m La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular"

Transcripción

1 Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo en uent que l es el ldo del tpiz t su áre, ompletmos l siguiente tl de vlores prtir de estos vlores relizremos un representión gráfi. l (m) t (m ),00,00,0.,00,00,0.,00 9,00 Como l longitud del ldo puede tomr vlores entre metros, los vlores del áre estrán omprendidos entre m 9 m. Por onsiguiente, el dominio l imgen de l funión t(l) son: Dom ; t [ ] ( l ) [ ;9 ] ( l ) Im t m 9 m Funiones udráti de l fórmul ( ) L fórmul udráti que se usó pr onstruir el ejemplo nterior es un so prtiulr de f ( ) on perteneiente los reles distintos ero ( R { 0} ) Ests funiones están definids pr todo número rel, es deir que su dominio nturl result: Domf R En d so, l representión gráfi es un práol ls oordends de los puntos del plno que perteneen l práol verifin l euión udráti. En el so nterior, el dominio tení omo intervlo [; ] l funión definid es f ( ). f de

2 Unidd Nª Como el udrdo de un número es siempre positivo o ero, el onjunto de 0 ;. l imgen es el intervlo [ ) f ( ) Como l funión f tom el mismo vlor pr los vlores opuesto de, su gráfio es simétrio on respeto l eje de ls ordends, su euión es 0 se denomin eje de simetrí de l práol. El únio punto de l práol que pertenee l eje de simetrí es el vértie. En este ejemplo es el punto v (0; 0) Los puntos de interseión de un práol on el eje de ls siss son quellos en que l ordend es ero; en este so sí 0; result que 0 est euión tiene omo úni soluión 0. El punto de interseión es el vértie. Representión gráfi de l funión ( ) En todos los gráfios de este tipo de funiones se puede oservr que el eje de simetrí es el eje de ls ordends () on el vértie en el origen del sistem v ( 0;0). En lgunos sos el vértie es un vlor mínimo en otros sos es el vlor máimo. f Cundo el oefiiente es positivo l ordend del vértie nul es menor tods ls ordends restntes, que son positivs. En onseueni el vértie es el menor vlor de l funión. Cundo el oefiiente es negtivo, suede lo ontrrio, l ordend nul del vértie es mor ls restntes ordends, que son negtivs. En onseueni el vértie es el máimo vlor de l funión. Tmién puede oservrse que pr distintos vlores de, l rpidez on l que reen ls rms de d un de ls práols es diferente. Por ejemplo, dd l funión, si >, el gráfio se otiene diltndo vertilmente el de ; por el ontrrio sí de

3 Funión udráti-euión de do grdo < on 0, el gráfio se otiene ontrendo vertilmente el de. Trsliones de l funión ( ) f Trsliones en l direión del eje de ls ordends () L fórmul de l funión que permite onstruir un modelo on l situión nterior es un so prtiulr de f ( ) k. Veremos omo se otienen los gráfios de ls funiones de este tipo prtir del gráfio de on R. Gráfio de l funión k Compremos ls tls de vlores de ls funiones ; e Los vlores de, se otienen, omo es lógio, sumndo uniddes de l funión. Por lo tnto, l gráfi de se lo- gr suiendo tres uniddes l gráfi de. Como l práol siende uniddes, el vértie se trsldó v ( 0;), l imgen es hor el intervlo [ ; ). Tmién podemos deir que l práol no tiene interseión on el eje de ls siss; porque l funión no se nul pr ningún vlor de. Teniendo l mism onsiderión nterior, l gráfi se otiene jndo ino uniddes l de. El vértie tiene oordend v ( 0; ), mindo l imgen l intervlo[ ; ). En este so, l práol tiene dos puntos de interseión on el eje de ls siss, son los puntos donde l ordend es igul ero ( 0). Dihos puntos se denominn eros, ríes o siss l origen de l funión. de

4 Unidd Nª Pr nuestro so, se otienen de l siguiente mner: 0 Ls oordends son ( ;0) ( ;0). En el primer so, no hlmos de eros o ríes porqué l resoluión de l euión son dos números omplejos onjugdos. 0 Podemos gregr demás que tods ls práols tienen omo eje de simetrí l eje de ls ordends (), que es l ret 0. El vértie se desplz vertilmente según los diferentes vlores de k. En resumen, prtir del gráfio de, pr grfir k se trsld k uniddes ls ordends de los puntos de l práol de l siguiente mner: si k es i positivo, hi rri hi jo, si k es negtivo. v 0;k el eje de simetrí es 0. El vértie tiene oordends ( ) Trsliones en l direión del eje de ls siss () L fórmul de l funión que permite onstruir un modelo on l situión nterior es un so prtiulr de f ( ) ( h). Veremos omo se otienen los gráfios de ls funiones de este tipo prtir del gráfio de on R. Gráfio de l funión ( h) Compremos ls tls de vlores de ls funiones ; ( ) e ( ) de

5 ( ) Funión udráti-euión de do grdo ( ) ( ) Ahor el vértie de ( ) se enuentr en el punto donde 0, es deir el punto ( ;0), h un desplzmiento del vértie en direión horizontl igul h, no lterndo el rngo de l imgen ni del dominio on respeto. H un desplzmiento del eje de simetrí Análogmente, el vértie de ( ) estrá en el punto ( ;0) su eje de simetrí es Podemos deir en generl, l gráfi de ( ) h se otiene de l gráfi trsldándol un trmo h en l direión del eje de ls siss (). Trsliones en ulquier direión ( ) En lguns osiones, ls funiones udrátis pueden epresrse medinte l euión f ( ) ( h) k Est funión tiene l prtiulridd de que permite visulizr ls oordends del vértie de l práol que están indids en l fórmul, de l siguiente mner: ( h) k o ien ( v ) v v ( v ; v ) Veremos omo se otienen los gráfios de ls funiones de este tipo prtir del gráfio de. Pr trsldr l práol trnsformremos su euión del siguiente modo: se trsld h;, de modo que su vértie se sitúe en el punto ( k) h uniddes horizontlmente ( h) ( h) se trsld k uniddes vertil ( h) k Por ejemplo, vmos trsldr l práol v ;. en el punto ( ) L práol de modo que su vértie se enuentre se trsld uniddes l dereh ( ) se trsld uniddes hi rri ( ). de

6 Unidd Nª Vemos que el eje de simetrí se trsldó uniddes. El dominio de l funión no se lteró, pero l im- ;. gen es hor el intervlo [ ) Análogmente, podemos deir que ( ) es un práol omo on su vértie en ( ;) o que ( ) es un práol omo on su vértie en ( ;). En onseueni podemos deir que un funión del tipo ( h) k, está ompuest por dos movimientos, uno horizontl otro vertil, siguiendo los oneptos de trslión visto nteriormente. Cundo un funión udráti se epres de l form ( h) k o ( v ) v, se l denomin form ordinri de l funión udráti. Pr lulr determinr los puntos, donde l funión ort l eje de ls siss, o se los eros, ríes o siss l origen, se proede de l siguiente mner: Prtimos que en dihos puntos es 0, omo muestr l siguiente figur pr los puntos. Por lo tnto igulmos ero l epresión nóni.. h k 0 despejmos Ejemplo: ( ). ( h) ( h) k h h h k h Clulr ls ríes de l funión ( ) k k Como 0, tenemos que: k k ( ) 0 ( ) ( ;0) ( ;0) de

7 Funión udráti-euión de do grdo Ls oordends de ls ríes son: ( ) ( ;0) ( ;0 ) Otro punto rterístio es l ordend l origen, es el punto donde l funión ort l eje de ls ordends, por lo tnto omo ulquier punto de este eje tiene sis nul, podemos esriir 0 en l funión nóni. Ejemplo:.. ( h) k ( 0 h) k. h k Clulr l ordend l origen ( ) Como 0, tenemos que: L oordend de l ordend l origen es ( 0 ) ( ) 9 ( 0;) Otr form de epresr un funión de segundo grdo Vimos que se denomin form nóni de l funión de segundo grdo si se epres de l form: ( h) k Si, hor, se epres en funión de sus ríes de l siguiente mner: ( ) ( ) se denomin form ftorizd de l funión udráti. 7 de

8 Unidd Nª Si se desrroll el udrdo del inomio se sum de l form nóni o se pli propiedd distriutiv l produto de los inomios de l form ftorizd, se otiene un nuev form del tipo: que se denomin form polinómi, donde el oefiiente es el mismo vlor en tods ls forms es l ordend l origen de l práol es el oefiiente del término de segundo grdo es el oefiiente del término linel o de primer grdo es el término independiente Pr psr de l form polinómi l form nóni se puede utilizr Gráfio de l funión polinómi Vmos grfir hor l funión udráti de l form polinómi; o se, donde ; ; R 0. Tmién est funión se l denomin funión udráti omplet. Pr poder grfir este tipo de funión será neesrio enontrr puntos rterístios. Ordend l origen Es el punto de interseión de l práol el eje de ls ordends; es deir 0 Su oordend es Asiss l origen, ríes o eros ( 0 ;) Ls siss l origen, ríes o eros de l funión son los puntos de interseión de l práol on el eje de ls siss; es deir 0. Pr enontrr estos puntos proedemos ompletndo el udrdo. Se he l funión igul ero (0) 0. Se etre ftor omún 0. En el préntesis se omplet un trinomio udrdo perfeto ( ) ( ) 0 Los tres primeros términos del préntesis formn un trinomio udrdo perfeto que se puede epresr omo el udrdo de un inomio. 0 de

9 Funión udráti-euión de do grdo 9 de. Se despej. L fórmul resolvente es ; Deemos lrr, que tmién lo podemos resolver por el método de ompletr el udrdo visto nteriormente. Ejemplo Resolver l siguiente euión 0 Como, -, podemos reemplzr el l fórmul resolvente ; ( ) ( ) ( )( ) ( ) 9 ; ; ; ; Vértie de l práol Es el vlor máimo o mínimo, según el tipo de práol, que puede tomr l funión. Pr lulr ests oordends se puede proeder de dos forms diferentes

10 Unidd Nª 0 de. Trnsformndo l funión de form polinómi en form nóni, proediendo de l siguiente mner:. Se etre ftor omún. Se sum se rest, formndo un trinomio udrdo perfeto. Aplindo propiedd distriutiv d. Llmndo h k reemplzndo el l funión nterior, tenemos ( ) k h donde h k son ls oordends del vértie, es deir: ( ) k h v ; o ien v ;. Como l práol tiene eje de simetrí, entones dee psr por el medio de ls ríes, es deir h reemplzndo en l funión otendremos el vlor de l ordend. h h k

11 Funión udráti-euión de do grdo Los puntos grfir son los siguientes Ordend l origen Ríes Vértie Ejemplo Grfir l funión 0 Aplindo ls fórmuls orrespondientes tenemos:. Ordend l origen: ( 0 ;0). Ceros de l funión ; Si - 0 reemplzndo ; ; ( ) ( ) ; ; de

12 Unidd Nª. Vértie h h h k h h k ( ) ( ) k 9 0 k v ( ; ). Eje de Simetrí h 0 Un vez otenido los puntos rterístios podemos her un grfi proimd de

13 Funión udráti-euión de do grdo Disriminnte Dd l euión de segundo grdo 0, u fórmul resolvente es ;, se denomin disriminnte l epresión se lo simoliz on l letr grieg (delt). El disriminnte determin que tipo de ríes tiene l funión de segundo grdo, soid su euión. Según l resoluión del disriminnte, pueden sueder tres sos:. > 0, l euión tiene dos ríes reles distints. Está soido un funión udráti uo gráfio trvies en dos puntos el eje de ls siss.. 0, l euión tiene un ríz rel dole. Está soido un funión udráti uo gráfio to en un solo punto el eje de ls siss.. < 0, l euión tiene dos ríes omplejs onjugds. Está soido un funión udráti uo gráfio no to en dos puntos el eje de ls siss. Propieddes de ls ríes. Si summos miemro miemro ls ríes de l fórmul de l resolvente de un euión de segundo grdo de l form 0, po- demos deir que: de

14 Unidd Nª L sum de ls ríes de un euión de segundo grdo es igul l rzón del oefiiente linel el oefiiente prinipl mido de signo.. Si multiplimos, hor, ms ríes de l fórmul de l resolvente de un euión de segundo grdo de l form 0, tenemos: ( ) ( ) ( ) El produto de ls ríes de un euión de segundo grdo es igul l rzón del oefiiente independiente el oefiiente prinipl. Euiones Cudrátis Llmmos euiones udrátis o euiones de segundo grdo, ls euiones que pueden reduirse l form 0. Cundo igulmos ero l fórmul de un funión udráti pr verigur sus ríes, plntemos un euión udráti. Ls soluiones reles de est euión, que pueden ser dos, un o ningun, serán los vlores usdos. Deimos que un euión udráti es inomplet undo sus oefiientes o son nulos. Tods pueden resolverse plindo l fórmul resolvente o de Bhskr (primero se reduen l form 0 relizndo tods ls operiones posiles) ; O por el método de ompletr el udrdo que onsiste en: de

15 Funión udráti-euión de do grdo de A prtir de l euión 0, se ps el término l segundo miemro Se s ftor omún el oefiiente del término de segundo grdo se lo ps l segundo miemro omo divisor Trtndo de formr un trinomio udrdo perfeto, se sum rest l mitd del oefiiente del término linel elevdo l udrdo, quedndo sí un trinomio udrdo perfeto Ahor despejmos : Ls ríes del polinomio son: Donde son l ríes del polinomio. Ejemplo: 0 ) ( p ( ) 0 0 0

16 Unidd Nª Si l euión no tiene término linel ( 0), se despej diretmente l inógnit. Si l euión no tiene término independiente ( 0), se etre ftor omún. En este so, 0 es siempre un de ls soluiones. L otr soluión se otiene igulndo ero el otro ftor. Sistem mito de dos euiones Un sistem mito de euiones es un sistem formdo por un funión udráti (práol) un funión linel (ret). Es deir usmos l interseión de ret on práol. Pr lulr los puntos de orte de un práol de euión on un ret m n, se resuelve el sistem de euiones: m n El método que se puede usr es el de igulión. Siendo que si los primeros miemros son igules los segundos tmién lo son, por lo tnto tenemos: m n Despejndo grupndo ( m) ( n) 0 Otenemos un euión de segundo grdo, que se resuelve por los métodos estudido. Est euión puede tener tres tipos de resultdo, según se el disriminnte.. > 0, l ret ort l práol en dos puntos,. Se die que l ret es sente.. 0, l ret to l práol en un punto,. Se die que l ret es tngente l práol.. < 0, l ret no ort l práol. Pr oservr ls posiiliddes, presentremos los siguientes ejemplos de

17 Funión udráti-euión de do grdo 7 de. Igulndo ls euiones, se otiene: Aplindo l fórmul pr resolver un euión udráti, result: Los puntos de interseión son: ( ) ( ) ; ; ( ) ( ) ; ;. 7 Igulndo ls euiones, se otiene: Aplindo l fórmul pr resolver un euión udráti, result:

18 Unidd Nª de 9 Los puntos de interseión son: ( ) ( ) ; ;. Igulndo ls euiones, se otiene: 0 7 0

19 Funión udráti-euión de do grdo 9 de Aplindo l fórmul pr resolver un euión udráti, result: ( ) ( ) 7 Como est ríz udrd no tiene soluión en R, no eisten vlores de que verifiquen l euión plnted. Por lo tnto, no h ningún punto de interseión entre l práol l ret.

