1. Dominio, simetría, puntos de corte y periodicidad
|
|
- Mario Salinas Lara
- hace 5 años
- Vistas:
Transcripción
1 Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele representar por D o Dom. Para determinar el dominio de una función debemos calcular los valores de x que anulan el denominador, que hacen negativo el radicando de una raíz de orden par, o que hacen negativo o nulo el argumento de un logaritmo, así como los valores que quedan limitados por la definición propia de la función. Estos valores son los que no pertenecen al dominio. La función f(x) = no está definida para x = y x = 5, porque para estos valores el denominador se anula. El dominio de esta función es D = R { 5, 8x + 15 } La función f(x) = 4 sólo tiene sentido para valores de 4 0, es decir el dominio de la función sería: D = (, 2) (2, ) 1.2. Simetrías Existen dos tipos de simetría, respecto al eje OY y respecto del origen: Respecto de OY (funciones pares): f( x) = f(x) Supongamos la función f(x) = x2 4 En este caso f( x) = ( x)2 ( x) 2 = f(x), luego es simétrica respecto del eje OY. 4 Respecto del origen (funciones impares):f( x) = f(x) Supongamos ahora la función f(x) = x. En este caso f( x) = ( x) = x = f(x), luego es simétrica respecto del origen de coordenadas. 1.. Puntos de corte con los ejes Con el eje OX: f(x) = 0 Sea la función f(x) = 8x + 15 Al hacer f(x) = 0 se obtiene = 0 x = 0. La función corta al eje OX en el punto (0,0). Con el eje OX puede haber 0, 1, 2... puntos de corte. Con el eje OY: x = 0 Sea ahora la función f(x) = 4x + Al hacer x = 0 obtenemos f(0) =. Con lo que la función corta al eje OY en el punto 1
2 (0,). Con el eje OY puede haber un punto de corte o ninguno Periodicidad La periodicidad de una función es uno de los aspectos que no se suelen estudiar con demasiada frecuencia, queda prácticamente restringido a funciones de tipo trigonométrico tales como sen, cos, tg... Una función f(x) es periódica de periodo k, cuando se verifica que f(x) = f(x + k) = f(x k) = f(x + 2k) =... para todos los x pertenecientes al dominio de la función. La periodicidad de una función nos sirve para obtener la gráfica de la función estudiando únicamente en el intervalo [0,k]. La función f(x) = sen(x) es periódica de periodo k=2π. 2. Asintotas de una función 2.1. Asintotas verticales Una función f(x) tiene por asíntota vertical la recta de ecuación x = a cuando existe al menos uno de los ites laterales de la función en dicho punto y vale + o f(x) = ± x a + f(x) = ± x a La idea para calcular las asíntotas verticales es estudiar los ites por la izquierda y por la derecha de la función en los puntos que no pertenecen al dominio. Figura 1: f(x) = (x + 2)(x 2) En la Figura 1 se puede observar que cuando x tiende a 2 + la función tiende a + y cuando x tiende a 2 la función tiende a, es decir: = + x 2 + (x 2)(x + 2) x 2 (x 2)(x + 2) = 2.2. Asíntotas horizontales Una función f(x) tiene por asíntota horizontal la recta de ecuación y = b cuando existe al menos uno de los ites laterales de la función al tender x a + o y éste vale b. 2
3 f(x) = b f(x) = b x + x Para calcular las asíntotas horizontales debemos calcular los ites en + y de la función, si el valor obtenido es un número finito existirá la asíntota horizontal, no existiendo en caso contrario. Cuando x tiende a +, la función va tomando valores cada vez más próximos a 1, igualmente sucede cuando x tiende a, la función también se aproxima a 1. En este caso tenemos que la recta de ecuación y = 1 es una asíntota horizontal de la función, como se puede comprobar en la figura 2. Figura 2: f(x) = (x + 2)(x 2) 2.. Asíntotas oblicuas Para determinar si una función tiene asíntota oblicua y = mx + n debemos calcular los siguientes ites: m = f(x) x + x o m = f(x) x x. La función tiene asíntota oblicua cuando m es finito y distinto de cero. Una vez conocida la pendiente m, se puede pasar a calcular la ordenada en el origen, n, obteniendo el valor del ite de f(x) mx cuando x tiende a + o : n = (f(x) mx) n = (f(x) mx) x + x Una truco bastante útil para ver si una función tiene asíntota oblicua es comprobar que el grado del denominador debe ser una unidad mayor que el del denominador. En cualquier caso si antes hemos calculado la asíntota horizontal y hemos visto que existe directamente podemos asegurar que no hay asíntota oblicua. Podemos ver a continuación como calcular la asíntota oblicua de la función f(x) = x2 2 x 1 : 2 Calculamos m, m = x 1 2 = x + x x + x = 1 Para calcular n, n = 2 x + (x2 x 1 x) = x x x 1 Con lo que la recta y = x + 1 es una asíntota oblicua de la función f(x) = x2 2 x 1 = 1
4 Figura : f(x) = x2 2 x 1. Crecimiento y decrecimiento Dada una función y = f(x), derivable en el intervalo (a,b): Si f (x) 0, x (a, b), f(x) es creciente en el intervalo. Si f (x)0, x (a, b), f(x) es decreciente en el intervalo. Si f (x) = 0, x (a, b), f(x) es constante en el intervalo. Una vez vista la definición formal de funciones crecientes y decrecientes la idea a la hora de estudiar la monotonía de una función es seguir los siguientes pasos: 1. Calculamos f (x). 2. Hallamos los puntos que anulan f (x), con lo que se nos determinarán una serie de intervalos en el dominio.. Calculamos el signo de f (x) en cada uno de los intervalos. En aquellos en los que f (x)0, la función será creciente y donde f (x)0 la función será decreciente. Lo vemos a continuación con un ejemplo: Sea la función f(x) = x + 2x 2: Figura 4: f(x) = x + 2x 2 1. Calculamos la derivada: f (x) = + 2x 2 2. Hallamos los puntos que anulan f (x): f (x) = 0; + 2x 2 = 0, de donde obtenemos x 1 = y = 1 7. Estos puntos determinan en el dominio los siguientes intervalos: (, 1 7 ), ( 1 7, ), ( 1 + 7, + ). Cuando x (, 1 7 ), f (x) 0 por ejemplo f ( 2) = 6 > 0 4
5 Cuando x ( 1 7, ), f (x)0 por ejemplo f (0) = 2 < 0 Cuando x ( 1 + 7, + ), f (x) 0 por ejemplo f (1) = > 0 En los intervalos (, 1 7 en el intervalo ( 1 7 ) y ( 1 + 7, +, la función es creciente, mientras que, ), la función es decreciente. Como podemos comprobar en la gráfica de la función (ver figura 4)no hubiera sido fácil calcular a priori los intervalos de crecimiento y decrecimiento de dicha función. 4. Máximos y mínimos Una vez estudiado el crecimiento y el decrecimiento de una función pasamos al estudio de sus máximos y sus mínimos. Se puede observar que conociendo los intervalos de crecimiento y decrecimiento de una función podemos saber si está tiene máximos o mínimos por simple deducción. Si una función es creciente hasta un punto y a partir de ese punto pasa a ser decreciente, resulta bastante obvio que en ese punto la función tiene un máximo. De todos modos es necesario ver esto de una manera más formal. En principio vamos a partir de la idea de que si en un punto x = a existe un máximo o un mínimo entonces f (a) = 0. En cualquier caso la implicación la implicación en sentido contrario no indica necesariamente que si f (a) = 0 vaya a haber un máximo o un mínimo en x = a. Ejemplo de esto tenemos en la función f(x) = x. Su derivada primera f (x) = se anula cuando x = 0 pero esto no significa que en x = 0 haya un máximo o un mínimo como se puede comprobar en la gráfica de la función (ver figura5). Los puntos de la función en los que Figura 5: f(x) = x la derivada es cero o no está definida se llaman puntos críticos y son los candidatos a ser posibles máximos y minímos de la función. Veamos un sencillo ejemplo de ello: Para determinar los puntos críticos (posibles máximos y mínimos) de la función f(x) = x x, calculamos en primer lugar f (x) y hallamos los valores que anulan esta primera derivada: f (x) = ; f (x) = 0; = 0 x 1 = 1 y = 1 Puesto que la función f(x) está definida en todo el dominio, el conjunto de los puntos críticos es { 1, 1} Por tanto es en -1 y en 1 en los únicos puntos en los que la función puede tener sus máximos o sus mínimos. 5
6 Existen dos criterios para determinar cuáles son los máximos y los mínimos de una función: Criterio de la derivada primera La idea es muy sencilla, se trata simplemente de observar que en los puntos donde hay un máximo la función pasa de ser creciente a decreciente y donde hay un mínimo pasa de ser decreciente a creciente. Una vez determinados los puntos críticos de la función lo único que hay que comprobar es como se comporta la derivada primera en cada uno de los intervalos, es decir si es creciente o decreciente y a partir de aquí, simplemente utilizando la lógica podemos determinar los máximos y los mínimos de la función. Criterio de la derivada segunda El criterio de la derivada segunda nos dice lo siguiente: Sea la función y = f(x) derivable en x = a y con f (a) = 0: Si f (a) < 0, la función tiene un máximo relativo en x = a. Si f (a) > 0, la función tiene un mínimo relativo en x = a. Este criterio no se puede utilizar cuando f (a) = Concavidad y convexidad Con la información obtenida hasta el momento normalmente suele ser suficiente para realizar la representación gráfica de la función, aunque a veces se hace necesario conocer alguna característica más. Antes de nada conviene aclarar que no todos los autores se ponen de acuerdo con la idea de concavidad y convexidad, y así lo que para unos es cóncavo para otros es convexo y viceversa. El motivo es que estos términos son relativos, es decir dependen del punto en el que se encuentra el observador. En ocasiones para evitar estos problemas se habla de concavidad hacia arriba (convexidad) y concavidad hacia abajo (concavidad). Analíticamente podemos decir que la función y = f(x) es convexa en un intervalo si f (x) > 0 en dicho intervalo. Análogamente, y = f(x) es cóncava en un intervalo si f (x) < 0 en ese intervalo. De lo anterior se deduce claramente que la determinación de los intervalos de concavidad y convexidad se basa en el estudio del signo de la derivada segunda. Veremos el procedimiento que se sigue en estos casos con un sencillo ejemplo: Sea f(x) = x 4 6, definida en todos los reales. 1. Calculamos la derivada segunda de la función: f (x) = 4x 12x, f (x) = Igualamos a cero la derivada segunda y hallamos las raíces: = 0; = 1; x = ±1. Representamos sobre la recta las raíces que hemos obtenido, con lo que en este caso la recta queda dividida en tres tramos, en los cuales f (x) debe tener signo fijo: Intervalo (, 1) ( 1, 1) (1, + 6
7 4. Tomamos un punto en cada tramo y estudiamos el signo de f (x) en él: f ( 2) = 6 > 0; Convexa f (0) = 12 < 0; Cóncava f (2) = 6 > 0; Convexa Se suele representar del siguiente modo: Intervalo (, 1) ( 1, 1) (1, + f (x) > 0 < 0 > 0 f(x) Convexa Cóncava Convexa 6. Puntos de inflexión Los puntos de inflexión de una curva son aquellos en los que se produce un cambio de concavidad a convexidad o vicecersa. Para confirmar la existencia de un punto de inflexión en x = a basta con comprobar que hay cambio de signo de f (x) al pasar de la izquierda a la derecha de a. 7
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
Unidad 6 Estudio gráfico de funciones
Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Examen funciones 4º ESO 12/04/13
Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
2. Vector tangente y gráficas en coordenadas polares.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.
año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:
TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles
Unidad 6 Cálculo de máximos y mínimos
Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Descripción: dos. función. decreciente. Figura 1. Figura 2
Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.
Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
TEMA 4 FUNCIONES ELEMENTALES I
Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden
FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.
FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.
.- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,
Calculadora ClassPad
Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
MATEMÁTICAS. TEMA 5 Límites y Continuidad
MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
Análisis de funciones y representación de curvas
12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores
ACTIVIDADES UNIDAD 6: Funciones
ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS
Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í
Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A
http://cursodecalculo.com Profesor Raúl Vega Muñoz LÍMITES
LÍMITES FUNCIONES A TROZOS (FUNCIONES POR PARTES) Las funciones a trozos también son conocidas como funciones definidas por partes o funciones determinadas por más de una ecuación. En este ensayo vamos
EJERCICIOS DE FUNCIONES REALES
EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa
Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A
Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Halla dominio e imagen de las funciones
Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los
representación gráfica de funciones
representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @
IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
Transformación de gráfica de funciones
Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
Límites infinitos y trigonométricos.
Universidad Tecnológica del Sureste de Veracruz Química Industrial CÁLCULO DIFERENCIAL E INTEGRAL Límites infinitos y trigonométricos. NOMBRE DEL ALUMNO Morales Aguilar Itzel Garrido Navarro Arantxa Itchel
www.aulamatematica.com
www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.