Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández"

Transcripción

1 BALANCE ENERGÉTICO EN CALDERAS 1 Introducción 2 Funcionamiento de una caldera 3 Pérdidas energéticas en calderas 4 Balance energético en una caldera. Rendimiento energético 5 Ejercicios Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [1/27]

2 Objetivos 1. Conocer el principio de funcionamiento de las calderas para identificar los flujos energéticos útiles y las pérdidas energéticas. 2. Realizar un balance energético en una caldera, determinando la localización y magnitud de las pérdidas energéticas. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [2/27]

3 Definición, Introducción Aplicaciones: Agua Caliente Sanitaria Calefacción AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [3/27]

4 CLASIFICACIÓN DE LAS CALDERAS Clasificación según Norma UNE (I) Por la transmisión del calor: De convección. De radiación. De radiación y convección. Por el combustible utilizado: De carbón (de parrilla mecánica o pulverizado). Para combustibles líquidos. Para combustibles gaseosos. Para combustibles especiales (lejías, resíduos vegetales o agrícolas, etc.). Para combustibles variados (calderas policombustibles). Por la presión de trabajo: Subcríticas: baja (p 1 bar), media (1<p<13 bar) y alta presión (p>13 bar). Supercríticas. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [4/27]

5 CLASIFICACIÓN DE LAS CALDERAS Clasificación según Norma UNE (II) Por el tiro: De tiro natural. El tiro se produce por la diferencia de densidad de los humos de los gases de combustión y el aire exterior. De tiro forzado: con hogar en sobrepresión, depresión o equilibrado. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [5/27]

6 PIROTUBULARES Funcionamiento. Los gases pasan por el interior de tubos sumergidos en el interior de un volumen de agua, todo ello rodeado por una carcasa interior. Diseño limitado a 25 bar. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [6/27]

7 PIROTUBULARES Esquema tridimensional AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [7/27]

8 PIROTUBULARES Fotografía de la caldera en fabricación AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [8/27]

9 PIROTUBULARES Fotografía caldera pirotubular AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [9/27]

10 ANÁLISIS DE LA COMBUSTIÓN Pérdidas de energía en la combustión PÉRDIDAS POR COMBUSTIÓN INCOMPLETA Producción de inquemados. Definición de un rendimiento de la combustión. Pérdidas por inquemados sólidos Q is. Pérdidas por hidrocarburos inquemados Q CH. Pérdidas por CO y H 2 inquemados. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [10/27]

11 ANÁLISIS DE LA COMBUSTIÓN Pérdidas por combustión incompleta PÉRDIDAS POR INQUEMADOS SÓLIDOS P is Inquemados sólidos producen opacidad de los gases de combustión. Medida mediante Índice de Bacharrach. Bacha- Pérdidas Características rrach ( % PCI) de la combustión 1 0,8 Excelente. Ausencia de Hollín 2 1,6 Buena. Hollín poco perjudicial 3 2,4 Mediana. Cierta cantidad de hollín. Limpieza anual 4 3,5 Pobre. Humo visible. Moderado a rápido ensuciamiento 5 4,6 Muy pobre. Ensuciamiento seguro. Varias limpiezas al año 6 5,7 Pobrísima Relación P is (%) y la lectura de la opacidad OP( %) P is (%) = 21 ( ) OP(%) % del calor total 21 O 2 65 Se producen principalmente en combustibles sólidos y en menor medida en combustibles líquidos y pueden ser entre el 2 y el 3 % del total. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [11/27]

12 ANÁLISIS DE LA COMBUSTIÓN Pérdidas por combustión incompleta PÉRDIDAS POR HIDROCARBUROS INQUEMADOS P CH En los combustibles líquidos y gaseosos es habitual que no se queme una parte de los hidrocarburos produciéndose pérdidas por hidrocarburos inquemados P CH. Estas pérdidas se pueden determinar de forma aproximada mediante: P CH (%) = 21 ( ) CH 21 O siendo O 2 el % de O 2 en los gases y CH las ppm de hidrocarburos. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [12/27]

13 ANÁLISIS DE LA COMBUSTIÓN Pérdidas por combustión incompleta PÉRDIDAS POR CO Y H 2 INQUEMADOS P CO No todo el carbono y/o todo el hidrógeno contenido en el combustible se transforma en CO 2 y en H 2 O. Q CO = (32800x+9200(1 x))kj/kg de C De igual modo, si se supone de solamente se transforma el y por uno de H 2 a H 2 O, la pérdida por hidrógeno inquemado resulta: Q H2 = (1 y)kj/kg de H Habitualmente se considera que los inquemados de H 2 con iguales a los inquemados de CO (que sí de miden). Adicionalmente a las expresiones indicadas anteriormente, las pérdidas por inquemados de CO y H 2 se pueden calcular de forma aproximada mediante P CO (%) = 21 ( ) CO 21 O siendo O 2 el % de O 2 en los gases y CO las ppm de CO en los gases. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [13/27]

14 ANÁLISIS DE LA COMBUSTIÓN Pérdidas por combustión incompleta PÉRDIDAS TOTALES POR INQUEMADOS P inq = P CO + P H2 + P IS + P CH % del calor total De forma aproximada se pueden calcular mediante: P inq (%) = 21 ( CO 21 O CH OP(%) ) 65 Por convenio se suele considerar CH = CO, ya que generalmente los aparatos se medida únicamente miden CO. RENDIMIENTO DE LA COMBUSTIÓN Definido debido a que la combustión no es completa. El calor liberado por el combustible no es Q c = ṁpci. Definición: η(%) = 100 P inq (%) AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [14/27]

15 ANÁLISIS DE LA COMBUSTIÓN Pérdidas por combustión incompleta VALORES ÓPTIMOS DE LOS PARÁMETROS DE COMBUSTIÓN Fuelóleo Gasóleo Gas natural Exceso de aire % 15 a a 15 5 a 10 O 2 % 3 a 4 2 a 3 1 a 2 Bacharrach 2 1 a 2 - CO ppm 400 <400 <400 CH ppm 400 <400 <400 AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [15/27]

16 Pérdidas energéticas en Calderas 1. PÉRDIDAS POR INQUEMADOS Se producen inquemados porque no todo el carbono y/o todo el hidrógeno contenido en el combustible se transforma en CO 2 y en H 2 O respectivamente. Además, aparecen las pérdidas por inquemados sólidos P IS o por hidrocarburos inquemados P CH. Las pérdidas totales por inquemados resultan: P inq = P CO + P H2 + P IS + P CH Las pérdidas por inquemados se pueden calcular mediante esta expresión teórico-experimental. P inq (%) = 21 ( CO 21 O CH OP ) 65 siendo O 2 el % de O 2 en los gases, CO las ppm de CO en los gases, CH las ppm de CH en los gases (hidrocarburos) y OP la opacidad de los gases ( %). AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [16/27]

17 Pérdidas energéticas en Calderas 2. PÉRDIDAS POR LOS GASES DE ESCAPE Expresión de las pérdidas de calor en los gases de escape: P gases (%) = 100 ṁg c p,g (t g,s t re f ) ṁ f PCI El calor específico medio, c p,g se puede tomar bien el correspondiente al aire seco (1,1 kj/kg C) o bien determinarlo a partir de su composición. c p,g = i=n i=1 COMP i c p,i kj/kg C Asimismo se puede emplear la expresión del tipo c p,g = M + N t g, donde los coeficientes M y N dependen del combustible, y del exceso del aire de la combustión. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [17/27]

18 Pérdidas energéticas en Calderas 3. PÉRDIDAS POR LAS PAREDES P par = i=n A i h e (t p,ext t amb ) i=1 donde A i están a t p,ext y h e = h e,r + h e,c. Convección natural. Caldera en interior de edificio Pared horizontal: h e,c = 2,8 4 t p,ext t amb Pared vertical: h e,c = 1,18 4 (t p,ext t amb )/H Pared cilíndrica: h e,c = 1,13 4 (t p,ext t amb )/d e Convección forzada. Caldera al aire libre. h e,c = 4,88+3,6V, donde V es la velocidad del viento en m/s. Radiación. h e,r = [ 4, ε(t p,ext + 273) 4 (t amb + 273) 4] /(t p,ext t amb ). AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [18/27]

19 Balance energético. Rendimiento energético RENDIMIENTO ENERGÉTICO DE UNA CALDERA Rendimiento η(%) = 100 Energía útil Energía consumida Método directo del cálculo del rendimiento. Si se dispone de la instrumentación adecuada, se puede calcular directamente el rendimiento η(%) = 100 ṁ1(h v1,s h ag,e )+ṁ 2 (h v2,s h ag,e ) ṁ f PCI Método indirecto o de separación de pérdidas. Empleando el concepto de energía útil, el rendimiento de la caldera será: [ ] Pérdidas η(%) = Energía consumida = 100 P gas (%) P inq (%) P par (%). AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [19/27]

20 Balance energético. Ejercicios EJERCICIO 1. En una caldera de gasóleo C se realiza el siguiente análisis de humos: %O 2 = 5 %CO 2 = 12, CO = 200ppm, T humos = 150 C. Determina la temperatura de rocio de los humos. De la Tabla 8.2 se obtiene que la combustión se realiza con un coeficiente de exceso de aire de n = 1,3, volumen de humos húmedos de 14,47 m 3 N/kg comb, masa de humos húmedos de 18,79 kg/kg comb y una composición de agua en humos de 1,01 kg/kg comb. El volumen de agua en humos es de: 22,4 m 3 N/kmol V H2 O = m H2 O = 1,01 22,4 M H2 O kg/kmol 18 = 1,26 m3 N/kg comb La presión parcial del agua en los humos es de: P p = P T y H2 O = P T V H2 O V HH = ,26 m3 N/kg comb 14,47 m 3 N/kg comb = 8820 Pa Interpolando se obtiene que la temperatura de rocío de los humos es de 41,5 C. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [20/27]

21 Balance energético. Ejercicios EJERCICIO 2. Calcula las pérdidas de energía por humos en % de la caldera del Ejercicio 1. Para determinar las pérdidas de energía en humos, supondremos una temperatura ambiente de 20 C. El calor específico de los humos a la temperatura media, esto es, a 85 C es de c p = 1,049+0, (85+273) = 1,09. El PCI del gásoleo C es kj/kg. Las pérdidas de energía en los gases de escape se pueden calcular mediante, P ge (%) = 100 ṁge c p,ge (t ge t a ) ṁ f PCI Empleando la expresión de Sieggert, P ge (%) = K = ,79 1,09 (150 20) t ge t a = 0,58 CO 2 + SO 2 12,16+0,04 = 6,2%. = 6,5%. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [21/27]

22 Balance energético. Ejercicios EJERCICIO 3. Calcula las pérdidas de energía por inquemados en % de la caldera del Ejercicio 1. Las pérdidas por inquemados a falta de información sobre la opacidad de los humos resultan: P inq (%) = 21 ( ) = 0,35% 1000 AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [22/27]

23 Balance energético. Ejercicios EJERCICIO 4. Una caldera pirotubular de 2 metros de diámetro y 3 metros de longitud trabaja a una temperatura de 80 C. La virola es de acero y tiene un espesor de 10 mm y está cubierta con una capa de aislante de fibra de vídrio de 30 mm de espesor. La caldera está instalada al exterior con velocidad de viento de 2 m/s. Estima las pérdidas de energía por transferencia de calor al ambiente (30 C). La temperatura del agua en la caldera es de 80 C. Se considera que el coeficiente de transmisión de calor interior h i es elevado y por tanto la temperatura de la pared interior será la del fluido t 2 = t 1. La conductividad térmica del acero es de k ac = 50 W/m C y la del aislante de k ais = 0,1 W/m C. Además como el diámetro es mucho mayor que el espesor, se puede considerar en toda la superficie transmisión de calor en superficies planas. Coeficiente de transmisión de calor en la pared circular. 1 = 1,04 + 1,04ln(1,01/1,00) + 1,04ln(1,04/1,01) + 1 U e,c 1h i 50 0,05 14,03. 1 U e,c = , ,03 = 1 1,468 U e,c = 0,681. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [23/27]

24 Balance energético. Ejercicios Coeficiente de transmisión de calor en las tapas. 1 = 1 + 0,01 U e,t 1h i ,04 0, ,03. 1 U e,t = , ,03 = 1 1,148 U e,t = 0,87. Las pérdidas por transferencia de calor serán, P par = [(πdl)u e,c +(2πD 2 /4)U e,t ](t 1 t 5 ) P par = [19,6 0,681+6,80 0,87] (80 30)= 963 W. siendo la temperatura en la pared exterior de la virola, (t 5 t 4 ) = P par 19,6 0, = = 2,4 t 4 = 32,4 C. A e h e 19,6 14,03 AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [24/27]

25 Balance energético. Ejercicios EJERCICIO 5. Una caldera consume en 24 h 152,5 kg de gasóleo C (PCI=40000 kj/kg). Determinar el diagrama Sankey y rendimiento de la caldera. Se dispone de la siguiente información adicional: temperatura de los humos: 210 C, coeficiente de exceso de aire: n = 1,2, pérdidas por inquemados: 2 %, pérdidas por las paredes: 3,8 kw. Cond. ambientales: Pa y 25 C. Energía aportada por el combustible, Q f = ṁ f PCI = (152,5/24/3600)40000 = 70,6 kw. Pérdidas por las paredes, Ṗ p = 3,8 kw, P p (%) = 5,3% Pérdidas por inquemados, P inq (%) = 2,0%, Ṗ inq = 1,4 kw AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [25/27]

26 Balance energético. Ejercicios Pérdidas por gases de escape ṁ ge = 0,00176(1+1,2 13,67) = 0,031 kg/s, Ṗ ge = ṁ ge c p,ge (t ge t re f ) = 0,031 1,1(210 25) = 6,25 kw (8,85 %). Energía útil Ė u = Q f Ṗ ge Ṗ par Ṗ inq = 70,6 6,25 3,8 1,4 = 59,2 kw. Rendimientos de la caldera η(%) = 100 Ėu Q f = ,2 70,6 = 83,8%. AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [26/27]

27 Bibliografía Bibliografía recomendada: Molina, L.A., Molina, G., 1993, capítulo 2. Molina, L.A., Alonso J.M., 1996, capítulo 2. Hernández, J.J., Lapuerta, M, 1998, capítulos 5 y 7. CEE, Libro II. Generación de Vapor, 1983, capítulos 2, 3 y 4. CEE, Tomo 1, Fundamentos y ahorro en operaciones, 1982, pp AMMT UMH. GENERACIÓN DE CALOR BALANCE ENERGÉTICO EN CALDERAS [27/27]

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico Quemadores Ahorro energético con seguridad Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico COMBUSTIÓN: Equilibrio rendimiento / emisiones Rendimiento

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA 4 AUDITORÍA 1. INSTALACIONES Los sistemas técnicos eléctricos y térmicos son objeto del estudio energético Se realiza un inventario de las instalaciones y equipos principales La auditoría comprende el

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

Área de intercambio de calor del intercambiador. Ahorro anual de Electricidad respecto a la situación Sin Cogeneración.

Área de intercambio de calor del intercambiador. Ahorro anual de Electricidad respecto a la situación Sin Cogeneración. 0. ABREVIATURAS A ACOGEN ACS AESCG AGNSCG ATSCG CNE COP C C c C f Área de intercambio de calor del intercambiador. Asociación Española de Cogeneración. Agua Caliente Sanitaria. Ahorro anual de Electricidad

Más detalles

CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS

CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS 2015 CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS Alejandro Palacios Rodrigo Sencillez para un mundo complejo [Escriba aquí] ROSMANN INGENIERÍA, SOFTWARE Y MANTENIMIENTO INDUSTRIAL S.L. 1-4-2015

Más detalles

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura.

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura. Unidad 1: Conceptos Básicos Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida Peso específico. Unidades de medida. Presión. Unidades de medida. Elementos de medición

Más detalles

Tubería interior. Tubería interior

Tubería interior. Tubería interior TUBERÍA PREAISLADA ALB CON POLIETILENO (PE) 1. Descripción Tubería Preaislada ALB flexible, para transporte de calor y frío en redes de distribución, tanto locales como de distrito, formada por una o dos

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Problemas propuestos

Problemas propuestos Problemas propuestos 1. Un carbón vegetal tiene el siguiente análisis químico: C = 76%, H=1.2%, N=0.8%, O=0.3%, S=0.14%, humedad = 4%, cenizas = 17.56%. Calcule el poder calorífico superior e inferior.

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa?

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa? C A P Í T U L O 2 Dada la importancia que tienen los procesos de combustión en la generación de contaminantes, en este capítulo se han incluido algunos ejercicios relacionados con la combustión estequiométrica.

Más detalles

Tema 14. Cálculo del desajuste de potencia de un aparato a gas

Tema 14. Cálculo del desajuste de potencia de un aparato a gas Página 1 de 13 Tema 14 Cálculo del desajuste de potencia de un aparato a gas Elaborado por: Revisado por: Aprobado por: Comisión Permanente M. Lombarte Responsable de Calidad Fecha: 12/11/2015 C. Villalonga

Más detalles

BALANCE TÉRMICO EN CALDERAS

BALANCE TÉRMICO EN CALDERAS BALANCE TÉRMICO EN CALDERAS 1. Definición: Es el registro de la distribución de energía en un equipo. Puede registrarse en forma de tablas o gráficos, lo que permite una mejor visualización de la situación.

Más detalles

VIESMANN VITOLIGNO 100-S Caldera de gasificación de leña 20 kw

VIESMANN VITOLIGNO 100-S Caldera de gasificación de leña 20 kw VIESMANN VITOLIGNO 100-S Caldera de gasificación de leña 20 kw Datos técnicos N de pedido y precios: consultar Lista de precios VITOLIGNO 100-S Modelo VL1B Caldera de gasificación de leña para trozos de

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

Congeneración Aplicada a Generadores

Congeneración Aplicada a Generadores Congeneración Aplicada a Generadores En el presente artículo, se analizan las interesantes posibilidades de implementar sistemas de cogeneración, que poseen todas aquellas empresas que cuenten con generadores

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN

ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN DR. Ing. ROBERTO SANTANDER MOYA DEPARTAMENTO DE INGENIERÍA MECÁNICA UNIVERSIDAD DE SANTIAGO DE CHILE ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN SISTEMAS DE CALEFACCIÓN Y REQUERIMIENTOS

Más detalles

CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS.

CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS. CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS. UNIVERSIDAD DE LAS AMERICA-PUEBLA DEPARTAMENTO DE INGENIERÍA MECÁNICA LABORATORIO DE CIENCIAS TÉRMICAS IM 407 PRÁCTICA GENERADOR DE VAPOR OBJETIVO

Más detalles

Combustión de biomasas para generación térmica

Combustión de biomasas para generación térmica Combustión de biomasas para generación térmica 1. Biomasa. Definición, clases, características. Comparación con combustibles fósiles. 2. Almacenaminto y transporte. 3. Combustión de la biomasa. Parrilla

Más detalles

Informe de rendimiento de los generadores de vapor en XXX, S.A.

Informe de rendimiento de los generadores de vapor en XXX, S.A. Informe de rendimiento de los generadores de vapor en XXX, S.A. Objetivo El presente informe tiene por objeto analizar y evaluar el funcionamiento de las calderas de vapor instaladas en XXX, S.A. y sus

Más detalles

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 INTRODUCCIÓN: Una caldera es una máquina o dispositivo de ingeniería que

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE CUANDO SE DESCONOCE SU COMPOSICIÓN DIAGRAMAS

CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE CUANDO SE DESCONOCE SU COMPOSICIÓN DIAGRAMAS CALCULO RELATIVO A LA COMBUSTIÓN INTRODUCCIÓN PODER CALORÍFICO AIRE DE COMBUSTIÓN GASES DE LA COMBUSTIÓN CALOR Y PESO ESPECÍFICO DE LOS GASES DE LA COMBUSTIÓN CÁLCULOS DE COMBUSTIÓN DE UN PRODUCTO COMBUSTIBLE

Más detalles

2. tipos de conductos

2. tipos de conductos 2. tipos de conductos manual de conduc tos de aire acondicionado climaver 14 LOS CONDUCTOS DE AIRE SON LOS ELEMENTOS DE UNA INSTALACIÓN a través de los cuales se distribuye el aire por todo el sistema;

Más detalles

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR 1. Calcular la cantidad de calor intercambiado (Q). Calcular la diferencia de temperatura media efectiva 3. Asumir el coeficiente global de transferencia

Más detalles

Eficiencia energética en conductos de climatización. Claire Plateaux

Eficiencia energética en conductos de climatización. Claire Plateaux Eficiencia energética en conductos de climatización Claire Plateaux Introducción Informe Anual De Consumos Energéticos IDAE - 2009 Sector Residencial + Servicio : 27% del consumo total Acondicionamiento

Más detalles

Sistemas de captura de CO 2 en centrales térmicas

Sistemas de captura de CO 2 en centrales térmicas Sistemas de captura de CO 2 en centrales térmicas Luis Miguel Romeo Fronteras de la Energía. Benasque 7 de Julio, 2009 1 Modelos del IPCC sobre emisiones de GEI 2 Reducción de GEI 3 4 Reducciones acumuladas

Más detalles

Conceptos de combustión y combustibles

Conceptos de combustión y combustibles Jornada sobre CALDERAS EFICIENTES EN PROCESOS INDUSTRIALES Conceptos de combustión y combustibles José M. Domínguez Cerdeira Prescripción - Promoción del Gas Gas Natural Distribución SDG, S.A. Madrid,

Más detalles

AGRADECIMIENTOS DEDICATORIA ABSTRACT

AGRADECIMIENTOS DEDICATORIA ABSTRACT INDICE GENERAL AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT i ii iii iv CAPITULO 1 Descripción Del Problema. 1 Introducción 2 1.1 Antecedentes y motivación 3 1.2 Descripción del problema 3 1.3 Solución

Más detalles

PROBLEMAS DE MOTORES TÉRMICOS

PROBLEMAS DE MOTORES TÉRMICOS PROBLEMAS DE MOTORES TÉRMICOS 1. Según los datos del fabricante, el motor de un coche tiene las siguientes características: Número de cilindros: 4 Calibre: 86 mm Carrera: 86 mm. Relación de compresión:

Más detalles

AUDITORÍAS ENERGÉTICAS

AUDITORÍAS ENERGÉTICAS MÁSTER DE ENERGÍA: GENERACIÓN, GESTIÓN Y USO EFICIENTE Asignatura: GESTIÓN ENERGÉTICA AUDITORÍAS ENERGÉTICAS E.T.S. Ingenieros Industriales Dr. Eloy Velasco Gómez Profesor Titular de Universidad Dpto.

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

DINÁMICA DE LAS MARCAS DE FUEGO

DINÁMICA DE LAS MARCAS DE FUEGO DINÁMICA DE LAS MARCAS DE FUEGO Dentro de esta disciplina, la identificación y análisis correcto de estas señales de la combustión supone conocer que marcas producen los tres tipos de transmisión de calor,

Más detalles

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS Técnica Diseñada para la regulación dela temperatura DESCRIPCIÓN Las torres de enfriamiento son equipos diseñados para disminuir la temperatura

Más detalles

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial INCINERACIÓN DE RESIDUOS Definición: Es el procesamiento térmico de los residuos sólidos

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Propiedades físicas de los biocombustibles. Importancia y métodos de determinación

Propiedades físicas de los biocombustibles. Importancia y métodos de determinación Índice Propiedades físicas de los biocombustibles. Importancia y métodos de Fátima Arroyo Torralvo AICIA 2. Importancia métodos de de los Revisión: Normalización de de calidad Índice Propiedades físico-mecánicas

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Intercambiadores de calor

Intercambiadores de calor UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Intercambiadores de calor Profesor: Ing. Isaac Hernández Isaachernandez89@gmail.com

Más detalles

CLIMAVAL 2016 IV Congreso Nacional de Soluciones Energéticas y Economía Circular en la Industria

CLIMAVAL 2016 IV Congreso Nacional de Soluciones Energéticas y Economía Circular en la Industria CLIMAVAL 2016 IV Congreso Nacional de Soluciones Energéticas y Economía Circular en la Industria Optimización energética en la industria: casos prácticos SOBRE AITESA Air Industrie Thermique España, S.L.

Más detalles

QUEMADORES. Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES

QUEMADORES. Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES QUEMADORES Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES 28/11/a INDICE 1.- INTRODUCCION... 3 2.- QUEMADORES ATMOSFERICOS... 3 3.- QUEMADORES MECANICOS... 5 BIBLIOGRAFIA...

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

CÁLCULO DE ECONOMIZADOR PARA CALDERA EKE 45/18

CÁLCULO DE ECONOMIZADOR PARA CALDERA EKE 45/18 CÁLCULO DE ECONOMIZADOR PARA CALDERA EKE 45/18 Ing. José M. Puentes Almeida 1, MSc. Juan Landa García 2 1. Grupo Empresarial Agroindustrial de Matanzas, Carretera a Varadero, km 4 1/2, Matanzas CP 10400,

Más detalles

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE ) Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problema nº 31) [04-03] Considérese una turbina de vapor que funciona con vapor de agua que incide sobre la misma con una velocidad de 60 m/s, a una presión

Más detalles

Cogeneración con gas natural

Cogeneración con gas natural Cogeneración con gas natural Qué es la cogeneración? El término cogeneración se utiliza para definir aquellos procesos en los que se produce simultáneamente energía eléctrica (o mecánica) y energía calorífica

Más detalles

INDUSTRIAS I HORNO ROTATIVO

INDUSTRIAS I HORNO ROTATIVO INDUSTRIAS I HORNO ROTATIVO Ing. Bruno A. Celano Gomez Abril 2015 HORNO ROTATIVO Continuo Calentamiento Externo Llama libre Aplicaciones: cemento, cal, aluminio, etc. Horno Rotativo Diagrama Horno Rotativo

Más detalles

GMTS. Ciclos Combinados. Departamento de Ingeniería Energética Universidad de Sevilla

GMTS. Ciclos Combinados. Departamento de Ingeniería Energética Universidad de Sevilla GMTS Ciclos Combinados Departamento de Ingeniería Energética Universidad de Sevilla Fundamento del ciclo combinado Q B H η H W H Q P Q HC L Q L η L W L Q LC η C = W H = η + W Q B L = Q B η H + Q Q B L

Más detalles

Informe Final OT Nº Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA

Informe Final OT Nº Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA Informe Final OT Nº 2006-025-1 Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA PARA: DE: Sr. Jaime Baytelman E-mail: jaimebaytelman@gmail.com Oscar Farías Fuentes Jefe

Más detalles

REUTILIZACIÓN DE RESIDUOS DE MADERAS POSIBILIDADES Y TECNOLOGÍAS DE APLICACIÓN

REUTILIZACIÓN DE RESIDUOS DE MADERAS POSIBILIDADES Y TECNOLOGÍAS DE APLICACIÓN REUTILIZACIÓN DE RESIDUOS DE MADERAS POSIBILIDADES Y TECNOLOGÍAS DE APLICACIÓN «IMPULSO A LA ENERGÍA DERIVADA DE LA BIOMASA. JORNADA DE INTERCAMBIOS» JUEVES 12 DE SEPTIEMBRE DE 2013 - CÓRDOBA SUBPRODUCTOS

Más detalles

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales MECÁNICA DE FLUIDOS Docente: Ing. Alba Díaz Corrales Fecha: 1 de septiembre 2010 Mecánica de Fluidos Tipo de asignatura: Básica Específica Total de horas semanales: 6 Total de horas semestrales: 84 Asignatura

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

Soluciones contra el fuego

Soluciones contra el fuego Generalidades sobre el fuego EL TRIANGULO DEL FUEGO El fuego es un fenómeno físico con tres elementos: - Combustible - Comburente (Oxigeno) - Fuente de calor La combustión es una reacción exotérmica (emana

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Termodinámica y. transmisión de calor

Termodinámica y. transmisión de calor UF0565 Eficiencia energética en las instalaciones de calefacción y ACS en los edificios Termodinámica y 1 transmisión de calor Qué? Para poder cumplir correctamente con la eficiencia energética en este

Más detalles

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS NIVEL: TECNICO MEDIO INGRESOS A LOS CURSOS ESCOLARES: 2008 2009 Y

Más detalles

Proyecto Fortalecimiento en el Uso Eficiente de la Energía en las Regiones. Proyecto financiado con el apoyo de:

Proyecto Fortalecimiento en el Uso Eficiente de la Energía en las Regiones. Proyecto financiado con el apoyo de: Proyecto Fortalecimiento en el Uso Eficiente de la Energía en las Regiones Proyecto financiado con el apoyo de: Combustión Industrial Fuentes de energía CARACTERÍSTICAS DE LOS COMBUSTIBLES Combustible

Más detalles

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances...

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances... Tabla de Contenidos 1. Introducción... 19 1.1. Antecedentes... 19 1.2. Alcances... 19 1.3. La Humedad... 20 1.3.1. Humedad de lluvia... 20 1.3.2. Humedad accidental... 20 1.3.3. Humedad del suelo... 21

Más detalles

Facultad de Ingeniería - UBA. Técnicas Energéticas - 67.56. Gas Pobre

Facultad de Ingeniería - UBA. Técnicas Energéticas - 67.56. Gas Pobre Facultad de Ingeniería - UBA Técnicas Energéticas - 67.56 Gas Pobre Composición Producto de la gasificación de biomasa vegetal (madera, carbón, residuos agrícolas, etc) CO 2 (~ 1 % a 15 %) CO (~ 20 % a

Más detalles

TEMPERATURA Y CONTROL. Cel:

TEMPERATURA Y CONTROL. Cel: RESISTENCIAS Y SUMINISTROS TERMICOS Cel: 320 388 7430 info@resistenciasysuministros.com www.resistenciasysuministros.com Resistencias Tubulares La resistencia mas versátil y ampliamente utilizada en aplicaciones

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Tema 5: ENERGÍA (Repaso de Contenidos Básicos)

Tema 5: ENERGÍA (Repaso de Contenidos Básicos) Tecnologías 3ºE.S.O. Tema 5: ENERGÍA (Repaso de Contenidos Básicos) 1. Definición de energía. Unidades. ENERGÍA La energía es la capacidad de un cuerpo o sistema para realizar cambios. Unidades Julio (J),

Más detalles

Como sistema, se deben considerar las pérdidas, que en general se pueden considerar:

Como sistema, se deben considerar las pérdidas, que en general se pueden considerar: Capítulo 8 Generadores de Vapor 8.- Generalidades: En ellos se efectúa le transferencia de calor (calor entregado Qe) desde la fuente caliente, constituida en este caso por los gases de combustión generados

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

CAPITULO 4 COMBUSTION. FIMACO S.A. Capítulo 4 Página 1

CAPITULO 4 COMBUSTION. FIMACO S.A. Capítulo 4 Página 1 CAPITULO 4 COMBUSTION Tipos de combustibles, poder calorífico Pretratamientos Recorrido de llama y gases de combustión Hogares Quemadores: tipos Tirajes: Natural Forzado Inducido Barrido, pre y pos barrido

Más detalles

Eficiencia de calderas: Casos de estudio y alternativas de mejora

Eficiencia de calderas: Casos de estudio y alternativas de mejora Eficiencia de calderas: Casos de estudio y alternativas de mejora Julián Lucuara Ingeniero Mecánico jelucuara@cenicana.org 1/13 Eficiencia de Calderas La eficiencia térmica de una caldera puede ser determinada

Más detalles

Índice de contenidos

Índice de contenidos 1 Índice de contenidos N Página Capítulo 1: Planteamiento del problema... 6 1.1.- Introducción... 6 1.2.- Objetivos... 7 1.2.1.- Objetivo general... 7 1.2.2.- Objetivos específicos... 7 Capítulo 2: Marco

Más detalles

Gama de productos. UBERTA ENERGÍA, S. L. López Bravo, 87 - nave B BURGOS Tel. y fax:

Gama de productos. UBERTA ENERGÍA, S. L. López Bravo, 87 - nave B BURGOS Tel. y fax: Gama de productos Con la garantía: DATOS DE FUNCIONAMIENTO MODELO LONGITUD CAPACIDAD TÉRMICA CONSUMO POR HORA PRESIÓN DE ALIMENTACIÓN DE GAS (kw) GN (m 3 /h) GLP (Kg/h) GN (mbar) GLP (mbar) MSU 3 M 3 15,1

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

BALANCE ENERGÉTICO CLIMATIZACIÓN

BALANCE ENERGÉTICO CLIMATIZACIÓN BALANCE ENERGÉTICO EN INSTALACIONES DE CLIMATIZACIÓN LAS CARGAS INTERNAS CARGA POR ILUMINACIÓN La iluminación de un local a acondicionar constituye una generación interna de calor sensible que debe ser

Más detalles

Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela. Alberto Jiménez Jefe de Formación y Soporte Técnico

Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela. Alberto Jiménez Jefe de Formación y Soporte Técnico Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela Alberto Jiménez Jefe de Formación y Soporte Técnico Gases de combustión Cómo funciona? Calor ~70% Electricidad ~ 30

Más detalles

Caldera mural de condensación en el mínimo espacio

Caldera mural de condensación en el mínimo espacio Myto Condens INOX en el mínimo espacio Alto rendimiento: conforme a las directivas dir. rend. 92/42 CEE. Disponibilidad inmediata de ACS: en ACS conforme a norma EN13203. Intercambiador primario de condensación

Más detalles

Aprovechamiento del agua de mina: geotermia

Aprovechamiento del agua de mina: geotermia Aprovechamiento del agua de mina: geotermia APROVECHAMIENTO DEL AGUA DE MINA: GEOTERMIA 1 UN PROBLEMA: EL AGUA BOMBEADA DE LA MINA 2 PROPUESTA: CONVERTIR EL PROBLEMA EN UN RECURSO 3 IDEA: UTILIZACIÓN COMO

Más detalles

Economizador de Consumo

Economizador de Consumo www.castillasozzani.com.ar Ecológico Reduce la presencia de contaminantes en los gases de escape Económico El costo de adquisición se amortiza en muy poco tiempo Fácil instalación Sólo tiene que sustituir

Más detalles

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA CALEFACCIÓN TEMA I. CONCEPTOS FÍSICOS BÁSICOS. MANUEL ROCA SUÁREZ JUAN CARRATALÁ FUENTES

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

Sistemas radiantes de calefacción industrial

Sistemas radiantes de calefacción industrial Sistemas radiantes de calefacción industrial Sistema Herringbone Serie VS Serie VSA Calefacte toda su nave o únicamente las zonas de trabajo No se produce estratificación Ideal para naves industriales

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

EL AISLANTE NATURAL PARA LA CONSTRUCCIÓN SOSTENIBLE

EL AISLANTE NATURAL PARA LA CONSTRUCCIÓN SOSTENIBLE EL AISLANTE NATURAL PARA LA CONSTRUCCIÓN SOSTENIBLE WOOL4BUILD UNA ALTERNATIVA SOSTENIBLE A LOS AISLANTES MINERALES WOOL4BUILD, el aislante de lana de oveja natural, tiene altas prestaciones de aislamiento

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Ingeniería Térmica/ Transmisión de Calor Ingeniería Térmica y Fluidomecánica Módulo Titulación Máster en Energía: Generación, Gestión y Uso Eficiente Plan

Más detalles

Ventajas de las puertas de madera maciza.

Ventajas de las puertas de madera maciza. Ventajas de las puertas de madera maciza. POR ANDRÉS CÁCERES G. Las puertas macizas tienen muchas ventajas respecto a las puertas huecas, es por esto que está justificado su mayor precio. Su densidad tiene

Más detalles

Eficiencia Energética en Edificaciones Sesión II. Andrea Lobato Cordero

Eficiencia Energética en Edificaciones Sesión II. Andrea Lobato Cordero Eficiencia Energética en Edificaciones Sesión II Andrea Lobato Cordero 06 octubre 2014 AGENDA CONDICIONES DE CONFORT ESTRATEGIAS BIOCLIMATICAS BALANCE ENERGETICO DE EDIFICIOS CONDICIONES DE CONFORT Los

Más detalles

VA P O P R E X H V P. Generadores de Vapor a media presión (12-15 bar) DIVISION CALDERAS INDUSTRIALES UNI EN ISO 3834

VA P O P R E X H V P. Generadores de Vapor a media presión (12-15 bar) DIVISION CALDERAS INDUSTRIALES UNI EN ISO 3834 Generadores de Vapor a media presión (12-15 bar) Requisiti di qualità per la saldatura certificati UNI EN ISO 3834 DIVISION CALDERAS INDUSTRIALES La caldera VAPOPREX HVP es un generador de vapor saturado

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

Tema 3: Rendimiento Energético de una caldera

Tema 3: Rendimiento Energético de una caldera Tema 3: Rendimiento Energético de una caldera FÓRMULAS ESTEQUIOMÉTRICAS Gasto de Nitrógeno: WN2: Gasto de nitrógeno, kgn2/kg cq N2: Nitrógeno en los gases de escape, % CO2: Bióxido de carbono en los gases

Más detalles

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I Prof. Ing. Mahuli González Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I INTERCAMBIADORES DE CALOR Equipos donde se realiza

Más detalles

Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN

Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN Caso Práctico de Eficiencia TÉRMICA: PROYECTO EINSTEIN ÍNDICE: 1. Datos necesarios para la realización del estudio 2. Tipología de empresas solicitantes del estudio EINSTEIN 3. Ahorros medios obtenidos

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Calderas de fundición Logano de media y alta potencia con tecnología Thermostream para gasóleo y gas

Calderas de fundición Logano de media y alta potencia con tecnología Thermostream para gasóleo y gas Calderas de fundición Logano de media y alta potencia con tecnología Thermostream para gasóleo y gas Calderas de fundición Logano desde 86 hasta 1.200 Kw Caldera de baja temperatura para gasóleo/gas en

Más detalles

CONGRESO DE ENERGÍA BIOMASICA - MARZO 2015 PRODUCCION DE ASTILLAS. FARMAGRO S.A.

CONGRESO DE ENERGÍA BIOMASICA - MARZO 2015 PRODUCCION DE ASTILLAS. FARMAGRO S.A. CONGRESO DE ENERGÍA BIOMASICA - MARZO 2015 PRODUCCION DE ASTILLAS. FARMAGRO S.A. OBJETIVOS La utilización de combustibles Biomasicos busca brindar nuevas visiones y alternativas para reducir costos y mejorar

Más detalles

INSTALACION DE ENFRIAMIENTO PARA ACEITE

INSTALACION DE ENFRIAMIENTO PARA ACEITE INSTALACION DE ENFRIAMIENTO PARA ACEITE INTECAMBIADOR DE CALOR AIRE/ACEITE AGUA/ACEITE EL PRIMER INTERCAMBIADOR DE CALOR DISEÑADO Y FABRICADO PARA EL ENFRIAMIENTO DEL ACEITE EN LA INDUSTRIA CERAMICA INSTALACION

Más detalles