determinar la capacidad de conductores esféricos. Realizar las medidas para los tres conductores esféricos problema que se suministran de diámetros aproximados 2, 4 y 12 cm. La tabla III está preparada para apuntar tales medidas. A partir de la representación gráfica de Q frente a V A podemos obtener experimentalmente la capacidad C de cada conductor. Para obtener la capacidad teórica exacta de cada conductor mida los radios de dichos conductores con un calibre.

7 Técnicas experimentales I Práctica nº3 de Electromagnetismo 7.- Precauciones: Estamos utilizando alta tensión, no tocar las partes sometidas a alta tensión con las manos ni dejar los terminales desconectados. No aplicar bajo ningún concepto alta tensión al amplificador de medida. 4.- Determinación de la capacidad de un condensador esférico En la figura 4 se muestra el montaje experimental de este apartado. Dos hemisferios de Cavendish se ponen en contacto para formar una esfera completa con un pequeña agujero en la parte superior. Figura 2.- Montaje experimental para determinar la capacidad de un condensador esférico. Una esfera de plástico con superficie conductora se suspende mediante un hilo de cobre en el centro de la esfera. El hilo de cobre se introduce en un capilar de vidrio forrado exteriormente con papel de aluminio que se mantiene a potencial nulo para minimizar capacidades parásitas, figura 5. Figura 5.- Detalle de la esfera interna. 1 = Hilo de cobre; 2 = tubo capilar; 3 = papel de aluminio

8 Técnicas experimentales I Práctica nº3 de Electromagnetismo 8.- La esfera interior se conecta al terminal central de la fuente de alta tensión a través de la resistencia de protección de 10 MΩ. El terminal negativo de la fuente es conectado a masa. Aplicaremos voltajes sobre la esfera interior entre V por seguridad del voltímetro digital. Una vez aplicado el voltaje conectaremos brevemente la esfera exterior a tierra para que adquiera la misma carga que la interior, aunque de signo contrario De manera similar al apartado anterior mediremos ahora la carga sobre la esfera exterior con el condensador auxiliar. Realizaremos dicha medida para diez voltajes diferentes (Tabla IV). A partir de la representación gráfica de los datos, Q frente a V A, obtener la capacidad del condensador esférico. Precaución: Después de cada medida es necesario descargar la esfera exterior para evitar voltajes inducidos.

9 Técnicas experimentales I Práctica nº3 de Electromagnetismo 9.- HOJA DE RESULTADOS EXPERIMENTALES Tabla de datos I: Valores del campo eléctrico para varias tensiones de carga y distancias. R = mm R = mm R = mm R = mm d= mm d= mm d= mm d= mm V A (kv) E (kv/m) E (kv/m) E (kv/m) E (kv/m) Tabla de datos II: Campos medidos en función de la distancia V= 10 kv, R=12 cm d (cm) E (kv/m) Fecha: Práctica realizada por:.

10 Técnicas experimentales I Práctica nº3 de Electromagnetismo 10.- Tabla de datos III: Voltajes medidos con el amplificador de medida para diferentes conductores esféricos. C = 10 nf (500 V). (Si tiene que utilizar ganancias superiores a la unidad tengalo en cuenta a la hora de apuntar los datos) R 1 = R 2 = R 3 = V A (kv) V S (V) Q(C) V S (V) Q(C) V S (V) Q(C) Tabla de datos IV: Voltajes medidos con el amplificador de medida para condensador esférico. C = 10 nf (500 V). (Si tiene que utilizar ganancias superiores a la unidad tengalo en cuenta a la hora de apuntar los datos) R 1 = R 2 = V A (V) V S (V) Q(C)

CARACTERIZACION DE MEDIOS DIELÉCTRICOS Y CONDUCTORES

CARACTERIZACION DE MEDIOS DIELÉCTRICOS Y CONDUCTORES Técnicas experimentales I Práctica nº2 de Electromagnetismo 1.- CARACTERIZACION DE MEDIOS DIELÉCTRICOS Y CONDUCTORES 2.1. MEDIDA DE LA CONSTANTE DIELÉCTRICA ESTÁTICA DE DIFERENTES MEDIOS 2.2 MEDIDA DE

Más detalles

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q:

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q: CONSTANTE DIELÉCTRICA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

CONSTANTE DIELÉCTRICA

CONSTANTE DIELÉCTRICA ONSTANTE DIELÉTRIA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

Boletín Temas 1 y 2 P 1

Boletín Temas 1 y 2 P 1 Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que

Más detalles

GUIÓN 2. CONDENSADOR PLANO

GUIÓN 2. CONDENSADOR PLANO GUIÓN 2. ONDENSADOR PLANO Objetivos En esta práctica se estudia la capacidad de un condensador plano sin considerar la capacidad parásita que puedan introducir otros agentes conductores en su entorno.

Más detalles

Unidad I: Electrostática (2da parte)

Unidad I: Electrostática (2da parte) Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb Ejercicios propuestos para examen de supletorio de Física II Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo, cuyos catetos miden

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 2. Solución analógica del problema del potencial 2.1. Objeto de la práctica El

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

Practica No. 3. Capacitor de Placas Planas Paralelas

Practica No. 3. Capacitor de Placas Planas Paralelas Objetivos: Experimento 1 Practica No. 3. Capacitor de Placas Planas Paralelas 1.1 Encontrar la diferencia entre las distancias de las placas del capacitor de placas planas. 1.2 Determinar el campo eléctrico

Más detalles

La ley circuital de Ampere relaciona la circulación del campo magnético con la corriente que lo origina: B dl = µ 0 j ds (1) C

La ley circuital de Ampere relaciona la circulación del campo magnético con la corriente que lo origina: B dl = µ 0 j ds (1) C c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1 PRÁCTICA 4 CAMPO MAGNÉTICO EN EL INTERIOR DE UN CONDUCTOR 1. Objetivos En esta práctica se estudia el campo magnético en el interior de un

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Este test se recogerá 1h 45m después de ser repartido. El test se calificará sobre 5 puntos. Las respuestas correctas puntúan positivamente y las incorrectas negativamente, resultando la calificación N

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

DIELÉCTRICOS Y CONDENSADORES

DIELÉCTRICOS Y CONDENSADORES DIELÉCTRICOS Y CONDENSADORES ÍNDICE 1. Introducción 2. Cálculo de la capacidad 3. Asociación de condensadores 4. Energía del campo eléctrico 5. Dipolo eléctrico 6. Descripción atómica de los dieléctricos

Más detalles

Diseño y Construcción de una Balanza de Torsión de Coulomb

Diseño y Construcción de una Balanza de Torsión de Coulomb Diseño y Construcción de una Balanza de Torsión de Coulomb ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática OBJETIVOS Observar la variación de la fuerza eléctrica entre dos cargas

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 1. Condensador de placas planas y paralelas 1.1. Objeto de la práctica En esta

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS.

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 2. Instrumentación en teoría de circuitos. 2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 1) OBJETIVOS. El objetivo fundamental de esta segunda práctica es la comprobación experimental de la asociación de

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al Primer Parcial. Junio 2013 Bien Mal

Más detalles

Tema: Campo eléctrico y potencial en las placas de un capacitor. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Tema: Campo eléctrico y potencial en las placas de un capacitor. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Campo eléctrico y potencial en las placas de un capacitor. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Que el estudiante comprenda la naturaleza

Más detalles

INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1

INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 1- Una esfera aislante de radio r a = 1.20 cm está sostenida sobre un soporte aislante en el centro de una coraza metálica esférica hueca de radio r b = 9,60

Más detalles

GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO

GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO República Bolivariana De Venezuela Ministerio Del Poder Popular Para La Educación U. E. Dr. José María Vargas GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO Docente: Carlos Alberto Serrada Pérez Año escolar 2014/2015

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Teoría de Circuitos (1º de ITI) Práctica 1

Teoría de Circuitos (1º de ITI) Práctica 1 Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente 1. Descripción curricular: Nivel: 4º medio Subsector: Ciencias Físicas Unidad temática: Los condensadores o capacitores. Palabras claves: condensadores, capacitancia, capacitor, carga

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 2 CAMPO MAGNÉTICO Y F.E.M. INDUCIDA Jesús GÓMEZ

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA. OBJETIVO Estudio de la inducción magnética entre dos bobinas (primaria y secundaria) en función de diferentes parámetros geométricos y de operación. 2. DESARROLLO TEÓRICO Cuando

Más detalles

ENERGÍA ELECTROSTÁTICA

ENERGÍA ELECTROSTÁTICA ENERGÍA ELECTROSTÁTICA PREGUNTAS. Qué significado físico tiene la energía electrostática de una distribución de carga?. La energía contenida en una distribución de carga, puede ser considerada según dos

Más detalles

E en los puntos a y b de la línea

E en los puntos a y b de la línea Electricidad y Electrometría 1º Electrónicos Convocatoria de Julio. Primer parcial. 28 de junio de 2004 1.- El explosor de esferas es un condensador formado por dos electrodos metálicos esféricos del mismo

Más detalles

2003-Septiembre 2016-Modelo B. Cuestión Septiembre A. Cuestión 1.- B. Cuestión Junio B. Cuestión Modelo A. Cuestión 4.