20 Unidd Nª Síntesis L funión udráti Son funiones de l form ( 0). Dom ( f ) : R Su gráfio es un urv llmd práol. Signo vlor soluto del oefiiente prinipl : (form po- Pr epresr un funión udráti en l form linómi, se desrrolln ls operiones indids Ríes eros de l funión: son ls siss de los puntos de interseión de l práol on el eje de ls siss. Pr hllrls, si es que eisten, en l fórmul de l funión se reemplz l vrile por 0 se resuelve l euión por ulquier método. Desplzmientos de f ( ) Al desplzr h uniddes en sentido horizontl k uniddes en sentido vertil del gráfio de f(), se otiene el gráfio de l funión: g ( ) ( h) k ( ) ( h) k g Su vértie es el punto: v ( h; k). El eje de simetrí es l ret de euión h. L funión sí epresd se denomin form nóni. Euiones udrátis k h Tods pueden resolverse plindo l fórmul resolvente (primero se reduen l form 0 relizndo tods ls operiones posiles). 0 de

21 Funión udráti-euión de do grdo ; Si l euión no tiene término linel ( 0), se despej diretmente l inógnit. Si l euión no tiene término independiente ( 0), se etre ftor omún. En este so, 0 es siempre un de ls soluiones. L otr soluión se otiene igulndo ero el otro ftor. Construión del gráfio Se pli l fórmul resolvente se otienen ls ríes. Si ests son reles, se mrn los puntos de ontto sore el eje de ls siss. Coordends del vértie: Pr lulr v se puede usr: v v f, es deir se reemplz v en l fórmul de l funión. v ( v ) Vértie v ( ; ) v v Eje de simetrí es un ret vertil que ps por l sis del vértie (se mr on líne punted. 0 ;. Punto de ontto on eje de ls ordends. Se proveh el eje de simetrí pr otener puntos simétrios. Ordend l origen: ( ) Form Cnóni f ( ) ( h) k o f ( ) ( v ) v Pr hllr l fórmul de un funión udráti de l que se onoen el vértie otro punto que pertenee l práol, se reemplzn tods ls oordends en l fórmul f v se despej. ( ) ( ) v Disriminnte > 0 dos ríes reles distints 0 un ríz rel dole < 0 dos ríes omplejs onjugds Máimo mínimo Si el dominio de un funión udráti es R, lnz un máimo o mínimo en l ordend del vértie de su gráfio. de

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

CONJUNTOS, RELACIONES Y GRUPOS

CONJUNTOS, RELACIONES Y GRUPOS CONJUNTOS, RELACIONES Y GRUPOS. CONJUNTOS. Conjunto Un onjunto está ien definido undo se posee un riterio que permit firmr si un elemento pertenee o no diho onjunto.. Inlusión Un onjunto B está inluido

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes: UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

2. Integrales iteradas dobles.

2. Integrales iteradas dobles. 2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE Control Elétrio y Aionmientos Eletroteni Corriente Continu ÍNDCE Temrio. Págin Mgnitudes Elétris. Leyes Fundmentles. Ley de Ohm. 5 Leyes Fundmentles. Leyes de Kirhoff. 8 Trjo Elétrio. Poteni Elétri. 9

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

VECTORES PLANO Y ESPACIO

VECTORES PLANO Y ESPACIO TETO º 3 ECTOES PLAO ESPACIO Conceptos Básicos Ejercicios esueltos Ejercicios Propuestos Edict Arrigd D. ictor Perlt A Diciemre 008 Sede Mipú, Sntigo de Chile Introducción Este mteril h sido construido

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Unidad-4: Radicales (*)

Unidad-4: Radicales (*) Uiversidd de Coepió Fultd de Cieis Veteriri Nivelió de Competeis e Mtemáti (0 Uidd-: Rdiles (* Rdil. Es u epresió de l form: que represet l ríz eésim priipl de. El etero positivo es el ídie u orde del

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS Hemos visto el prolem de enontrr el produto, ddos los ftores. L ftorizión es enontrr los ftores, ddo el produto. Se llmn ftores de un epresión lgeri quellos que multiplidos

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II Fse generl INSTRUCCIONES: El lumno deerá elegir un de ls dos opciones

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Jime rvo Feres Nelink TRICES Y DETERINNTES s mries preen por primer vez hi el ño 8, inroduids por J.J. Sylveser. El desrrollo iniil de l eorí se dee l memáio W.R. Hmilon en 8. En 88,. Cyley inrodue l noión

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333 Tller de Álger. Dr. Blnc M. Prr UIA Tijun 0. Números reles rect numéric. Números reles son todos los números que representmos en l rect numéric. A cd punto de l rect corresponde un número rel pr cd número

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

Vectores en R 2 y R 3

Vectores en R 2 y R 3 Vectores en R R 3 Vectores en R R 3 Mgnitudes esclres vectoriles H mgnitudes que quedn determinds dndo un solo número rel. Por ejemplo: l longitud de un regl, l ms de un cuerpo o el tiempo trnscurrido

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Transformadores METODOLOGÍA GENERALIZADA PARA DETERMINAR LOS GRUPOS DE CONEXIÓN

Transformadores METODOLOGÍA GENERALIZADA PARA DETERMINAR LOS GRUPOS DE CONEXIÓN Nuev Metodologí pr Determinr los Grupos de oneión de Trnsformdores Trnsformdores METODOLOGÍ GENERLID PR DETERMINR LOS GRUPOS DE ONEIÓN Ls regls de formión de los voltjes induidos en los devndos del trnsformdor

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra)

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra) Memáis II preprión pr l PU) Tomo II Inegrles Álger) José Luis Lorene rgón mi mujer, Ruh, mi hijo Dvid. Muhs gris l orreor, el oro José L. Lorene ÍNDICE: Tem. Funiones reles. Definiión límies Tem. Funiones.

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en /o Físic Generl. FCQN. UNM. Ciclo Lectio 008 VECTORES En físic eisten cntiddes que quedn representds por un número, ests cntiddes dimensionles pueden ser: el umento de un lente ( M 3); el coeficiente de

Más detalles

UNIDAD 2 Geometría 2.2 Triángulos 10

UNIDAD 2 Geometría 2.2 Triángulos 10 UNI Geometrí. Triánguos 10. Triánguos OJETIVOS ur e áre e perímetro de triánguos. Otener os dos ánguos de triánguos utiizndo s reiones entre otros ánguos en figurs geométris. ur os dos de un triánguo usndo

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

CAPÍTULO 1. Rectas y ángulos

CAPÍTULO 1. Rectas y ángulos ÍTUO 1 Elementos ásicos de l Geometrí Rects y ángulos 1.1 En Geometrí hy ides ásics que todos entendemos pero que no definimos. Ésts son ls ides de unto, Rect, lno y Espcio. Señlmos un punto con un mrc

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr

Más detalles

c. m a t e m á t i c a s

c. m a t e m á t i c a s Guí de mtemátics ingeníeris Universidd Tecnológic de Agusclientes c. m t e m á t i c s Guí de estudio Educción...nuestr visión hci el futuro Eloro: M en C Mónic González Rmírez Guí de mtemátics ingeníeris

Más detalles

APUNTES DE MATEMÁTICA. Geometría Analítica

APUNTES DE MATEMÁTICA. Geometría Analítica . Plno Crtesino Rects.... Producto Crtesino... 3 3. Distnci... 3 4. Gráfics de línes rects... 4 5. Ecución de l rect... 6 6. Prlelismo perpendiculridd... 8 7. Sistems de ecuciones lineles... 9 8. Distnci

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICA. NOTA EDISON MEJIA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICA. NOTA EDISON MEJIA MONSALVE. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICA. ASIGNATURA: MATEMATICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles