Señales y Análisis de Fourier

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Señales y Análisis de Fourier"

Transcripción

1 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El objetivo fundamental es familiarizarse con la definición, manipulación y representación de señales en MATLAB. Para ello, en primer lugar, repasaremos y consolidaremos las nociones de MATLAB adquiridas en la práctica anterior; en particular la definición, operación y representación de señales en el dominio del tiempo. Posteriormente, utilizaremos algunas de las funciones que ofrece MATLAB para el Análisis de Fourier así como para la manipulación de señales en los dominios del tiempo y la frecuencia, 1. Introducción Como ya estudiamos en diversos ejemplos de la práctica anterior, MATLAB es muy utilizado en la definición, manipulación y representación de señales analógicas. Siendo rigurosos, el procedimiento seguido en esos ejemplos no es adecuado para el análisis de señales analógicas; es más, en general, MATLAB no permite analizar señales analógicas i. Esto se debe a que la forma natural de representar una señal en MATLAB es definir una secuencia finita de valores mediante un vector fila. Así, como veremos en el siguiente ejercicio, podemos definir la secuencia de instantes de tiempo equidistantes (intervalo 1 ms) entre 0 y 0.25s. Y del mismo modo, definimos una señal sinusoide como una secuencia de valores. Ejercicio 1 Genere una secuencia de instantes de tiempo que parta de t=0s y llegue hasta t=0.25s en intervalos de 1ms. Construya una función seno en esa base de tiempo de amplitud 1 y frecuencia 5Hz. Use plot para dibujar la forma de onda. Además, destaque cada punto de la gráfica con *. >> Tinicial=0; % Definimos el tiempo inicial >> Tfinal=0.25; % Definimos el tiempo final >> step=0.001; % Definimos el paso entre instantes de tiempo >> t=tinicial:step:tfinal-step; % Se genera el vector de tiempos >> y=1*sin(5*2*pi*t); % Se genera y >> plot(t,y); hold on; % Dibujamos y >> plot(t,y, * ); % Dibujamos las muestras de y i. Salvo que se usen bloques funcionales o toolboxes Física de las Comunicaciones

2 Señales y Análisis de Fourier Señales especiales. Por tanto, siendo estrictos, en MATLAB toda señal es discreta en tiempo, mientras que en amplitud puede ser discreta (cuantizada) o continua (aunque limitada por la precisión de los tipos numéricos). No obstante, si los intervalos temporales entre valores son suficientemente pequeños y el rango temporal en el que se define la señal es suficientemente amplio, la secuencia de valores empleada para representar la señal y las operaciones realizadas para su análisis proporcionan una buena aproximación a los resultados teóricos. En el caso más simple y frecuente, los valores se toman en instantes equiespaciados, intervalo que no debe confundirse con el periodo de muestreo. De momento, ignoraremos el efecto de la discretización de señales (utilizaremos intervalos de tiempo suficientemente pequeños, de modo que los efectos sean despreciables). Asimismo, la amplitud de las señales está sometida a una discretización que, dada la precisión de los tipos numéricos empleados en MATLAB, podemos ignorar. Vamos a ver una posible forma de representar en MATLAB algunas señales analógicas típicas. SEÑAL ESCALÓN % Ejemplo de señal escalon >> f_escalon=[zeros(1,1000),ones(1,1001)]; >> plot(t,f_escalon); SEÑAL PULSO % Ejemplo de señal pulso >> f_pulso=[zeros(1,950),ones(1,101),zeros(1,950)]; >> plot(t,f_pulso); SEÑAL SAMPLING % Ejemplo de señal sampling % Señal sampling nula en t=n*pi, n=1,2,... >> f_sampling=sin(t)./t; >> plot(t,f_sampling); % Señal sinc nula en t=n, n=1,2,... >> f_sinc=sinc(t); >> plot(t,f_sinc); SEÑAL IMPULSO O DELTA DE DIRAC % Ejemplo de señal impulso >> f_impulso=[zeros(1,1000),1,zeros(1,1000)]; >> plot(t,f_impulso); SEÑAL DIENTE DE SIERRA % Ejemplo de señal diente de sierra de periodo 0.1Hz % sawtooth(x,width) señal en diente de sierra con periodo 2*pi para los % elementos del vector x. El parámetro width es un escalar entre Física de las comunicaciones