2003-Septiembre 2016-Modelo B. Cuestión Septiembre A. Cuestión 1.- B. Cuestión Junio B. Cuestión Modelo A. Cuestión 4. 2016-Modelo B. Cuestión 1.- Un condensador de 100 μf se carga con una tensión de 10 V (posición del conmutador en (1) en la figura). Posteriormente se conectan sus armaduras a las de otro condensador de

Más detalles

Relación 2 idénticas conductor 6a. 6b. 7.

Relación 2 idénticas conductor 6a. 6b. 7. Relación 2 1. Tenemos tres esferas idénticas, hechas de un material conductor. La esfera 1 tiene una carga 1.0 C, la 2 tiene una carga 2.0 C y la 3 es neutra. Se encuentran muy alejadas entre sí. La esfera

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias

Más detalles

MEDIDAS DE TENSIÓN Y DEFLEXIÓN

MEDIDAS DE TENSIÓN Y DEFLEXIÓN PRÁCTICA 5 MEDIDAS DE TENSIÓN Y DEFLEXIÓN MEDIANTE GALGAS EXTENSIOMÉTRICAS INTRODUCCIÓN Uno de los dispositivos más utilizados para la determinación de deformaciones es el deformímetro de resistencia también

Más detalles

Aislante dieléctrico. (permitividad ε) Aluminio. polietileno, con lo que el radio exterior del cable es R4.

Aislante dieléctrico. (permitividad ε) Aluminio. polietileno, con lo que el radio exterior del cable es R4. Electricidad y Electrometría º Electrónicos Convocatoria de Junio. Primer parcial. 5 de junio de 004.- Disponemos de dos cargas puntuales, Q y Q, situadas como se representa en la figura. y y Y a) Si tomamos

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017 Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II PROBLEMAS DE FUNDAMENTOS DE FÍSICA II Grupo 511. CURSO 2016/2017. Vectores. Vectores y Campo Eléctrico V.1.-Dados los vectores A = 3u x + 4 u y 5 u z; y B = u x + u y + 2 u z. Encontrar módulo, dirección

Más detalles

4. EL POTENCIAL ELECTROSTÁTICO

4. EL POTENCIAL ELECTROSTÁTICO TAREA PREPARACIÓN 4. EL POTENCIAL ELECTROSTÁTICO TAREA DE PREPARACIÓN Nombre Estudiante: Código: Plan: Fecha: Lea cuidadosamente la base teórica dada en la guía y con ayuda del estudio de la bibliografía

Más detalles

ASIGNACIÓN Grupo Determine la corriente, el voltaje y la potencia que consume cada resistor en la red mostrada:

ASIGNACIÓN Grupo Determine la corriente, el voltaje y la potencia que consume cada resistor en la red mostrada: Grupo 1 1.- Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuántos coulomb y cuantos electrones pasan a través de la sección transversal del resistor durante ese tiempo.

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

PRACTICA Nº 3 CONDENSADOR DE LAMINAS PLANO PARALELAS. OBJETIVO GENERAL: Estudiar la capacidad eléctrica de un condensador plano.

PRACTICA Nº 3 CONDENSADOR DE LAMINAS PLANO PARALELAS. OBJETIVO GENERAL: Estudiar la capacidad eléctrica de un condensador plano. U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICERECTORADO DE PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCION DE FISICA CATEDRA: FISICA II PRACTICA Nº 3 CONDENSADOR

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

UEÑAS II. de la. De los. de una circula. La resistencia es. simple de. del valor de una. Página 1

UEÑAS II. de la. De los. de una circula. La resistencia es. simple de. del valor de una. Página 1 CONEXIÓN CORTA PARA RESISTENCIAS GRANDES Y CONEXIÓN LARGA PARA RESISTENCIAS PEQU UEÑAS I. OBJETIVOS: Comprobar de manera experimental la relación existente entre la tensión y la corriente, en un conjunto

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb.

LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb. LEY DE COULOMB Objetivo: Demostrar experimentalmente la Ley de Coulomb. Material: 1.- Balanza de Coulomb..- Fuente de voltaje (0-6 KV). 3.- Jaula de Faraday. 4.- Electrómetro. Introducción: La balanza

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS

CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS Tema 1: CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS Introducción Conceptos básicos Conexión entre los distintos elementos Cables Placa de inserción La fuente de alimentación El multímetro Código

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA. OBJETIVO Estudio de la inducción magnética entre dos bobinas (primaria y secundaria) en función de diferentes parámetros geométricos y de operación. 2. DESARROLLO TEÓRICO Cuando

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS DE CONDENSADORES ESFÉRICOS

EJERCICIOS Y PROBLEMAS RESUELTOS DE CONDENSADORES ESFÉRICOS Ejercicio Resuelto Nº 1 Entre los extremos de un condensador esférico se establece una diferencia de potencial de 10 V cargándose con 0,5 μc de electricidad. Calcular: a) La capacidad del condensador b)

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo cuyos catetos miden 12 cm y 16 cm.

Más detalles

Negro Marrón. Rojo. Plata

Negro Marrón. Rojo. Plata Fundamentos Físicos y Tecnológicos de la nformática. Examen de prácticas de laboratorio. Octubre 05. En ué figura o figuras de las siguientes se presenta un montaje válido para medir la corriente ue circula

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

Electricidad. Error! Marcador no definido.

Electricidad. Error! Marcador no definido. Las cargas eléctricas pueden originar tres tipos de fenómenos físicos: a) Los fenómenos electrostáticos, cuando están en reposo. b) Las corrientes eléctricas. c) Los fenómenos electromagnéticos, cuando

Más detalles

MEDIDAS ELÉCTRICAS: POLÍMETROS

MEDIDAS ELÉCTRICAS: POLÍMETROS MEDIDAS ELÉCTRICAS: POLÍMETROS Objetivos: Medir V, I y R en un circuito elemental, utilizando el polímetro analógico y el polímetro digital. Deducir el valor de la resistencia a partir del código de colores.

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua.

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. 1- Considere un circuito rígido por el que circula una corriente I. Naturalmente, en su entorno

Más detalles

q 1 q 3 r12 r13 q Energía potencial electrostática

q 1 q 3 r12 r13 q Energía potencial electrostática 3.4 nergía potencial electrostática q q r 3 r r q q q q 3 r 3 Primero colocamos una carga q en el punto. No hay más cargas, no cuesta energía Traemos del infinito una carga q al punto. llo cuesta una igual

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

EQUIVALENTE ELÉCTRICO DEL CALOR

EQUIVALENTE ELÉCTRICO DEL CALOR UNIVERSIDAD CATOLICA DEL NORTE 1 EQUIVALENTE ELÉCTRICO DEL CALOR Concepto: Energía eléctrica y calórica Tiempo: 1 h 30 m Utiliza: Sistema de Adquisición de Datos Pasco Software: Programa Data Studio EQUIPOS

Más detalles

Conductores, capacidad, condensadores, medios dieléctricos.

Conductores, capacidad, condensadores, medios dieléctricos. Física 3 Guia 2 - Conductores y dieléctricos Verano 2016 Conductores, capacidad, condensadores, medios dieléctricos. 1. Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas.

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas. PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1 r 1. Para un vector a arbitrario y constante, demostrar que ( a r ) = a, donde es el vector de posición.. Sea φ una función espacial escalar con derivadas segundas

Más detalles

LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador

Más detalles

Capacidad y dieléctricos

Capacidad y dieléctricos Capacidad y dieléctricos Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 211212 Dpto. Física Aplicada III Universidad de Sevilla Índice Introducción Capacidad:

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes Tema 3: Electrostática en presencia de conductores Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 4/7 Condensadores y circuitos equivalentes Definición de condensador:

Más detalles

Carga y descarga de un capacitor en un circuito RC

Carga y descarga de un capacitor en un circuito RC Carga y descarga de un capacitor en un circuito RC Informe Laboratorio Curso Física II Catherine Andreu, María José Morales, Gonzalo Núñez, and Clío Peirano Ing. en Biotecnología Molecular. * Facultad

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles