Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores"

Transcripción

1 Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010

2 Movimiento de un Cohete Uno de los casos más emblemáticos de los modelos matemáticos, es decir muy significativo o representativo es el movimiento de un cohete que consume una fracción importante de combustible. Un cohete se mueve por la expulsión hacia atrás de una masa de gas formada al quemar un combustible. Este rechazo de masa tiene el efecto de aumentar la velocidad hacia adelante del cohete, permitiendo así continuar hacia adelante. Para considerar el Movimiento de cohetes, debemos tratar la noción de un objeto cuya masa es cambiante. Para analizar el movimiento de un cohete, se puede estudiar a través: Cantidad de movimiento y a La tasa de Cambio en Momentum (2da ley de Newton). En nuestro caso estudiaremos el movimiento del cohete, utilizando la Segunda Ley de Newton. La ecuación diferencial de un cuerpo en Caída Libre de masa m cercana a la superficie de la tierra es: O simplemente ; donde: S: representa la distancia de la superficie terrestre al objeto y se considera que la dirección positiva es hacia arriba. En otras palabras, lo que se supone aquí es que las distancias que recorre el objeto es pequeña en comparación con el radio de la tierra (R), dicho de otra manera, la distancia Y del centro de la tierra al centro es aproximadamente igual a R. Si por otro lado, la distancia Y a un objeto como un cohete o una sonda espacial es grande en comparación con R, se puede combinar con la 2da Ley del Movimiento de Newton, con la ley de Gravitación Universal, (también de Newton); para deducir una Ecuación diferencial en la variable Y.

3 1. Se considera el movimiento del cohete positivo hacia arriba. 2. Se desprecia la resistencia del aire. 3. La gravedad es constante Caída Libre (Demostración). S t =? 2 da Ley de Newton La Ecuación diferencial del movimiento del cohete después de quemar el combustible es: Donde K= es una constante de proporcionalidad Y= distancia del centro de la tierra del cohete. m= masa del cohete. M= masa del combustible. Para calcular la constante k aprovechamos que cuando ecuación (3) y se obtuvo Ecuación (2).

4 Luego se tiene que: sustituyendo (2) y (3) en (1). Queda Ecuación Diferencial Como es la velocidad podemos expresar la declaración de la forma ; Regla de la Cadena Sustituyendo 4 en (1) Ecuación (4) ; sustituyendo Ecuación (5) La Ecuación (5) se puede resolverá aplicando la técnica de variables separables: ; Integrando Ecuación 6 Si suponemos que la velocidad del cohete cuando se acaba el combustible y que en ese momento, podemos aproximar el valor de C de la siguiente manera:

5 Se llegó así: Al sustituir ese valor de C de nuevo en la ecuación (6) y multiplicar por 2 la ecuación (para eliminar las fracciones) resultantes, se obtiene: Para considerar el movimiento de cohetes, debemos tratar la noción de un objeto cuya masa es cambiante. Teniendo en cuanta que la fuerza neta actuando sobre un objeto es igual a la tasa de cambio en momentum (Segunda Ley de Newton), usaremos esto para encontrar la ley de movimiento de un cohete. Si M es la masa de un cohete en un tiempo t y que un tiempo mas tarde es la masa será esto es, una masa de gas expelido por la parte de atrás del cohete, es decir en el tiempo Suponiendo que la velocidad del cohete relativa a la tierra en el tiempo t es V y en el tiempo es y tomando la dirección hacia arriba del cohete como positiva, el gas expelido tendrá velocidad relativa a la tierra, donde es una cantidad negativa, de modo que representa la magnitud real de la velocidad del gas relativa al cohete, y se considera constante.

6 El Momentum total del cohete antes de la perdida de gas es Después de la perdida de gas, el cohete tiene un momentum y El gas tienen momentum, de modo que el momentum total después de la perdida de gas es: El cambio de momentum, esto es, momentum, total después de la perdida de gas menos el momentum total antes de la perdida de gas, es: La tasa instantánea de cambio en momentum es: Ecuación 1 En el tiempo la masa del cohete ha decrecido, se tiene que: Luego: a medida que Ahora la tasa de cambio en momentum es la fuerza F, de donde se obtiene que: Ecuación 2

7 Esa es la ecuación básica para el movimiento de cohetes. Si un cohete con masa inicial (Mo) gramos para radialmente desde la superficie de la tierra. Expele gas a la tasa constante de (a) una velocidad constante (b) relativa al cohete, donde a>0 y b>0. Asumiendo que un campo gravitacional actúa sobre el cohete, su velocidad y su distancia viajada en cualquier tiempo puede ser encontrada de la siguiente manera: a Se tiene que la fuerza del campo gravitacional viene dada por : = = y puesto que el cohete pierde (a) perderá, y por tanto su masa después de esta dada por: y la velocidad del gas relativa al cohete esta dada por: Sustituyendo M y en la ecuación 2 se tiene que: Luego se divide todo entre y nos queda: a integrar se hace un cambio variable para proceder

8 Luego: Integrando: Entonces: Condiciones iniciales V=0 y t=0, sustituyendo: C=bLn (Mo) se tiene que: Al aplicar las propiedades de logaritmos nos queda: De la ecuación de deducida anteriormente; se puede deducir la ecuación de la distancia alcanzada por el cohete en cualquier tiempo: Si x representa la distancia viajada por el cohete en tiempo t medida desde la superficie de la Tierra, tenemos ; sustituyendo Integrando ambos lados queda:

9 Mediante un cambio de variable; Entonces; Utilizando la tabla de integrales:

10 Entonces: Teniendo las condiciones iniciales: Se tiene que: Sustituyendo el valor de la constante se obtiene:

11 Ejercicios: 1. Demuestre que la velocidad de escape del cohete es (Sugerencia: Haga y suponga que V>0 para todo tiempo t) SOLUCION: De la ecuación V = y como ; se tiene que: V²=0 Luego al aplicar el límite se hace cero los dos primero términos y nos queda: Y se obtiene: 2. Demostrar que la velocidad de escape en la tierra es aproximadamente Vo=2.2 DATOS: R=400 Transformación: 1

12 Luego sustituyendo valores en la ecuación: SOLUCION: 3. Calcule la velocidad de escape en la luna, si allí la relación de la aceleración de gravedad es 0.165g y R= 1080mi. Luego sustituyendo los valores: 2. Un cohete tiene una masa de kilogramos (kg), la cual incluye kg de un combustible. Durante el proceso de quema los productos de la combustión se descargan a una velocidad relativa al cohete de 400 involucrando una pérdida de kg de combustible. El cohete parte de la tierra con una velocidad cero y

13 viaja verticalmente hacia arriba. Si la única fuerza que actúa es la de la gravitación (variación con la distancia es despreciable): Donde; M O =Masa inicial a) Encuentre la velocidad del cohete después de 15, 20 y 30 segundos. b) Encuentre la altura alcanzada cuando se ha quemado la mitad del combustible. M C = Masa del combustible b= Velocidad relativa del cohete a= Pérdida de combustible (Razón) V O = Velocidad inicial t= Tiempo g= la gravedad (9,8m/s 2 ) Solución: Datos: M O =25000 Kg Mc=20000 Kg b= 400 m/s a= 1000 Kg V 0 = 0 La fuerza que actúa es la gravedad; se utilizara g = 9,8m/s 2 Parte a) Velocidad del cohete a los 15 seg t= 15 seg

14 Sustituyendo los valores: Vc = 400 Vc = Vc = 220 Velocidad del cohete a los 20seg t= 20 seg Sustituyendo los valores: Vc = 400 Vc

15 Velocidad del cohete a los 30 seg t= 30 seg Sustituyendo los valores: Vc = 400 Vc Parte b) Calculo de la masa de la mitad del combustible.

16 Calculo del tiempo cuando en cohete ha consumido la mitad del combustible. Sustituyendo los valores los obtenidos y los conocidos en la ecuación de distancia Obtenemos:

17

18 CONCLUSION Todos los ingenieros, incluyendo Ingenieros Industriales, toman matemáticas con cálculo y ecuaciones diferenciales. La ingeniería industrial es diferente ya que está basada en matemáticas de" variable discreta", mientras que el resto de la ingeniería se basa en matemáticas de " variable continua". Así los Ingenieros Industriales acentúan el uso del álgebra lineal y de las ecuaciones diferenciales, en comparación con el uso de las ecuaciones diferenciales que son de uso frecuente en otras ingenierías. Este énfasis llega a ser evidente en la optimización de los sistemas de producción en los que estamos estructurando las órdenes, la programación de tratamientos por lotes, determinando el numero de unidades de material manejables, adaptando las disposiciones de la fábrica, encontrando secuencias de movimientos, etc. Los ingenieros industriales se ocupan casi exclusivamente de los sistemas de componentes discretos. Así que los Ingenieros industriales tienen una diversa cultura matemática. Las ecuaciones diferenciales juegan un papel esencial en el modelado de procesos de la gran mayoría de las ciencias modernas. La resolución efectiva de las ecuaciones diferenciales requiere, en casi todos los casos, el uso de métodos numéricos. Su diseño y el análisis de su efectividad es uno de los temas centrales del Análisis Numérico. En el trabajo presentado se estudiò detalladamente el movimiento del cohete aplicando las ecuaciones diferenciales para su desarrollo y las deducciones de formulas que son utilizadas para el calculo de la velocidad y distancia en un instante determinado

LEYES DEL MOVIMIENTO DE NEWTON

LEYES DEL MOVIMIENTO DE NEWTON Universidad de Oriente Núcleo Bolívar Curso Básico Matemática IV Sección: 01 LEYES DEL MOVIMIENTO DE NEWTON Profesor: Bachilleres: Cristian Castillo Javier Abreu C.I: 14.517.875 Jesús Sigala C.I: 17.045.285

Más detalles

UNIVERSIDAD DE ORIENTE NUCLEO DE BOLÍVAR ESCUELA DE CURSOS BÁSICOS MATEMÁTICAS IV

UNIVERSIDAD DE ORIENTE NUCLEO DE BOLÍVAR ESCUELA DE CURSOS BÁSICOS MATEMÁTICAS IV UNIVERSIDAD DE ORIENTE NUCLEO DE BOLÍVAR ESCUELA DE CURSOS BÁSICOS MATEMÁTICAS IV PROFESOR Cristian Castillo BACHILLERES -Galindo, Eneileen -Mendoza, Marco -Trcka O., Ana Gabriela C.I.- 20.080.933 Secc.

Más detalles

Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales

Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Qué es una Ecuación Diferencial Ordinaria? 2. Solución de una EDO 3. Tipos de EDO 4. Solución

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli. U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida

Más detalles

300 Versión 1 1 Prueba Parcial 1/10 SEMANA 44 LAPSO

300 Versión 1 1 Prueba Parcial 1/10 SEMANA 44 LAPSO 300 Versión 1 1 Prueba Parcial 1/10 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA DE SISTEMAS MODELO DE RESPUESTA ASIGNATURA: FÍSICA GENERAL I CÓDIGO: 300 MOMENTO: PRIMERA PRUEBA

Más detalles

COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON

COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON Isaac Newton, científico inglés, fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento

Más detalles

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER Ejercicio 1. Septiembre 2.011 a. Exprese la aceleración de la gravedad en la superficie de un planeta en función de la masa del pianeta, de su radio

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

I - INTERACCIONES: TAREAS 1

I - INTERACCIONES: TAREAS 1 Algunas soluciones I - INTERACCIONES: TAREAS 1 Qué podemos decir de la Física? I.1a Qué sentencia es la más adecuada? a) La Física describe la Naturaleza de modo que puede predecir su comportamiento y

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

Gravitación Universal

Gravitación Universal Gravitación Universal Contesta las siguientes preguntas: 1. El descubrimiento de la Gravitación Universal se asocia con: A. Robert Hook B. Isaac Newton C. James Joule D. Max Plank E. Christian Huygens

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

Física 2º Bachillerato Curso

Física 2º Bachillerato Curso 1 Cuestión (2 puntos) Madrid Junio 1996 Cuando una partícula se mueve en un campo de fuerzas conservativo sometida a la acción de la fuerza del campo, existe una relación entre las energías potencial y

Más detalles

Lee con atención: Figura 1: Ares V, futuro cohete que utilizará la NASA en su próxima vuelta a la Luna.

Lee con atención: Figura 1: Ares V, futuro cohete que utilizará la NASA en su próxima vuelta a la Luna. ACTIVIDADES PREVIAS Lee con atención: El cohete es el instrumento por excelencia en la exploración espacial. De todos los sistemas conocidos, el motor tipo cohete es el único capaz de funcionar fuera de

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante.

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Leyes de Newton Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Sistema Inercial de Referencia Es uno donde se cumple la primera

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO)

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO) 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO) INTRODUCCIÓN: PUNTOS DE INTERÉS Una fuerza es el nombre que se le da a todo

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

Tarea: Opción Múltiple de Gravitación Universal

Tarea: Opción Múltiple de Gravitación Universal Tarea: Opción Múltiple de Gravitación Universal Física de PSI Nombre Preguntas de Opción Múltiple 1. El descubrimiento de la Gravitación Universal se asocia con: A. Robert Hook B. Isaac Newton C. James

Más detalles

UNIDAD 3. CINEMÁTICA

UNIDAD 3. CINEMÁTICA INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS MECÁNICA CLASICA UNIDAD 3. CINEMÁTICA CINEMÁTICA: Es la parte de la Mecánica Clásica que estudia el movimiento

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A JULIO 2 DE 2014 SOLUCIÓN Pregunta 1 (4 puntos) Una partícula

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver

Más detalles

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamentos de Física Práctica # 5 Tiro Parabólico

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamentos de Física Práctica # 5 Tiro Parabólico Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamentos de Física Práctica # 5 Tiro Parabólico I. Introducción. El tiro parabólico es realmente un movimiento de caída libre en dos dimensiones.

Más detalles

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella.

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella. Unidad 2. FUERZAS Y PRINCIPIOS DE LA DINÁMICA 4º F/Q Ejercicio 36: a) Debido a la velocidad de la vagoneta. b) Sobre el pasajero de 60 kg actúan dos fuerzas, la de su peso-hacia abajo-, y la de la reacción

Más detalles

PROBLEMAS DE GRAVITACIÓN

PROBLEMAS DE GRAVITACIÓN PROBLEMAS DE GRAVITACIÓN 1) La masa de Marte es 6,4 10 23 kg y su radio 3400 km. a) Haciendo un balance energético, calcule la velocidad de escape desde la superficie de Marte. b) Fobos, satélite de Marte,

Más detalles

Demostración de la ley gravitacional

Demostración de la ley gravitacional República Bolivariana De Venezuela Ministerio Del Poder Popular Para La Educación Superior Universidad Nacional Experimental De Los Llanos Occidentales Ezequiel Zamora Programa-Guasdualito Demostración

Más detalles

Universidad de Oriente. Núcleo Bolívar. Unidad de Cursos Básico. Cátedra: Matemática IV

Universidad de Oriente. Núcleo Bolívar. Unidad de Cursos Básico. Cátedra: Matemática IV Universidad de Oriente Núcleo Bolívar Unidad de Cursos Básico Cátedra: Matemática IV Profesor Cristian Castillo Bachilleres Militza Camacho Edni Fernández Luis Hurtado Ciudad Bolívar, Marzo del 2010 Principio

Más detalles

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N E J E R C I C I O S D E LAS L E Y E S D E N E W T O N A.- Instrucciones.- En el paréntesis a la izquierda de cada aseveración escriba la letra que corresponda a la respuesta correcta. 01.-( ) A la parte

Más detalles

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición, Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1) La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular.

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. Res. a) Consultad libro y apuntes. b) En el movimiento circular

Más detalles

M M (máx.) + MS MS (máx.) 189Nm nominal km. 639Nm nominal km

M M (máx.) + MS MS (máx.) 189Nm nominal km. 639Nm nominal km HepcoMotion Cálculos de duración de carga SBD La duración de un sistema SBD se calcula en términos del número de kilómetros que el sistema puede desplazarse antes de que la guía lineal de recirculación

Más detalles

Ley de la Gravitación Universal de Newton

Ley de la Gravitación Universal de Newton Slide 1 / 47 Ley de la Gravitación Universal de Newton 2009 por Goodman y Zavorotniy Slide 2 / 47 Tabla de Contenido: GU y la MCU Haga clic en el tema para ir a la sección Gravitación Universal Campo gravitatorio

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

PREGUNTAS DE OPCION MULTIPLE (Deben presentar su respectiva justificación, caso contrario no tendrán validez) (Del 1 al 11, 3 puntos c/u)

PREGUNTAS DE OPCION MULTIPLE (Deben presentar su respectiva justificación, caso contrario no tendrán validez) (Del 1 al 11, 3 puntos c/u) ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS PRIMERA EVALUACION DE FISICA GENERAL I II TERMINO 2011-2012 Nombre: Paralelo: 01 Ing. Francisca Flores N. PREGUNTAS DE OPCION MULTIPLE

Más detalles

Constante de gravitación universal G = 6, N m 2 /kg 2 Masa de la Tierra. R T = 6, m gravedad en la superficie terrestre g = 9,8 m/s 2

Constante de gravitación universal G = 6, N m 2 /kg 2 Masa de la Tierra. R T = 6, m gravedad en la superficie terrestre g = 9,8 m/s 2 AND 01. Un meteorito de 1000 kg colisiona con otro, a una altura sobre la superficie terrestre de 6 veces el radio de la Tierra, y pierde toda su energía cinética. a) Cuánto pesa el meteorito en ese punto

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO #4: FUERZAS ESPECIALES DE LA MECÁNICA PRTE I- Diego Luis Aristizábal R., Roberto Restrepo A.,

Más detalles

Ecuaciones Diferenciales Ordinarias Aplicaciones

Ecuaciones Diferenciales Ordinarias Aplicaciones Ecuaciones Diferenciales Ordinarias Aplicaciones Karina Malla Buchhorsts Departamento de Matemáticas UCN marzo de 013 Índice 1. Aplicaciones: Mecánica. Aplicaciones: razón de cambio 5.1. Mezclas....................................................

Más detalles

CAPÍTULO 2. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES 2.1. Introducción 2.2. Teorema 2.3. Propiedades 2.4. Ejemplos 2.5. Integración de una función

CAPÍTULO 2. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES 2.1. Introducción 2.2. Teorema 2.3. Propiedades 2.4. Ejemplos 2.5. Integración de una función CAPÍTULO. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES.. Introducción.. Teorema.. Propiedades.4. Ejemplos.. Integración de una función compuesta Capítulo Integrales: Introducción y propiedades ( f() g() ) (

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Modelo 2014. Pregunta 1B.- Los satélites Meteosat son satélites geoestacionarios, situados sobre el ecuador terrestre y con un periodo orbital de 1 día. a) Suponiendo que la órbita que describen es circular

Más detalles

REFUERZO TERCER PERÍODO LÍMITES DE FUNCIONES

REFUERZO TERCER PERÍODO LÍMITES DE FUNCIONES REFUERZO TERCER PERÍODO LÍMITES DE FUNCIONES INTRODUCCIÓN Cálculo infinitesimal Designación conjunta para el cálculo diferencial, integral y de variaciones; en principio fue el calculo ingenuo con magnitudes

Más detalles

Tema 4* Dinámica de la partícula

Tema 4* Dinámica de la partícula Tema 4* Dinámica de la partícula Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción. Primer principio de la dinámica:

Más detalles

a) 12 J b) 300 J c) 3000 J d) 6000 J e) n.d.a.

a) 12 J b) 300 J c) 3000 J d) 6000 J e) n.d.a. COLEGIO DE LA ASUNCION AREA CIENCIAS ISI Prueba simulada de Dinámica - 4 1) Una atleta de 60 kg, en el salto con vara, consigue llegar a una altura de 5 m. Se puede decir que el adquiere una energía potencial

Más detalles

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008 Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

Tema 1: Ecuaciones diferenciales ordinarias de primer orden

Tema 1: Ecuaciones diferenciales ordinarias de primer orden PROBLEMAS DE MATEMÁTICAS Parte III: Ecuaciones diferenciales Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Ecuaciones

Más detalles

AP Física B de PSI Gravitación Universal

AP Física B de PSI Gravitación Universal AP Física B de PSI Gravitación Universal Preguntas de Multiopción 1. La fuerza gravitacional entre dos objetos es proporcional a A) la distancia entre los dos objetos. B) el cuadrado de la distancia entre

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

10. Ecuaciones, parte IV

10. Ecuaciones, parte IV Matemáticas I, 01-I Variables y Constantes, Incógnitas y Parámteros En una ecuación como E = mc hay tres letras: E, my c. En este caso E representa la energía, m la masa y c la velocidad de la luz (en

Más detalles

Cinemática. Nombre y Apellidos:

Cinemática. Nombre y Apellidos: Cinemática Nombre y Apellidos: 1. Dadas las fuerzas (, 4), (3, ) y (5, ), calcula la fuerza resultante y su módulo (analíticamente y gráficamente) ( puntos) La fuerza resultante se calcula sumando cada

Más detalles

Caída Libre y Tiro Vertical Casos particulares de Movimiento Rectilíneo Uniformemente Variado

Caída Libre y Tiro Vertical Casos particulares de Movimiento Rectilíneo Uniformemente Variado DEPARTAMENTO DE FÍSICA Caída Libre y Tiro Vertical Casos particulares de Movimiento Rectilíneo Uniformemente Variado Galileo Galilei : Nació en Pisa (Italia) en 1564. Cuestionó la concepción que la física

Más detalles

CURSO DE MATEMÁTICA. Repartido Teórico 4

CURSO DE MATEMÁTICA. Repartido Teórico 4 CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación

Más detalles

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

4º ESO: FÍSICA. Hojas de apuntes y problemas que le serán proporcionadas al alumno. Unidad 4 completa y 5 hasta la página 160 (presión) excluida.

4º ESO: FÍSICA. Hojas de apuntes y problemas que le serán proporcionadas al alumno. Unidad 4 completa y 5 hasta la página 160 (presión) excluida. 4º ESO: FÍSICA Material necesario: Libro de texto Mc Graw Hill ISBN 978-84-486-0876-7 Hojas de apuntes y problemas que le serán proporcionadas al alumno. Materia a preparar Unidad 4 completa y 5 hasta

Más detalles

Trabajo y Energía. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales

Trabajo y Energía. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales Cual de los siguientes casos implica la realización de trabajo a) Una persona parada sosteniendo un saco sobre su espalda b) Una persona

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 1 DE 014 SOLUCIÓN TEMA 1 (1 puntos) El diagrama ilustra

Más detalles

PROBLEMAS RESUELTOS TEMA: 1

PROBLEMAS RESUELTOS TEMA: 1 PROBLEMAS RESUELTOS TEMA: 1 1. Un guardacostas tiene el combustible justo para ir con su lancha desde la costa hasta una isla; éste es un viaje de 4 h en contra de la corriente. Al llegar, resulta que

Más detalles

Î R. j Actividades Î (19,13)

Î R. j Actividades Î (19,13) LEY DE LA GAVIACIÓN UNIVESAL. APLICACIONES 0 9 j Actividades. Enuncia la segunda ley de Kepler. Explica en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y en cuáles es mínima.

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE

C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE En cinemática, la caída libre es un movimiento dónde solamente influye la gravedad. En este movimiento se desprecia el rozamiento del cuerpo

Más detalles

UNIVERSIDAD DE MONTEMORELOS

UNIVERSIDAD DE MONTEMORELOS UNIVERSIDAD DE MONTEMORELOS FACULTAD DE INGENIERIA Y TECNOLOGIA PROYECTO DE CALCULO DIFERENCIAL COHETE DE AGUA MARCO TEORICO OBJETIVO: Diseñar un cohete con envase plástico propulsado por agua y aire que

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas, entre preguntas conceptuales y problemas

Más detalles

Módulo 1: Mecánica Segunda ley del movimiento de Newton

Módulo 1: Mecánica Segunda ley del movimiento de Newton Módulo 1: Mecánica Segunda ley del movimiento de Newton Cómo se mueve un objeto cuando una fuerza actúa sobre él? Fuerza y aceleración Según la primera ley de Newton, Ausencia de fuerzas Definición de

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

1 La fuerza gravitacional entre dos objetos es proporcional a

1 La fuerza gravitacional entre dos objetos es proporcional a Slide 1 / 43 1 La fuerza gravitacional entre dos objetos es proporcional a la distancia entre los dos objetos. el cuadrado de la distancia entre los dos objetos. el producto de los dos objetos. el cuadrado

Más detalles

Slide 1 / 43. Slide 2 / 43. Slide 3 / 43. se cuádrupla. 1 La fuerza gravitacional entre dos objetos es proporcional a

Slide 1 / 43. Slide 2 / 43. Slide 3 / 43. se cuádrupla. 1 La fuerza gravitacional entre dos objetos es proporcional a 1 La fuerza gravitacional entre dos objetos es proporcional a Slide 1 / 43 la distancia entre los dos objetos. el cuadrado de la distancia entre los dos objetos. el producto de los dos objetos. el cuadrado

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. a) Qué criterio puedes aplicar para saber si una fuerza dada es conservativa o no? b) Demuestra que la fuerza elástica F = - kx (Ley de Hooke) es conservativa. Res. a) En general, una fuerza F -> que

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 57 Slide 2 / 57 Física basada en Álgebra Ley de la Gravitación Universal de Newton 2015-11-30 www.njctl.org Slide 3 / 57 Ley de la Gravitación Universal de Newton Fuerza gravitatoria Click sobre

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Física

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

INTERACCIÓN GRAVITATORIA MODELO 2016

INTERACCIÓN GRAVITATORIA MODELO 2016 INTERACCIÓN GRAVITATORIA MODELO 2016 1- Titania, satélite del planeta Urano, describe una órbita circular en torno al planeta. Las aceleraciones de la gravedad en la superficies de Urano y de Titania son

Más detalles

GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO.

GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO. GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR 2014-2015 FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO. A. Instrucción. En los espacios en blanco, escribe la palabra

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

UNIQ. GUÍA para Examen Final. Física I

UNIQ. GUÍA para Examen Final. Física I UNIQ GUÍA para Examen Final Física I I. Vectores. Efectúa la suma de los siguientes vectores por el método gráfico (con regla y transportador), y posteriormente comprueba la suma por el método analítico.

Más detalles

AP Física B de PSI Movimiento Circular

AP Física B de PSI Movimiento Circular AP Física B de PSI Movimiento Circular Multiopción 1. Una bola está atado a una cuerda y es girado en un círculo vertical. Cuando la pelota está en el punto más alto del círculo cual es la dirección de

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. JONATHAN CASTRO F. Fuerza y Leyes de Newton Definición y representación

Más detalles

IES ALBA LONGA ARMILLA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA

IES ALBA LONGA ARMILLA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA 1.- Transforma las siguientes cantidades en las unidades solicitadas (escribe el desarrollo completo): a) 60 Hm 3 a L. b) 5,6 10 5 ml a m 3.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO Nº 2 LIC. JESÚS REYES HEROLES GUÍA PARA EXAMEN EXTRAORDINARIO DE FÍSICA I

DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO Nº 2 LIC. JESÚS REYES HEROLES GUÍA PARA EXAMEN EXTRAORDINARIO DE FÍSICA I DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO Nº 2 LIC. JESÚS REYES HEROLES GUÍA PARA EL EXAMEN EXTRAORDINARIO FÍSICA I JUNIO 2013 PROFESOR: ING. Página 1 Objetivo de la materia

Más detalles