3 2. Análisis de Fourier 3 % 0 y 1, y describe la fracción del periodo 2*pi en el que ocurre el % máximo. >> width=0.10; >> f_sierra=sawtooth(2*pi*0.1*t,width); >> plot(t,f_sierra); SEÑAL TRIANGULAR % Ejemplo de señal triangular de periodo 0.1Hz % Es un caso particular de señal diente de sierra con width=0.5 >> f_triangular=sawtooth(2*pi*0.1*t,0.5); >> plot(t,f_triangular); SEÑAL EXPONENCIAL % Ejemplo de señal exponencial decreciente % tau: constante de tiempo (RC) >> tau=200e-2; >> f_expon=exp(-t/tau); >> plot(t,f_expon); SEÑAL CUADRADA % Ejemplo de señal cuadrada de frecuencia 0.5Hz % square(x,duty) genera una onda cuadrada de periodo 2*pi con un duty cycle dado >> duty=50; % porcentaje del periodo en el que la señal es positiva >> f_cuadrada=square(2*pi*0.5*t,duty); >> plot(t,f_cuadrada); 2. Análisis de Fourier Las series de Fourier permiten describir señales periódicas como una combinación de señales armónicas (sinusoides). Con esta herramienta, podemos analizar una señal periódica en términos de su contenido frecuencial o espectro. Además, nos permite establecer la dualidad entre tiempo y frecuencia, de forma que operaciones realizadas en el dominio del tiempo tienen su dual en el dominio frecuencial. Utilizando operaciones sobre vectores, se pueden calcular fácilmente los coeficientes de Fourier correspondientes a una señal. En el ejercicio 2, se definen el vector n, que contiene los índices de los coeficientes, y el vector cn, que contiene los coeficientes. Los coeficientes cn, son los coeficientes espectrales de la señal. La gráfica de esos coeficientes en función del índice armónico n o de las frecuencias nω o se denomina espectro. Hay dos tipos de gráficos, uno con la magnitud de los coeficientes y otro de la fase. Ambas funciones son discretas en frecuencia. Física de las Comunicaciones

4 Señales y Análisis de Fourier 4 Ejercicio 2 Escriba un fichero MATLAB que proporcione los coeficientes de Fourier de una señal cuadrada de periodo 0.2s (frecuencia 5Hz) y amplitud igual a 1V. % Obtener los coeficientes de Fourier para una señal cuadrada de periodo % 0.2s y amplitud 1. clear; % frecuencia de la señal cuadrada (=1/T) f=5; T=1/f; % Indice de los coeficientes n=1:10; % Coeficientes de Fourier cn=2*(cos(n*pi)-1)./(-2*j*n*pi); co=1; subplot(2,1,1); stem(n,abs(cn)); ylabel('magnitud de cn'); subplot(2,1,2); stem(n,angle(cn)); ylabel('fase de cn'); xlabel('n'); A partir de la serie de Fourier, es posible reconstruir una señal periódica. Cuanto mayor sea el número de armónicos utilizado en el desarrollo en serie, mejor será la reconstrucción. Un parámetro importante en la reconstrucción de señales es la velocidad de convergencia, o lo que es lo mismo, la velocidad con la que los coeficientes de Fourier tienden a 0. Ejercicio 3 Escriba un fichero en MATLAB para dibujar n armónicos de una señal cuadrada de periodo 0.2s y amplitud 1. % Desarrollo en serie de Fourier de una señal cuadrada de periodo 0.2s y amplitud 1 clear; % frecuencia de la señal cuadrada (=1/T) f=5; T=1/f; % Indice de los coeficientes n=1:10; % Generamos la serie de Fourier t=-1:0.01:1; % vector de tiempos for i=1:50 for k=1:size(t,2) s(i,k)=(2*(1-cos(pi*i))/(pi*i))*sin(2*pi*i*f*t(k)); end end for k=1:size(t,2) st(k)=sum(s(:,k)); end Física de las comunicaciones

5 2. Análisis de Fourier 5 st(1)=st(1)+1; plot(t,st,'r'); hold on; % Señal cuadrada original f_cuadrada=square(2*pi*f*t,50); plot(t,f_cuadrada); xlabel( tiempo ); ylabel( Amplitud ); MATLAB está equipado con funciones especiales que nos van a permitir realizar un análisis de Fourier de funciones definidas por un conjunto de valores discretos. Por ejemplo, el comando fft() nos permite obtener la transformada rápida de Fourier (fast Fourier Transform) de una secuencia de números definida por el vector x. Por ejemplo: >> X=fft(x); donde X es un vector de números complejos ordenados desde k=0...n-1. Si queremos que sea más eficiente en el cálculo de la fft, la longitud del vector x deberá ser una potencia de 2. Podemos rellenar de ceros el vector x para que tenga la longitud apropiada. Esto se consigue automáticamente haciendo: >> X=fft(x,N); donde N es exponente de 2. Mientras más largo sea x, más fina será la escala para la fft. Debido a un fenómeno de plegamiento del espectro, sólo la primera mitad de los puntos obtenidos son de utilidad. La función fftshift() reordena el vector X en orden creciente de frecuencia. Si X es el vector resultante de hacer una fft, utilizando esta función reordenamos los puntos en función de la frecuencia. >> X=fftshift(X); Ejercicio 4 Obtenga la transformada de Fourier de una señal exponencial modulada en amplitud con una frecuencia de portadora de 200Hz, x(t)=exp(- 2 t) sin(2 pi 200 t). % Ejemplo de una fft de una señal exponencial modulada en amplitud % con una frecuencia portadora de 200Hz. % Definicion de la señal t=-0.25:0.001:0.25; x=exp(-2*t).*sin(2*pi*200*t); % Representacion en el tiempo subplot(3,1,1); plot(t,x); title('x(t)=exp(-2t) sin(2 pi 200 t)'); xlabel('tiempo (t)');ylabel('x(t)'); % Transformada de Fourier X=fftshift(fft(x)); % Magnitud y fase de la transformada Xm=abs(X); Xf=unwrap(angle(X))*180/pi; % Base de frecuencias Física de las Comunicaciones

6 Señales y Análisis de Fourier 6 delta_t = t(2)-t(1); f = ((1:length(t)) - ceil(length(t)/2)) / length(t) / delta_t; % Representacion en frecuencia subplot(3,1,2); plot(f,xm,'r'); title('módulo de transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); subplot(3,1,3); plot(f,xf,'r');zoom; title('fase de la transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel('fase X(jw)'); A partir de la transformada de Fourier, es posible reconstruir la señal en el dominio del tiempo. El comando ifft() sirve para obtener la transformada inversa de Fourier de una serie de números complejos: >> x=ifft(x); Ejercicio 5 Obtenga la transformada de Fourier de una señal exponencial modulada en amplitud, x(t)=exp(-2 t) sin(2 pi 3 t). Realice la transformada inversa y obtenga la señal en el tiempo a partir de su transformada. % Ejemplo de una fft de una señal exponencial modulada en amplitud % Obtención de la señal en el tiempo a partir de su transformada % Definicion de la señal t=-0.25:0.001:0.25; x=exp(-2*t).*sin(2*pi*3*t); % Representacion en el tiempo figure(1); plot(t,x); title('x(t)=exp(-2t) sin(2 pi 200 t)'); xlabel('tiempo (t)');ylabel('x(t)'); % Transformada y representacion en frecuencia Xt=fft(x); X=fftshift(Xt); % Magnitud y fase de la transformada Xm=abs(X); Xf=unwrap(angle(X))*180/pi; % Base de frecuencias delta_t = t(2)-t(1); f = ((1:length(t)) - ceil(length(t)/2)) / length(t) / delta_t; figure(2); subplot(2,1,1); plot(f,xm,'r');zoom; title('módulo de transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); subplot(2,1,2); plot(f,xf,'r');zoom; title('fase de la transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel('fase X(jw)'); Física de las comunicaciones

7 3. Producto de Convolución 7 % Obtener la señal en el dominio del tiempo a partir de su transformada xrec=ifft(xt); figure(3); plot(t,xrec); title('transformada inversa') xlabel('tiempo (t)');ylabel('xrec(t)'); 3. Producto de Convolución La convolución es una potente herramienta matemática utilizada en el procesado de señales. Aunque en general se define como un operador que permite determinar la respuesta de un sistema lineal, invariante en el tiempo ante una determinada entrada, también se puede aplicar a dos señales arbitrarias. La convolución de f y g se denota por f*g y se define como la integral del producto de ambas funciones después de que una sea invertida y desplazada. En MATLAB contamos con la función conv() que realiza la la convolución de los vectores x y h. El vector resultante tiene un tamaño igual a length(x)+length(h)-1. >> y=conv(x,h); Ejercicio 6 Genere un fichero MATLAB donde realice la convolución de una señal coseno de frecuencia 100Hz y una señal escalón. Compruebe que se verifican las propiedades de la transformada de Fourier respecto al producto de convolución. % Ejemplo de una fft de una señal exponencial modulada en amplitud % Obtención de la señal en el tiempo a partir de su transformada % Definicion de las señales t = -pi:0.001:pi; g_escalon=[zeros(1,1000*pi+1), ones(1,1000*pi+1)]; w = 2*pi; g = cos(w*100*t); g_conv = conv(g,g_escalon); figure(1); subplot(3,1,1); plot(t,g_escalon); title('señal ESCALON'); xlabel('tiempo (t)');ylabel('e(t)'); subplot(3,1,2); plot(t,g); title('cos(2 pi t)'); xlabel('tiempo (t)');ylabel('cos(2*pi*100*t)'); % Convolucion g_conv = conv(g,g_escalon); subplot(3,1,3); plot(t,g_conv(1:length(g)),'r') title('convolucion'); xlabel('tiempo (t)'); Física de las Comunicaciones

8 Señales y Análisis de Fourier 8 % Transformada y representacion en frecuencia de la convolucion G_conv=fftshift(fft(g_conv)); % Magnitud de la transformada Gm_conv=abs(G_conv); % Base de frecuencias delta_t = t(2)-t(1); f = ((1:length(g_conv)) - ceil(length(g_conv)/2)) / length(g_conv) / delta_t; figure(2); subplot(2,1,1); plot(f,gm_conv,'r');zoom; title('transformada de Fourier del producto de convolucion)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); % Obtener G_conv como el producto de los espectros G_escalon=fftshift(fft(g_escalon)); G=fftshift(fft(g)); G_conv2=G.*G_escalon; % Base de frecuencias delta_t = t(2)-t(1); f2 = ((1:length(t)) - ceil(length(t)/2)) / length(t) / delta_t; subplot(2,1,2); plot(f2,abs(g_conv2),'r');zoom; title('producto de las transformadas de Fourier)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); 4. Espectros de densidad de potencia y energía Las señales se pueden clasificarse según sean de energía o de potencia. Energía de una señal: E = Potencia de una señal: P = S g df Una señal se dice que es de energía si su E es finita, lo que implica que su potencia es cero. Por ejemplo, los pulsos limitados en el tiempo.una señal se dice que es de potencia si su potencia es finita, lo que implica que su energía es infinita. Un ejemplo de este tipo de señales lo encontramos en las señales periódicas. Para el cálculo de estos espectros disponemos, además de las funciones para el análisis de Fourier anteriores, de la función psd(), que proporciona la densidad espectral de potencia de una señal en db. >>Sg=psd(x,); X( f) 2 df Ejercicio 7 Genere un fichero MATLAB donde realice la densidad espectral de potencia de una señal coseno de frecuencia 100Hz. Física de las comunicaciones

9 5. Cálculo simbólico 9 % Densidad espectral de potencia t=-pi:0.001:pi; w=2*pi*100; g=cos(w*t); PSD=psd(g,2^10,lenght(g)); plot(psd); 5. Cálculo simbólico Durante la práctica hemos representado las señales mediante vectores y hemos manipulado las señales esencialmente mediante operaciones con vectores. Esta es la forma habitual de trabajar con MATLAB. No obstante, aunque en principio MATLAB no se diseño para realizar operaciones simbólicas, sí es posible definir y manipular señales (y funciones en general) de manera simbólica, si disponemos del Toolbox para el cálculo simbólico. Así, como en el ejercicio 8, podemos definir una función seno o delta de dirac y calcular su transformada de Fourier de forma simbólica. Ejercicio 8 Definir una función seno de forma simbólica y calcular su transformada de Fourier. % Análsis de Fourier con cálculo simbólico syms t % crear variable simbólica g=sin(2*pi*t); G=Fourier(g); % Transformada de Fourier ezplot(g); ginv=ifourier(g); % Transformada inversa 6. Cuestionario de Evaluación 6.1. Serie de Fourier Escriba un fichero en MATLAB (coeficientes_fourier.m) que proporcione los coeficientes de Fourier de la señal de la fig 1. Genere un fichero en MATLAB (dibuja_armonicos.m) que permita dibujar n armónicos de dicha señal Transformada de Fourier Genere un fichero en MATLAB (transformada_fourier.m) para obtener la transformada de Fourier de la señal, x(t)=sen(2 pi 200 t+sin(2 pi 2 t)). Realice la transformada inversa y obtenga la señal en el tiempo a partir de su transformada. Física de las Comunicaciones

10 Señales y Análisis de Fourier 10 1 T τ/2 τ/2 t Fig Producto de Convolución Genere un fichero MATLAB (convolucion.m) donde se realice la convolución de una señal coseno de frecuencia 50Hz y una señal pulso. Represente gráficamente las señales obtenidas. NOTA: no será necesaria la entrega de una memoria. La evaluación de esta práctica se basará en los archivos requeridos en cada ejercicio. Física de las comunicaciones

Práctica 1: Señales y análisis de Fourier

Práctica 1: Señales y análisis de Fourier Física de las Comunicaciones 2006/2007 Práctica 1 1 Práctica 1: Señales y análisis de Fourier 1. Objetivo y contenido En esta práctica pretendemos revisar parte de la materia del tema 2 de la asignatura

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES BIBLIOGRAFÍA PROCESAMIENTO DIGITAL DE SEÑALES 1. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. 2. Parks, T.W., and C.S. Burrus. Digital

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

TRANSMISIÓN DIGITAL PRÁCTICA 1

TRANSMISIÓN DIGITAL PRÁCTICA 1 TRANSMISIÓN DIGITAL PRÁCTICA Curso 7-8 Transmisión Digital Práctica Introducción Esta primera práctica trata de familiarizar al alumno con el lenguaje de programación Matlab, permitiéndole afrontar materias

Más detalles

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1 LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA CURSO 005-006 PRÁCTICA SEÑALES Y SISTEMAS CONTINUOS Las presente practica trata distintos aspectos de las señales y los sistemas en tiempo continuo. Los diferentes

Más detalles

Series y Transformada de Fourier

Series y Transformada de Fourier Series y Transformada de Fourier Series de Fourier Transformada de Fourier Series de Fourier Las series de Fourier describen señales periódicas como una combinación de señales armónicas (sinusoides). Con

Más detalles

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos Introducción El análisis del espectro de colores es una forma de análisis de componentes frecuenciales que para el caso

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES Autor. Moisés Valenzuela Gutiérrez. 2009. Moisés Valenzuela Gutiérrez Portada diseño: Celeste Ortega (HUwww.cedeceleste.comUH) Edición cortesía de HUwww.publicatuslibros.comUH.

Más detalles

2.6. La integral de convolución

2.6. La integral de convolución 2.6. La integral de convolución 141 2.6. La integral de convolución La convolución entre dos funciones es un concepto físico importante en muchas ramas de la ciencia. Sin embargo, como sucede con muchas

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

Conversión Analógica-a-Digital

Conversión Analógica-a-Digital Conversión Analógica-a-Digital OBJEIVOS: Comprender la conversión de señales analógicas a digitales, analizando las modificaciones que se producen con este proceso. Fundamentalmente, las "réplicas" en

Más detalles

Conceptos de señales y sistemas

Conceptos de señales y sistemas Conceptos de señales y sistemas Marta Ruiz Costa-jussà Helenca Duxans Barrobés PID_00188064 CC-BY-NC-ND PID_00188064 Conceptos de señales y sistemas Los textos e imágenes publicados en esta obra están

Más detalles

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION Transformada de Fourier (Parte 1) Página 1 INTRODUCCION En una primera aproximación, podemos decir que todos los dominios transformados, que se utilizan dentro del tratamiento digital de imagen, tienen

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Capítulo 6 Filtrado en el Dominio de la Frecuencia

Capítulo 6 Filtrado en el Dominio de la Frecuencia Capítulo 6 Filtrado en el Dominio de la Frecuencia...39 6. Método en el Dominio de la Frecuencia...39 6. Filtros Espaciales en la frecuencia...40 6.. Convolución Lineal y la Transformada Discreta de Fourier...45

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Discreta Resumen Propiedades de la Transformada de Fourier Linealidad Comportamiento de la fase Naturaleza

Más detalles

72 2. Análisis de Fourier

72 2. Análisis de Fourier 72 2. Análisis de Fourier Un objeto matemático relacionado con las series es la transformada, introducida por Fourier al estudiar la conducción del calor en una barra de longitud infinita. Se ha aplicado

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 emilia.gomez@esmuc.cat 28 de septiembre

Más detalles

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda Introducción El nivel físico es el encargado de establecer una conexión entre dos nodos y de enviar los datos como unos y ceros (u otra forma análoga). Para ello, este nivel define detalles físicos como

Más detalles

Introducción a los Filtros Digitales. clase 10

Introducción a los Filtros Digitales. clase 10 Introducción a los Filtros Digitales clase 10 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es Asignatura: 11943 SEÑALES Y SISTEMAS II Área: TEORÍA DE LA SEÑAL Y COMUNICACIONES Departamento: INGENIERÍA ELECTRÓNICA Y COMUNICACIONES Plan de estudios: INGENIERO EN TELECOMUNICACIÓN (Plan 94) Curso:

Más detalles

Convolución y Convolución Discreta Definición de convolución Cuando hemos aplicado, en el apartado anterior, una función ventana o hemos muestreado una función dada, implícitamente hemos estado efectuando

Más detalles

transformada discreta de fourier resumen, ejemplos y ejercicios

transformada discreta de fourier resumen, ejemplos y ejercicios transformada discreta de fourier resumen, ejemplos y ejercicios Transformada Discreta de Fourier Resumen Resumen para ejercicios de cálculo. Definición. Para una función matemática x[n] de variable independiente

Más detalles

Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM

Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM Objetivos: Manejar los conceptos de cuantización escalar, logarítmica y manejo de cuantizadores

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamiento Digital de Señal ema 4: Análisis de Fourier en tiempo discreto ransformada de Fourier en tiempo discreto (DF) Serie de Fourier en tiempo discreto (DFS) ransformada de Fourier Discreta (DF)

Más detalles

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL 2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 2: INTRODUCCIÓN A MATLAB. CARACTERÍSTICAS BÁSICAS DE MATLAB Funcionalidades

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales

Más detalles

Práctica 5: Modulaciones digitales

Práctica 5: Modulaciones digitales TEORÍA DE LA COMUNICACIÓN 2009/10 EPS-UAM Práctica 5: Modulaciones digitales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los principios

Más detalles

Tema 3. Secuencias y transformada z

Tema 3. Secuencias y transformada z Ingeniería de Control Tema 3. Secuencias y transformada z Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Concepto de secuencia

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

Adquisición de señales analógicas y tratamiento de la información

Adquisición de señales analógicas y tratamiento de la información Adquisición de señales analógicas y tratamiento de la información 3.1. Introducción. El objetivo de esta práctica es el de capturar, mediante la Data Acquisition Toolbox de Matlab, diferentes tipos de

Más detalles

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA.

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. 1. - INTRODUCCIÓN Las operaciones que hemos realizado hasta ahora sobre una imagen, se realizaron en el dominio espacial, es decir, trabajando

Más detalles

2. SISTEMAS LINEALES DE PRIMER ORDEN (I)

2. SISTEMAS LINEALES DE PRIMER ORDEN (I) 2. SISTEMAS LINEALES DE PRIMER ORDEN (I) 2.1 INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de primer orden con una variable de entrada, " x ( ", y una variable salida, " y( " se modela matemáticamente

Más detalles

Practica 5: Ventanas espectrales

Practica 5: Ventanas espectrales 1 Practica 5: Ventanas espectrales 2 1. Objetivos El objetivo principal es mostrar un amplio número de ventanas y una forma sencilla de caracterizarlas, así como la comparación de sus propiedades. 2. Ventanas

Más detalles

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER M.C. CAROLINA ROCÍO SÁNCHEZ PÉREZ 01 DE ABRIL DE 2011 Operaciones en el dominio de la frecuencia Una imagen digital es una representación

Más detalles

Muestreo y Reconstrucción de

Muestreo y Reconstrucción de Capítulo 2 Muestreo y Reconstrucción de Señales 2.1. Introducción Muchas de las señales de interés práctico proceden de fenómenos físicos que son continuos y por tanto las señales que generan son analógicas.

Más detalles

Transformada de Fourier

Transformada de Fourier Transformada de Fourier Transformada Inversa de Fourier Estas ecuaciones existen si f(x) es continua e integrable y si F(u) es integrable (casi siempre se cumplen en la práctica). Espectro de Fourier La

Más detalles

Transmisión Digital en Banda Base

Transmisión Digital en Banda Base Transmisión Digital en Banda Base PRÁCTICA 8 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación Javier Ramos, Fernando Díaz de María, David Luengo García y

Más detalles

Aplicaciones. Aplicacion 1. Aplicacion 2. Aplicacion 3. Otras aplicaciones

Aplicaciones. Aplicacion 1. Aplicacion 2. Aplicacion 3. Otras aplicaciones Aplicaciones La transformada Z de una secuencia en tiempo discreto X[n]. Es un modelo matemático que se emplea entre otras aplicaciones en el estudio del Procesamiento de Señales Digitales, como son el

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de

Más detalles

Competencias específicas de ingeniería

Competencias específicas de ingeniería A. IDENTIFICACIÓN ASIGNATURA: PROCESAMIENTO DIGITAL DE SEÑALES SIGLA: ELT 3952 SEMESTRE: NOVENO Ing. Electrónica, mención Telecomunicaciones NOVENO, Ingeniería Electrónica, mención automática PRE-REQUISITO:

Más detalles

Procesado de datos con MATLAB

Procesado de datos con MATLAB Procesado de datos con MATLAB 1. Introducción En este tutorial 1 pretendemos cubrir los comandos básicos de MATLAB necesarios para introducirnos en el manejo de datos. Para más información sobre los comandos

Más detalles

Objetivos específicos. Introducción teórica. Guía

Objetivos específicos. Introducción teórica. Guía Asignatura: Sistemas y señales discretos. Tema: La Transformada Rápida de Fourier (FFT) Lugar de Ejecución: Instrumentación y control (Edificio de electrónica) Objetivos específicos Conocer que es la Transformada

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 3 (Análisis espectral) 2015 Dominio temporal vs. dominio de frecuencias Son dos enfoques para encarar el análisis de las series temporales, aparentemente

Más detalles

LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA

LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA LA ACÚSTICA EN EL DOMINIO DE LA FRECUENCIA Casado García, Mario Enrique Escuela de Ingenierías. Edificio Tecnológico Campus de Vegazana, s/n 24071 León España Tel: 644420130 E-Mail: mecg@mecg.es RESUMEN

Más detalles

Capítulo 7 Modulación de Pulsos

Capítulo 7 Modulación de Pulsos 237 Capítulo 7 Modulación de Pulsos Introducción Las modulaciones de amplitud, frecuencia y fase tratadas en los capítulos anteriores se designan genéricamente como modulaciones de onda continua, en que

Más detalles

D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS

D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS 22 Laboratorio de Tratamiento Digital de Señales D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS 1. DISEÑO DE FILTROS IIR 1.1 Diseño de filtros IIR empleando prototipos analógicos En este apartado

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

82 2. Análisis de Fourier. Fig. 2.9. Área de los lóbulos de la función sinc( ). 2/a dx+ +

82 2. Análisis de Fourier. Fig. 2.9. Área de los lóbulos de la función sinc( ). 2/a dx+ + 82 2. Análisis de Fourier Fig. 2.9. Área de los lóbulos de la función sinc( ). sen(πax)/(πn) para (n )/a x n/a. Entonces sen(πax) /a 0 πax dx sen(πax) 2/a π dx+ sen(πax) 2π dx+ + 0 /a = n/a π sen(πax)

Más detalles

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION Página 1 de 16 FCEFy Universidad acional de Cordoba ITRODUCCIO El estudio de las señales cotidianas en el dominio de la frecuencia nos proporciona un conocimiento de las características frecuenciales de

Más detalles

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión)

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión) Transmisión Digital en Banda Base PRÁCTICA 8 (1 sesión) Laboratorio Señales y Comunicaciones (LSC) 3 er curso, Ingeniería Telecomunicación Curso 2005 2006 Javier Ramos, Fernando Díaz María y David Luengo

Más detalles

Práctica 1: Señales en MATLAB

Práctica 1: Señales en MATLAB Práctica 1: Señales en MATLAB Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno el modo de orientar las herramientas que ofrece MATLAB a la representación

Más detalles

Análisis de Fourier. Análisis de Fourier. F. Javier Cara ETSII-UPM. Curso 2012-2013

Análisis de Fourier. Análisis de Fourier. F. Javier Cara ETSII-UPM. Curso 2012-2013 F. Javier Cara ETSII-UPM Curso 1-13 1 Contenido periódicas. Serie de Fourier. periódicas. Serie de Fourier compleja Espectro no periódicas. Serie de Fourier. no periódicas. Transformada de Fourier. Catalogo

Más detalles

Filtrado Digital. Lectura 3: Diseño de Filtros FIR

Filtrado Digital. Lectura 3: Diseño de Filtros FIR Lectura 3: Diseño de Filtros FIR Diseño de Filtros Objetivo: Obtener una función de transferencia H(z) realizable aproximándola a una respuesta en frecuencia deseable. El diseño de filtros digitales es

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas

Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas Universidad Tecnológica de Pereira Pereira, 15 de Diciembre de 2010 Juan David Vasquez Jaramillo. Ingeniero Electronico,

Más detalles

. Cómo es la gráfica de z[n]?

. Cómo es la gráfica de z[n]? UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones - E³T Perfecta combinación entre energía e intelecto TRATAMIENTO DE SEÑALES Actividades de Clase:

Más detalles

1 Conceptos Básicos de Señales y Sistemas

1 Conceptos Básicos de Señales y Sistemas CAPÍTULO 1 Conceptos Básicos de Señales y Sistemas Cuando se hace referencia a los conceptos de señales y sistemas, su aplicación es válida para una variedad amplia de disciplinas, tales como sismología,

Más detalles

5ª Práctica. Matlab página 1

5ª Práctica. Matlab página 1 5ª Práctica. Matlab página PROGRAMACIÓN EN MATLAB PRÁCTICA 05 GRÁFICOS EN MATLAB 2D Y 3D LECTURA DE FICHEROS ENTRADA DE PUNTOS CON EL RATÓN EJERCICIO. GRÁFICOS EN MATLAB BIDIMENSIONALES... EJERCICIO. UTILIZACIÓN

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Diseño y análisis de filtros en procesamiento de audio

Diseño y análisis de filtros en procesamiento de audio Diseño y análisis de filtros en procesamiento de audio Marta Ruiz Costa-jussà Helenca Duxans Barrobés PID_00188065 CC-BY-NC-ND PID_00188065 Diseño y análisis de filtros en procesamiento de audio Los textos

Más detalles

Representación de señales y sistemas en el dominio de la frecuencia

Representación de señales y sistemas en el dominio de la frecuencia Representación de señales y sistemas en el dominio de la frecuencia Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario

Más detalles

Introducción a Matlab.

Introducción a Matlab. Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación

Más detalles

Teoría de Telecomunicaciones I. I.E. Evelio Astaiza Hoyos

Teoría de Telecomunicaciones I. I.E. Evelio Astaiza Hoyos Teoría de Telecomunicaciones I I.E. Evelio Astaiza Hoyos Objetivo El estudiante, al finalizar el curso estará en capacidad de describir los efectos de la contaminación de una señal transmitida, las limitaciones

Más detalles

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias 1. Impulsos continuos y discretos a) Enuncie la propiedad de extracción de la delta de Dirac. b)

Más detalles

ESTUDIO DE PITCH EN SEÑALES POLIFÓNICAS

ESTUDIO DE PITCH EN SEÑALES POLIFÓNICAS ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES Titulación: INGENIERO TECNICO DE TELECOMUNICACIONES, ESPECIALIDAD IMAGEN Y SONIDO Titulo del proyecto: ESTUDIO DE PITCH EN SEÑALES

Más detalles

http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab

http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab 1 de 6 04/11/2010 0:58 La Estética de los Gráficos Más de un Gráfico en una ventana (Subplot) Cambiando los ejes Agregar Texto Gráficos en Matlab Una de las funciones más importantes en Matlab es la función

Más detalles

Una señal es una magnitud física de interés que habitualmente es una función del tiempo.

Una señal es una magnitud física de interés que habitualmente es una función del tiempo. 1.- Introducción al Procesado Digital de Señales. 1.1.- Introducción. Podemos decir que cuando realizamos cualquier proceso digital para modificar la representación digital de una señal estamos haciendo

Más detalles

Deseamos, pues, al alumno el mayor de los éxitos en su intento.

Deseamos, pues, al alumno el mayor de los éxitos en su intento. INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar

Más detalles

2. Muestreo y recuperación de imágenes en el dominio de la frecuencia.

2. Muestreo y recuperación de imágenes en el dominio de la frecuencia. Muestreo y recuperación de imágenes en el dominio de la frecuencia 2. Muestreo y recuperación de imágenes en el dominio de la frecuencia. 2.1. Muestreo de señales analógicas unidimensionales Cuando queremos

Más detalles

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple.

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Comparador simple El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Vo +Vcc Vi-Vref El comparador analógico se denomina también ADC de un bit.

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Apunte 2 - Procesamiento de señales

Apunte 2 - Procesamiento de señales Apunte 2 - Procesamiento de señales Este apunte está constituido por extractos de algunos textos sobre procesamiento de señales, principalmente, aunque no exclusivamente, el de Proakis y Manolakis. Para

Más detalles

El ancho de banda y la compatibilidad electromagnética

El ancho de banda y la compatibilidad electromagnética El ancho de banda y la compatibilidad electromagnética Artículo cedido por Cemdal www.cemdal.com Autor: Francesc Daura Luna, Ingeniero Industrial, experto en compatibilidad electromagnética. Director de

Más detalles

Comunicaciones Digitales - Ejercicios Tema 3

Comunicaciones Digitales - Ejercicios Tema 3 Comunicaciones Digitales - Ejercicios Tema 3 007. 1. Considere el diagrama de rejilla para un canal discreto equivalente genérico con 4 coeficientes no nulos (memoria K p = 3) y una constelación -PAM.

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 09 TRATAMIENTO DE IMÁGENES EN EL DOMINIO DE LAS FRECUENCIAS prb@2007 2 A principios del siglo XIX, Joseph Fourier indica que toda función periódica

Más detalles

Tema 2: Acústica física II

Tema 2: Acústica física II Tema 2: Acústica física II Ecuaciones del movimiento en un medio no absorbente. Ecuación de ondas y soluciones 1D. Velocidad del sonido. Ejemplo: campo progresivo en un tubo semi-infinito P +. Condiciones

Más detalles

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4 Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente

Más detalles

3. Señales sísmicas y Ruido

3. Señales sísmicas y Ruido 3. Señales sísmicas y Ruido Una fuente importante de información de la estructura de la Tierra es obtenida de los datos del movimiento del suelo. La interpretación de estos datos necesita un buen conocimiento

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales.

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Conceptos y Terminologías en la Transmisión de Datos y Sistemas de Comunicaciones Electrónicos. Representaciones de Señales.

Más detalles

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control 1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática

Más detalles

PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº 2

PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº 2 Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Bioingeniería Área CONTROL Asignatura: CONTROL I PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº ANÁLISIS

Más detalles

Introducción. Señales y análisis de Fourier

Introducción. Señales y análisis de Fourier Tema 1. Pág. 1 de 21 Introducción. Señales y análisis de Fourier En el Diccionario de la Real Academia Española, se define señal entre otras acepciones- como 15. f. Fís. Variación de una corriente eléctrica

Más detalles

DISEÑO DE UN ANALIZADOR DE ESPECTRO APLICADO A REDES MONOFÁSICAS DE 120V A FRECUENCIA INDUSTRIAL

DISEÑO DE UN ANALIZADOR DE ESPECTRO APLICADO A REDES MONOFÁSICAS DE 120V A FRECUENCIA INDUSTRIAL DISEÑO DE UN ANALIZADOR DE ESPECTRO APLICADO A REDES MONOFÁSICAS DE 120V A FRECUENCIA INDUSTRIAL JUAN CAMILO TORO CADAVID UNIVERSIDAD DE SAN BUENAVENTURA INGENIERÍA ELECTRÓNICA MEDELLÍN 2009 1 CONTENIDO

Más detalles

Tecnología de las Comunicaciones

Tecnología de las Comunicaciones Tema 3. El dominio de la frecuencia. Aspectos teórico-prácticos para la construcción de un cañón de energía bioetérea Francisco Sivianes Castillo Departamento de Tecnología Electrónica Escuela Técnica

Más detalles

PRÁCTICAS DE. Dpto. Ing. Sistemas y Automática Universidad de Sevilla. Daniel Jiménez Luis Merino Cabañas. Agradecimientos a Manuel Berenguel Soria

PRÁCTICAS DE. Dpto. Ing. Sistemas y Automática Universidad de Sevilla. Daniel Jiménez Luis Merino Cabañas. Agradecimientos a Manuel Berenguel Soria PRÁCTICAS DE REGULACIÓN AUTOMÁTICA Dpto. Ing. Sistemas y Automática Universidad de Sevilla Daniel Jiménez Luis Merino Cabañas Agradecimientos a Manuel Berenguel Soria c POSTLOU 2 Respuesta temporal de

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica

UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica Programación TE243 Segundo semestre de 2014 Ing: José Norbey Sánchez Grupo: UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica 2. Gráficos en dos y tres dimensiones: 2.1 Gráficos en dos

Más detalles

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN CONVERSION ANALÓGICO A DIGITAL Con el paso del tiempo, las comunicaciones electrónicas han experimentado algunos cambios tecnológicos notables. Los sistemas tradicionales de comunicaciones electrónicas

Más detalles

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO POR QUÉ ES NECESARIO MEDIR? QUÉ CONOCEMOS AL MEDIR UN SISTEMA DE AUDIO? QUÉ PARÁMETROS PODEMOS AJUSTAR? TIPOS DE MEDICIONES DE UN SOLO CANAL DE DOBLE

Más detalles

Conocer el principio de funcionamiento del analizador de espectros y su aplicación en el análisis de señales de banda estrecha y de banda ancha.

Conocer el principio de funcionamiento del analizador de espectros y su aplicación en el análisis de señales de banda estrecha y de banda ancha. DEPARTAMENTO DE ELECTRONICA LABORATORIO DE COMUNICACIONES ------------------------------------------------------------------------------------------------------------------- EXPERIENCIA #1: USO DEL ANALIZADOR

Más detalles