Informe Curricular de los Resultados de las Pruebas Nacionales, Primera y Segunda Convocatorias 2014

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Informe Curricular de los Resultados de las Pruebas Nacionales, Primera y Segunda Convocatorias 2014"

Transcripción

1 Año de la Superación del Analfabetismo" Dirección de Evaluación de la Calidad Educativa Informe Curricular de los Resultados de las Pruebas Nacionales, Primera y Segunda Convocatorias 2014 Área: Matemática Equipo Técnico de Matemática María Altagracia Pérez F. Víctor Manuel Rosario A. Yanile Altagracia Valenzuela C. Santo Domingo, República Dominicana, Diciembre

2 ÍNDICE INTRODUCCIÓN... 4 I. OCTAVO GRADO DEL NIVEL BASICO Promedios de puntajes en las Pruebas Nacionales de Matemática Promedio de respuestas correctas e incorrectas Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas Nacionales de Matemática de Octavo Grado Análisis pedagógico de los ítems que resultaron más fáciles y más difíciles Errores comunes cometidos por los estudiantes en las pruebas de Octavo Grado II. TERCER CICLO DE ADULTOS Promedios de puntajes en las Pruebas Nacionales de Matemática Promedio de respuestas correctas e incorrectas Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas de Matemática en Tercer Ciclo de Adultos Análisis pedagógico de los items que resultaron más fáciles y más difíciles Errores más comunes cometidos en las pruebas de Tercer Ciclo de Adultos III. NIVEL MEDIO: MODALIDAD GENERAL Promedios de puntajes en las Pruebas Nacionales de Matemática Promedio de respuestas correctas e incorrectas Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas Nacionales de Matemática del Nivel Medio Modalidad General Análisis pedagógico de los ítems que resultaron más fáciles y más difíciles Errores más comunes cometidos en las pruebas de Media General IV. NIVEL MEDIO: MODALIDAD TÉCNICO PROFESIONAL Promedios de puntajes en las Pruebas Nacionales de Matemática Promedio de respuestas correctas e incorrectas Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas Nacionales de Matemática en Media Técnico- Profesional Análisis pedagógico de los ítems que resultaron más fáciles y más difíciles Errores más comunes cometidos en las pruebas de Media Técnico Profesional CONCLUSIÓN ANEXOS

3 ÍNDICE DE TABLAS Tabla No. 1. Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en 8 o Grado por convocatoria Tabla No. 2. Composición de la prueba de Matemática, 8 o grado del Nivel Básico y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a convocatoria de las Pruebas Nacionales Tabla No. 3 Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en 3 er Ciclo de Adultos por convocatoria...16 Tabla No. 4 Composición de la prueba de Matemática, 3 er Ciclo de Adultos del Nivel Básico y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales Tabla No. 5 Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en el Nivel Medio, Modalidad General, por convocatoria...25 Tabla No. 6 Composición de la prueba de Matemática, Nivel Medio, Modalidad General y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a convocatoria de las Pruebas Nacionales Tabla No. 7 Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática del Nivel Medio Modalidad Técnico Profesional por convocatoria...36 Tabla No. 8 Composición de la prueba de Ciencias Sociales, Nivel Medio, Modalidad Técnico Profesional y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales Tabla No. 9 Descripción de los niveles taxonómicos en los procesos cognitivos de Matemática...48 Tabla No. 10 Descripción de los dominios en Octavo Grado...49 Tabla No. 11 Tabla de especificaciones para Octavo Grado...49 Tabla No. 12 Descripción de los dominios en Tercer Ciclo de Adultos...50 Tabla No. 13 Tabla de especificaciones para Tercer Ciclo de Adultos...50 Tabla No. 14 Descripción de los dominios en Media Modalidad General...51 Tabla No. 15 Tabla de especificaciones para Media Modalidad General

4 Tabla No. 16 Descripción de los dominios en Media Modalidad Técnico Profesional...52 Tabla No. 17 Tabla de especificaciones para Media Modalidad Técnico Profesional...52 ÍNDICE DE GRÁFICAS Gráfica No. 1 Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 de Matemática, 8 o grado del Nivel Básico... 8 Gráfica No. 2 Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 de Matemática, 3 er Ciclo de Adultos del Nivel Básico...17 Gráfica No. 3 Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 de Matemática, Nivel Medio, Modalidad General...27 Gráfica No. 4 Porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 de Matemática, Nivel Medio, Modalidad Técnico Profesional

5 INTRODUCCIÓN Las Pruebas Nacionales son instrumentos para evaluar los aprendizajes de los estudiantes de acuerdo con el currículo oficial. Uno de los propósitos de dichas pruebas es determinar la calidad o los logros en los aprendizajes de los estudiantes al finalizar el Octavo Grado y el Tercer Ciclo de Adultos para el Nivel Básico, así como también al finalizar el Nivel Medio en su Modalidad General y Técnico Profesional. Para el diseño de las Pruebas Nacionales de Matemática, se toman en cuenta los propósitos de cada grado o nivel y los ejes temáticos del área, que aportan indicadores de evaluación para los diferentes contenidos que presenta el currículo. Estos contenidos se reorganizan en grandes categorías llamadas dominios (Ver anexo). En este informe se presenta el análisis pedagógico de la primera y la segunda convocatorias de las Pruebas Nacionales de Matemática para orientar en la toma de decisiones y propiciar la discusión y la reflexión de toda la comunidad educativa en torno al desarrollo del currículo de Matemática, la práctica docente, los aciertos y errores cometidos por los estudiantes. Los aciertos y desaciertos en las respuestas de los estudiantes se analizan usando como criterio el porcentaje de respuestas en cada opción del ítem. A partir de la opción elegida, se determina el acierto o error y se modelan ejemplos. Se presentan, además, los promedios de puntajes por grados y/o niveles, los promedios de porcentajes de respuestas correctas e incorrectas por dominios y contenidos, los ítems que resultaron fáciles (abarca fáciles y muy fáciles) y difíciles (abarca difíciles y muy difíciles) por dominios y también se modelan ejemplos con análisis pedagógico. Para las categorías de fácil y difícil se considera el parámetro estadístico dificultad del ítem. Según los análisis estadísticos aplicados a las Pruebas, un ítem se considera fácil si lo contesta correctamente más del 74% de la 4

6 población, aceptable en dificultad si lo contesta del 27% al 73% contesta correctamente menos del 27% de la población. y difícil si lo 5

7 Informe Curricular de los resultados de Pruebas Nacionales de Matemática, Primera y Segunda convocatorias 2014 I. OCTAVO GRADO DEL NIVEL BÁSICO 1.1. Promedios de puntajes en las Pruebas Nacionales de Matemática El promedio del puntaje obtenido por los estudiantes de Octavo Grado en ambas convocatorias se muestra en la siguiente tabla. Tabla No. 1. Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en 8 o Grado por convocatoria. Convocatoria Promedio de puntajes Total estudiantes examinados Primera ,431 Segunda ,621 Fuente: Equipo de estadística Dirección de Evaluación de la Calidad Como se observa en la tabla, el puntaje promedio obtenido en la primera convocatoria es superior al obtenido en la segunda pero en ambos casos es bajo Promedio de respuestas correctas e incorrectas Para una mejor comprensión de los resultados de las Pruebas Nacionales de Matemática para Octavo Grado se analiza la estructura de la prueba. El contenido curricular se organiza en los siguientes dominios: numérico (número reales y operaciones), algebraico (expresiones algebraicas, ecuaciones e inecuaciones), geométrico (geometría de coordenadas, transformaciones geométricas y cuerpos geométricos), métrico (perímetro, área y volumen) y el estadístico-probabilístico (estadística y probabilidad). 6

8 Tabla No. 2. Composición de la prueba de Matemática, 8 o grado del Nivel Básico y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 Dominios Números Reales y Operaciones Expresiones algebraicas Número de ítems / dominio % Ítems/ dominio % Respuestas correctas (RC) Fuente: Equipo de estadística Dirección de Evaluación de la Calidad % Respuestas incorrectas (RI) Geometría Mediciones Estadística y Probabilidad Total

9 Gráfica No. 1. Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 de Matemática, 8 o grado del Nivel Básico Prom. % RC Prom. % RI 20 0 Números Reales y Operaciones Expresiones Algebraicas Geometría Mediciones Estadística y Probabilidad Fuente: Equipo de estadística Dirección de Evaluación de la Calidad El resumen consolidado de ambas convocatorias muestra que el dominio que tuvo mayor porciento de respuestas correctas fue el Estadística y Probabilidad con 55.1% seguido por Geometría con un 49.11%. Se evidencia además, que el mayor porcentaje de respuestas incorrectas correspondió al dominio Numérico. Los dominios Numérico, Algebraico y Métrico presentaron bajos resultados en relación a logros de aprendizaje de los estudiantes, situación que se evidencia en los altos porcentajes de respuestas incorrectas y una baja tendencia en los porcientos de respuestas correctas que está muy por debajo del 50%. 8

10 1.3. Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas Nacionales de Matemática de Octavo Grado. Dominio Numérico Fáciles: identificar números opuestos y ubicar puntos con el criterio a la derecha y a la izquierda de otro con en la recta numérica. Difíciles: Comparar fracciones con diferentes signos; interpretar problemas comparando fracciones; sumar decimales; escribir radicales en forma más simple; clasificar números racionales; multiplicar radicales y números mixtos. Dominio Algebraico Fáciles: Plantear la ecuación algebraica correspondiente a una situación concreta con edades; traducir al lenguaje común una expresión algebraica y viceversa; resolver inecuaciones e identificar el mínimo valor de la solución; resolver inecuaciones lineales. Difíciles: Resolver un problema que se expresa mediante una inecuación con coeficiente fraccionario e identificar el procedimiento correcto para resolver una ecuación lineal en una variable. Dominio Geométrico Fáciles: identificar el mosaico que genera una tesela; reconocer la reflexión de un objeto en el entorno cotidiano; identificar el punto que le corresponde en el plano cartesiano a un par ordenado; ubicar puntos en el plano cartesiano. Difíciles: Resolver Pitágoras. problemas y calcular altura de objeto aplicando teorema de Dominio Métrico Fáciles: Calcular y comparar áreas de figuras en cuadrícula; comparar perímetros de figuras en cuadrícula; comparar áreas de figuras en cuadricula. 9

11 Difíciles: Calcular área total de una figura dividida en secciones; calcular la altura de un objeto cotidiano en forma de cono que demanda usar el teorema de Pitágoras; calcular área de la región sombreada en la circunferencia; comparar volúmenes; calcular área lateral de un cono; resolver inecuaciones con coeficientes fraccionarios; calcular perímetros de figuras en cuadrícula; calcular área de la esfera; aproximar medidas en metros; comparar números decimales con diferentes cifras. Dominio Estadístico-Probabilístico Fáciles: Identificar la mayor frecuencia y calcular la suma de frecuencias absolutas en un gráfico de barras y de líneas; calcular el tamaño de la muestra a partir de una tabla de frecuencias; determinar la moda en un conjunto de datos y en un gráfico de barras; calcular probabilidad simple; interpretar información en un pictograma. Difíciles: no se encontró evidencia de ítems difíciles Análisis pedagógico de los ítems que resultaron más fáciles y más difíciles Se presenta un análisis pedagógico de algunos de los items que resultaron más difíciles en función de los errores que cometen los estudiantes, fundamentado en tres categorías: contenido del ítem, operación cognitiva y contexto. A continuación se modelan con ejemplos algunos casos: Análisis pedagógico de los ítems que resultaron más fáciles 1-El grafico muestra la cantidad de dinero gastada en merienda por un grupo de niños. Cuánto gastaron Ramón y Luis? A) 160 B) 175 C) 110 D)

12 Información del ítem Respuesta correcta: A Dominio: Estadístico Contenido: Gráfica de barras Nivel Taxonómico o complejidad: 2 Análisis pedagógico Contenido del ítem: el contenido del ítem es de fácil uso debido a que se presenta en un gráfico común de barras y las cantidades que se suman son números enteros. Para contestarlo correctamente tienen que conocer el concepto de gráfico de barras, de frecuencia absoluta, además deben ubicar categorías en un gráfico y aplicar la operación de adición. Operación cognitiva: La demanda cognitiva del ítem es interpretar la información de cada categoría, asignarle su frecuencia absoluta y luego sumar de modo que tienen que combinar operaciones cognitivas. Contexto: se refiere a información cotidiana de gastos de dinero en merienda. Reflexión Pedagógica: El 82.15% de los estudiantes contestó correctamente este ítem, mostrando conocimiento del contenido, dominio sobre las operaciones cognitivas en un contexto que les resulta familiar. 11

13 2- Cuántas unidades cuadradas de área tiene la figura sombreada? A) 12 B) 14 C) 24 D) 30 Información del ítem Respuesta correcta: A Dominio: Métrico Contenido: Área de figuras en cuadrícula Nivel Taxonómico: 2 Análisis pedagógico Contenido del ítem: Cálculo de área de figuras geométricas presentadas en cuadrícula. El estudiante debe dominar el concepto de área y de unidad cuadrada de área. Operación cognitiva: Identificar la unidad cuadrada de área y luego contar la cantidad de unidades sombreadas. Contexto: presentación de la figura geométrica en cuadrícula. El hecho de que la figura se presente en una cuadrícula y que el valor de todos sus lados viene dado por las unidades en la cuadrícula facilita la operación porque no hay que hacer cálculos adicionales Reflexión Pedagógica: El 82.58% de los estudiantes contestó correctamente este ítem, lo que indica que dominan el contenido de cálculo de área de figuras dadas en cuadrículas. 12

14 Análisis pedagógico de los ítems que resultaron más difíciles 1- Pedro, Kelvin, Rafael y Miguel deben llegar a la meta de recorrer un km en una competencia; si un supervisor anota el recorrido de cada uno como sigue: Pedro: 0.8 km, Kelvin: 0.57 km, Rafael: 0.68 km, Miguel: 0.71 km. Cuál está más cerca de la meta? A) Rafael B) Kelvin C) Pedro D) Miguel Información del ítem Respuesta correcta: C Dominio: Numérico Contenido: Números reales Nivel Taxonómico: 2 Análisis Pedagógico Contenido del ítem: forma decimal de números racionales Operación cognitiva: Comparar números decimales Contexto El contexto del ítem está relacionado con una caminata en kilómetros para llegar a una meta. Reflexión Pedagógica: La operación cognitiva comparar puede resultar más difícil cuando se trata de números con varias cifras decimales. En este ítem se necesita comparar números racionales en notación decimal pero sólo el 22.8% de los estudiantes lo contestó correctamente. La mayoría responde por ejemplo que 0.68 es mayor que 0.8, interpretando que un decimal es mayor que otro de acuerdo a la 13

15 cantidad de cifras decimales que tenga y no al valor de posición en sí. Puede observarse que del 67% que contesto incorrectamente, más del % escogió la opción D ya que relacionan que un decimal es mayor por la cantidad de cifras decimales. Se recomienda trabajar estrategias para afianzar el valor posicional de decimales. 2- De las siguientes expresiones Cuál es verdadera? 2 1 A) B) C) D) 6 6 Información del ítem Respuesta correcta: B Dominio: Numérico Contenido: Números reales Nivel Taxonómico: 2 Análisis Pedagógico Contenido del ítem: Fracciones Operación cognitiva: comparar números fraccionarios Contexto: representación numérica de fracciones comunes Reflexión Pedagógica: Responder a este ítem involucra habilidad de comparar racionales en formas fraccionarias y los estudiantes presentaron dificultad para establecer estas comparaciones ya que solo el 21.35% de los estudiantes lo contestó correctamente, La mayoría responde que dos fracciones opuestas son iguales. Al comparar números fraccionarios omiten el signo de las fracciones comparadas y responden que dos fracciones opuestas son iguales. Se recomienda trabajar estrategias para afianzar la relación de orden entre números fraccionarios. 14

16 1.5. Errores comunes cometidos por los estudiantes en las pruebas de Octavo Grado Al comparar números decimales contestan que 0.32 es mayor que 0.4. Desconocen el valor de posición para decimales Al clasificar fracciones iguales no discriminan el signo, por ejemplo, escriben que -1/2 = 1/2. Además al compararlas no discriminan cual es mayor y menor, por ejemplo, señalan que ¼ es mayor que ½. Por otro lado señalan que 24/42 es una fracción equivalente de 6/7 evidenciando que multiplican numerador y denominador por números distintos. Al plantear una situación que demanda dividir la longitud de una soga de 8m en pedazos de 1/2m, multiplican 8*1/2 obteniendo 4 metros, cuando lo correcto es dividir 8m entre 1/2= 8m*2 = 16m. Al simplificar un número irracional como 40 escriben 4 10, al parecer lo descomponen en dos factores cuyo producto es 15 el radicando. Se deben socializar las diferentes estrategias que se usan para simplificar radicales como buscar dos factores que su producto sea 40 que incluya el mayor factor que tenga raíz cuadrada exacta 40 4* o buscar todos los factores primos del radicando para simplificar. Interpretan 3x como 3+x, no interpretan correctamente que 3x es el producto del coeficiente 3 por la variable x, situación que equivale a escribir 3x= x+x+x. Al calcular la hipotenusa de un triángulo rectángulo suman las medidas lineales de los lados, por ejemplo si los catetos miden 3u y 4u, responden que la hipotenusa es 7u. Al calcular un cateto restan el valor del cateto conocido a la hipotenusa sin aplicar el teorema de Pitágoras. En conversiones de unidades establecen que un litro es 100cm cm 3 cuando es

17 En el manejo de la fórmula C= 2πr, para calcular el perímetro de una circunferencia consideran que π=2cr, lo que evidencia deficiencias en el uso de las propiedades de la igualdad en ecuaciones. Muestran deficiencias al calcular áreas de regiones sombreadas en figuras geométricas, cuando tienen que hacer sumas o restas de áreas calculadas previamente. II. TERCER CICLO DE ADULTOS 2.1. Promedios de puntajes en las Pruebas Nacionales de Matemática Tabla No.3. Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en 3 er Ciclo de Adultos por convocatoria Convocatoria Calificación promedio Cantidad de estudiantes Primera ,925 Segunda ,170 Fuente: Equipo de estadística Dirección de Evaluación de la Calidad Como se observa en la tabla, el puntaje promedio obtenido en la primera convocatoria es superior al obtenido en la segunda pero en ambos casos es bajo Promedio de respuestas correctas e incorrectas 16

18 Tabla No. 4 Composición de la prueba de Matemática, 3 er Ciclo de Adultos del Nivel Básico y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 Dominios Número de ítems/ dominio % ítems/ dominio % Respuestas correctas (RC) Fuente: Equipo de estadística Dirección de Evaluación de la Calidad % Respuestas incorrectas (RI) Numérico Geométrico Métrico Estadístico Total Gráfica No. 2. Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 de Matemática, 3 er Ciclo de Adultos del Nivel Básico Prom. % RC Prom. % RI Números enteros y racionales Geometría Mediciones Estadística y Probabilidad Fuente: Equipo de estadística Dirección de Evaluación de la Calidad 17

19 Según muestra el resumen consolidado, el dominio que obtuvo el mayor porcentaje de respuestas correctas en ambas convocatorias fue Estadística y Probabilidad con un 52.31%, seguido de números enteros y racionales con un 48.43% de respuestas correctas, el mayor porcentaje de respuestas incorrectas lo obtuvo mediciones con un % seguido muy de cerca por geometría con un 62.88% de respuestas incorrectas En general, los porcentajes de respuestas incorrectas son más altos que los porcentajes de respuestas correctas en todos los dominios, excepto en el dominio de estadística y probabilidad que el porcentaje de respuestas correctas fue 52.31% Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas de Matemática en Tercer Ciclo de Adultos. Dominio Numérico Fáciles: Identificar el desarrollo de una potencia entera de un número; resolver problemas de una situación de compras con adición y sustracción de números enteros; resolver problema de sustracción de números; resolver e interpretar problemas de compra-venta, ganancia y pérdida; identificar números opuestos en la recta numérica. Difíciles: Expresar diezmilésimas partes en notación científica; comparar números decimales; resolver problema que demanda sumar y comparar decimales; resolver problemas que demanda suma y resta combinada de números enteros. Dominio Geométrico Fáciles: Identificar segmentos y ángulos congruentes, identificar ángulo llano, aproximar medida de ángulos, identificar rectas paralelas. Difíciles: Calcular la altura de un objeto y resolver problemas usando el teorema de Pitágoras; calcular el punto extremo desconocido de un segmento dados el otro extremo y su punto medio; escribir las coordenadas de los extremos de un segmento dado en el plano cartesiano; calcular punto medio de un segmento dados los puntos 18

20 extremos; ubicar los meridianos entre los cuales se encuentra el mapa de la isla de Santo Domingo en un geoplano; aproximar la longitud de la diagonal de un triangulo rectángulo dado en cuadrícula; determinar los pares ordenados de los vértices de un triángulo en el plano cartesiano; calcular distancia entre dos puntos del plano en cuadrícula; identificar rectángulo en una cuadricula; resolver un problema que implica calcular la altura de un triangulo rectángulo; comparar medidas de segmentos en una circunferencia; ubicar puntos calculando y comparando distancias en el plano cartesiano; identificar la ordenada de un punto dado en el plano cartesiano. Dominio Métrico Fáciles: Identificar que un recipiente está lleno hasta las tres cuartas partes. Difíciles: Calcular área lateral de un cilindro dados, los datos el gráfico y la fórmula; aproximar la medida de un segmento dado; calcular el volumen de un cono recto dados los datos y la fórmula; calcular el volumen de un prisma rectangular y de un cubo; resolver problemas que implican convertir pies a pulgadas; calcular la altura de un cono. Dominio Estadístico-Probabilístico Fáciles: Identificar la mayor frecuencia de un gráfico de líneas; interpretar información en un gráfico circular; calcular la muestra a partir de un gráfico de barras; interpretar el resultado de una probabilidad simple; identificar la moda de un conjunto de datos; interpretar información en un pictograma. Difíciles: Interpretar información en tabla; identificar la muestra en un grupo de datos; comparar probabilidades en ruletas; calcular e interpretar información en un pictograma dada una escala Análisis pedagógico de los items que resultaron más fáciles y más difíciles 19

21 Se presenta un análisis pedagógico de algunos de los ítems que resultaron más difíciles en función de los errores que cometen los estudiantes, fundamentado en tres categorías: contenido del ítem, operación cognitiva y contexto. A continuación se modelan con ejemplos algunos casos: Análisis pedagógico de los ítems que resultaron más fáciles 1- En qué año los ingresos fiscales fueron mayores según muestra el siguiente gráfico? A) 2000 B) 2004 C) 2005 D) 2006 Información del ítem Respuesta correcta: B Dominio: Estadístico Contenido: Gráfica de líneas o poligonal. Nivel taxonómico: 1 Análisis pedagógico Contenido del ítem: Para contestar este ítem el estudiante debe saber leer información a partir de un gráfico poligonal Operación cognitiva: Identificar la mayor frecuencia absoluta en la línea poligonal. Contexto: Se presenta información estadística en un gráfico poligonal 20

22 Reflexión pedagógica: El 79.52% de los estudiantes contestó correctamente el ítem. La facilidad de este ítem se puede justificar porque la respuesta se puede ubicar por discriminación visual, ya que el enunciado pregunta por el mayor valor que se identifica en el punto más alto de la gráfica. 2- Victor tenía en su cuenta de ahorro la suma de $4525 y retiró $2100. Cuál es su balance? A) $2,425 B) $2,475 C) $2,485 D) $3,575 Información del ítem Respuesta correcta: A Dominio: Numérico Contenido: Sustracción de números enteros Nivel taxonómico: 3 Análisis pedagógico Contenido del ítem: La sustracción de números puede resultar fácil cuando son números enteros Operación cognitiva: Tienen que relacionar el concepto de retirar de una cuenta con la operación sustracción y luego realizar la operación con números enteros Contexto: El contexto de retirar dinero de una cuenta bancaria puede resultar familiar para personas adultas Reflexión pedagógica: El 80.38% de los estudiantes contestó correctamente el ítem. Las situaciones problémicas cuando están relacionadas a un contexto cotidiano pueden resultar de fácil resolución. Como la operación sustracción resulta difícil por la combinación de procesos que implica de desagrupar y agrupar, sería conveniente que 21

23 en el aula se plantearan situaciones problémicas que la impliquen en contextos familiares al estudiante Análisis pedagógico de los ítems que resultaron más difíciles 1- A qué altura del edificio está la escalera que se muestra en el siguiente gráfico? A) 16 pies B) 6 pies C) 8 pies D) 4 pies Información del ítem Respuesta correcta: C Dominio: Geométrico Contenido: Teorema de Pitágoras Nivel taxonómico: 3 Análisis pedagógico Contenido del ítem: El ítem demanda calcular un cateto de un triángulo rectángulo dado, usando el teorema de Pitágoras, dadas las longitudes de los otros lados con medidas en números enteros. Operación cognitiva: A partir de la gráfica dada, tienen que asociar la letra h con la altura del triángulo e inferir que el triángulo es rectángulo para hacer la correspondencia con el teorema de Pitágoras y aplicarlo. Contexto: El contexto es familiar ya que presenta una escalera recostada de una pared Reflexión pedagógica: El 19.29% de los estudiantes contestó correctamente este ítem, resultando difícil. El 57% respondió la opción A que es el resultado de sumar las unidades lineales de la hipotenusa y el otro cateto que es un error recurrente en las 22

24 pruebas en años anteriores mostrando desconocimiento en el manejo de situaciones que demanda el uso del teorema de Pitágoras. 2- Cuánto mide el área lateral de un cilindro con 7 dm de radio y 11dm de altura? A) dm 3 B) dm 3 C) dm 3 D) dm 3 Sugerencia Al = πdh Información del ítem Respuesta correcta: C Dominio: Métrico Contenido: área lateral de un cilindro Nivel taxonómico: 2 Análisis pedagógico Contenido del ítem: Para calcular el área lateral de un cilindro con la fórmula dada se necesita determinar el valor del diámetro y la altura. Como se da el valor del radio, a partir de este se debe calcular el valor del diámetro. Cuando se desarrolla la fórmula se tiene que dominar la multiplicación de números enteros por decimales. Operación cognitiva: Los estudiantes deben inferir que falta el valor del radio para poder evaluar la fórmula Contexto: En el enunciado se proveen las medidas del radio y la altura del cilindro en el lenguaje común y la fórmula que ayuda a que una vez tengan los datos puedan evaluarla. Reflexión pedagógica: El 12.90% de los estudiantes contestó correctamente el ítem. La mayoría se dividió casi equitativamente entre las opciones A y B. La opción A es el resultado de multiplicar pi (π) por la altura cometiendo el error de omitir el valor del diámetro, la opción B es el resultado del multiplicar el pi por el radio y la altura sin calcular el diámetro o con su equivalente de dos pi. En la docencia se deben incluir este tipo de ejercicios donde faltan datos que se infiere de alguna propiedad de la 23

25 figura o por la relación de los datos dados, para reforzar la inferencia y el razonamiento matemático Errores más comunes cometidos en las pruebas de Tercer Ciclo de Adultos Al expresar un decimal como en notación científica lo escriben con exponente positivo como 23*10 3. Esto evidencia que desconocen que un decimal menor que la unidad se escribe con exponente negativo. Muestran dificultades para resolver problemas con temperatura que demanda sumas o restas de números decimales Al calcular la altura de un triángulo rectángulo suman las medidas lineales de los catetos sin usar el teorema de Pitágoras. Aproximan incorrectamente la medida de un ángulo obtuso. Confunden los conceptos sobre cuadrado y rectángulo Muestran deficiencias al identificar formas cuadradas y rectangulares en cuadrículas. Pocos pudieron ubicar los meridianos entre los que se ubica la isla Española, dados los meridianos en cuadrícula. Pocos pudieron identificar la definición del volumen de un prisma, lo que puede suponer que trabajan con la fórmula a nivel de símbolos, sin la comprensión de lo que éstos significan y cómo se relacionan. Dado el punto medio de un segmento y un extremo del segmento, calculan el otro extremo invirtiendo el punto medio Al identificar las coordenadas del extremo de un segmento dado en el plano invierten los valores de x, y, o sea, si un punto en el plano es (2,3) escriben (3,2). Confunden ordenada con abscisa y viceversa. Al calcular el volumen de un cilindro V=πr 2 h dado el gráfico con el radio y la altura, no calculan el cuadrado del radio y solo multiplican el pi por el radio y altura. 24

26 Al calcular el volumen de un prisma, suman las longitudes de los lados de la base y la altura por ejemplo en la figura dicen que el volumen es 13 cm. Pocos interpretaron la información dada en un gráfico circular y en un gráfico de barras para calcular el tamaño de la muestra estadística encuestada. III. NIVEL MEDIO: MODALIDAD GENERAL 3.1. Promedios de puntajes en las Pruebas Nacionales de Matemática Tabla No. 5 Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática en el Nivel Medio, Modalidad General, por convocatoria Convocatoria Promedio de puntajes Total estudiantes examinados Primera ,496 Segunda ,713 Fuente: Equipo de estadística Dirección de Evaluación de la Calidad. Como se observa en la tabla el puntaje promedio obtenido en la primera convocatoria es ligeramente superior al obtenido en la segunda pero en ambos casos es bajo. 25

27 3.2. Promedio de respuestas correctas e incorrectas Tabla No. 6. Composición de la prueba de Matemática, Nivel Medio, Modalidad General y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 Dominios Número de ítems/ dominio % de ítems / dominio % Respuestas correctas (RC) % Respuestas incorrectas (RI) Lógico conjuntista Algebraico Geométrico Trigonométrico Estadístico Cálculo Total Fuente: Equipo de estadística Dirección de Evaluación de la Calidad 26

28 Lógico conjuntista Algebraico Geométrico Trigonométrico Estadístico Calculo Gráfica No. 3. Porcentajes de respuestas correctas e incorrectas por dominio en la 1 a y 2 a convocatoria de las Pruebas Nacionales 2014 de Matemática, Nivel Medio, Modalidad General Respuestas correctas 20 Respuestas incorrectas 0 Fuente: Equipo de estadística, Dirección de Evaluación de la Calidad Según muestra la tabla anterior, el dominio que tuvo el mayor porcentaje de respuestas correctas fue el de Estadística, Probabilidad y Análisis Combinatorio, con 49.06%; el que tuvo mayor porcentaje de respuestas incorrectas fue Cálculo con 68.09% seguido por el Trigonométrico con 64.4%. En general todos los dominios tuvieron más respuestas incorrectas que correctas en las dos convocatorias y cabe resaltar que los % de respuestas correctas fueron bajos si consideramos que se mantuvieron muy por debajo del 50% a excepción del estadístico que rondó el 49%. 27

29 3.3. Descripción de los ítems que resultaron fáciles y los que resultaron difíciles en las Pruebas Nacionales de Matemática del Nivel Medio Modalidad General. Dominio Lógico Conjuntista Fáciles: Traducir del lenguaje lógico al lenguaje común combinando conjunción e implicación lógica; determinar el producto cartesiano de dos conjuntos dados; identificar la conjunción en un enunciado dado; traducir una conjunción del lenguaje lógico al lenguaje cotidiano; identificar la conjunción a partir de una proposición compuesta escrita en lenguaje común. Difíciles: resolver problemas usando intersección de conjuntos. Dominio Algebraico Fáciles: traducir una expresión algebraica al lenguaje común; identificar características de términos semejantes; traducir un problema cotidiano a un sistema de ecuaciones lineales en dos variables; resolver problemas que se traducen a un sistemas de ecuaciones lineales en dos variables; determinar el enésimo término de una sucesión aritmética siendo la diferencia común un número entero; identificar una función a partir de un conjunto de puntos en el plano; reconocer el punto correspondiente en el plano a un número complejo en forma binómica; identificar el gráfico correspondiente a un número complejo en forma binómica; identificar el sistema de ecuaciones lineales que le corresponde a una gráfica dada. Difíciles: Expresar un logaritmo en su forma exponencial; calcular el valor numérico de una expresión algebraica que involucra cuadrado y cubos de binomios; encontrar valores desconocidos aplicando determinante de una matriz; identificar la función racional correspondiente a una gráfica; resolver ecuaciones logarítmicas; calcular y evaluar el producto de dos funciones algebraicas; simplificar una expresión racional expresada con exponente negativo; resolver operaciones de suma y resta de funciones combinadas; identificar el gráfico correspondiente a un sistema de ecuaciones lineales dado. 28

30 Dominio Geométrico Fáciles: identificar la transformación geométrica aplicada a una figura en el plano; traducir al lenguaje algebraico una suma de área a partir de una figura geométrica; aplicar propiedades de segmentos coliniales; identificar el centro de giro de una rotación de una figura en el plano; identificar el paralelismo en croquis. Difíciles: identificar la gráfica de una elipse; aplicar el teorema fundamental del triángulo y del triangulo isósceles para calcular medidas de ángulo en triángulos; convertir medida de ángulos de radianes a grados sexagesimales; calcular medidas de ángulos identificados en el enunciado como par lineal sin presentar gráfico. Dominio Trigonométrico Fáciles: Resolver una ecuación trigonométrica lineal; identificar el valor de la razón seno de un ángulo agudo a partir de triángulos dados; identificar la forma trigonométrica de un número complejo dada la gráfica en el plano. Difíciles: identificar la fórmula para calcular el ángulo que forma un número complejo en forma binómica con el eje x; calcular el valor numérico de una expresión trigonométrica con ángulos notables; calcular la tangente de un ángulo doble, resuelve problemas de resolución de triángulos rectángulos. Dominio Estadístico-Probabilístico Fáciles: Identificar la mayor frecuencia de una variable en un gráfico de barras; determinar la mediana de un conjunto de datos a partir de una tabla de frecuencia; identificar el gráfico circular que corresponde a porcentajes dados; identificar el intervalo de mayor frecuencia a partir de un histograma; interpretar probabilidad simple usando el cociente de probabilidad; identificar la menor frecuencia absoluta en una gráfica de líneas; Identificar una conclusión a partir de una situación de probabilidad. 29

31 Difíciles: calcular combinaciones de objetos dados los datos y la fórmula; resolver problemas usando permutaciones; calcular probabilidades compuestas; interpretar informaciones en tablas. Dominio del Cálculo Fáciles: no hay evidencias de ítems que resultaran fáciles en este dominio. Difícil: Calcular la primera derivada de una función cúbica; calcular límite de una función racional; identificar el límite de la gráfica de una función por secciones; evaluar por sustitución directa un límite; calcular la tercera derivada de un monomio de cuarto grado; calcular el límite del producto de dos funciones; determinan la segunda derivada de un monomio de sexto grado Análisis pedagógico de los ítems que resultaron más fáciles y más difíciles Se presenta un análisis pedagógico de algunos de los ítems que resultaron más fáciles y más difíciles en función de los errores que cometen los estudiantes, fundamentados en tres categorías: contenido del ítem, operación cognitiva y contexto. A continuación se modelan con ejemplos algunos casos: 30

32 Análisis pedagógico de los ítems que resultaron más fáciles 1- Emil compró dos paquetes de galletas y tres jugos de frutas por $55 y Luis compró 3 paquetes de galleta y dos jugos por $45. Si llamamos g a las galletas y j a los jugos Cuál de los siguientes sistemas plantea matemáticamente el problema? Información del ítem Respuesta correcta: A Dominio: Algebraico Contenido: Sistemas de dos ecuaciones lineales en dos variables Nivel taxonómico: 2 2g 3 j 55 A) 3g 2 j 45 2 j 3g 55 B) 2g 3 j 45 5 j 5g 55 C) 6 j 6g 45 2g 2 j 55 D 3 j 3g 45 Análisis pedagógico Contenido del ítem: La facilidad del ítem puede estar en que la traducción de una situación de la vida real a una ecuación simultánea cuando es directa o los datos están explícitos. Operación cognitiva: Interpretar y traducir del lenguaje común al lenguaje algebraico aplicando un modelo de dos ecuaciones lineales en dos variables. Contexto: Presenta un problema cotidiano de compra de productos muy conocidos Reflexión pedagógica: El 74.08% de los estudiantes respondió correctamente el ítem. Operaciones complejas como modelar matemáticamente pueden resultar fáciles cuando se presentan en un contexto familiar la vida del estudiante. 31

33 2- Con cuál de los triángulos puede definirse la función coseno P=3/5? Información del ítem Respuesta correcta: C Dominio: Trigonométrico Contenido: Razones trigonométricas de ángulos agudos Nivel taxonómico: 2 Análisis pedagógico Contenido del ítem: demanda conocer la definición de la función coseno en un triángulo rectángulo dados los valores de los lados e identificar el triángulo que define dicha función. Operación cognitiva: identificar el ángulo agudo para el cual se define la función, relacionar correctamente los lados que definen la función e identificar el triángulo en que se ubica la razón pedida. Contexto: es un contexto gráfico matemático Reflexión pedagógica: El 77.71% de los estudiantes contestó correctamente el ítem. El hecho de aludir a una definición y disponer del gráfico con los datos necesarios facilita la selección correcta. 32

34 Análisis pedagógico de los ítems que resultaron más difíciles 1- Al analizar la siguiente tabla que muestra los aportes de los cuatro cursos del bachillerato de un colegio para una obra social, se puede asegurar que Cursos Aportes A) El 1 aportó más del 33% del total B) El 4 aportó el 50% del total C) El 3 aportó el 22% del total D) El 2 aportó más del 25% del total Información del ítem Respuesta correcta: C Dominio: Estadístico Contenido: Frecuencia relativa Nivel taxonómico: 3 Análisis pedagógico Contenido del ítem: El contenido del ítem demanda sumar los aportes para obtener el total, calcular la frecuencia relativa en porcientos de los aportes en cada categoría y luego compararla con el total aportado. El contenido se torna difícil porque implica varias operaciones combinadas. Operación cognitiva: interpretar información en una tabla, calcular, identificar las partes porcentuales de un todo y comparar. Contexto: Una situación escolar Reflexión pedagógica: % de los estudiantes respondió correctamente el ítem. La dificultad del ítem puede estar en que tienen que combinar varias operaciones. Se recomienda que en la estadística se analicen situaciones problémicas cotidianas que demanden interpretaciones profundas de la información y se reflexionen sobre las comparaciones de valores. 33

35 2- Para la función definida por secciones mostrada en el gráfico, cuál de las siguientes afirmaciones es falsa? A) B) C) D) lim x 1 lim x 1 lim x 1 lim x 0 f ( x) 1 f ( x) 1 f ( x) 1 f ( x) 2 Información del ítem Respuesta correcta: C Dominio: Cálculo Contenido: Limite de funciones Nivel taxonómico: 3 Análisis pedagógico Contenido del ítem: determinar si el límite bilateral en un punto de discontinuidad existe en una función por secciones. Operación cognitiva: analizar el gráfico y por relaciones deducir el límite Contexto: gráfico Reflexión pedagógica: 16.73% de los estudiantes respondió correctamente el ítem. La dificultad del ítem puede estar condicionada porque demanda análisis de los límites por la derecha y por la izquierda en un punto de discontinuidad a partir de un gráfico. Se recomienda que se incluyan análisis de límites en funciones por secciones con discontinuidades. 34

36 3.5. Errores más comunes cometidos en las pruebas de Media General Operan inadecuadamente la negación de un cuantificador universal Al resolver problemas que implica operar con conjuntos no interpretan que la intersección pertenece a ambos conjuntos. Al expresar log x= 5 en forma exponencial, escriben x 10 =5. Se debe afianzar la definición de logaritmos. Asignan al logaritmo de una fracción impropia un número positivo Presentan dificultades para expresar en tanto porciento informaciones organizadas en tablas. No aplican correctamente la sustracción de matrices al no considerar la opuesta de la matriz sustraendo. Confunden el gráfico de la elipse con el de la hipérbola y parábola Al derivar la función 4x 5-3x responden 20x-3x, sin aplicar la regla de la potencia cuando n es entero, siendo lo correcto es 20x 4-3. Para calcular el ángulo de un número complejo dado en la forma (a, b) aplican incorrectamente la inversa de la función tangente, expresando ø=tan -1 (a/b), cuando lo correcto es ø=tan -1 (b/a). Al evaluar un límite directo cuyo numerador es un número entero y el denominador da cero, dicen que el resultado es cero. Interpretan el cos ø como si fuera la recíproca de la cosecante, o sea, si csc ø= a/b contestan que el cos ø = b/a. Aplican incorrectamente los límites laterales a una función discontinua 35

37 IV. NIVEL MEDIO: MODALIDAD TÉCNICO PROFESIONAL 4.1. Promedios de puntajes en las Pruebas Nacionales de Matemática Tabla No. 7 Promedio de puntaje en las Pruebas Nacionales 2014 de Matemática del Nivel Medio Modalidad Técnico Profesional por convocatoria Convocatoria Calificación promedio Cantidad de estudiantes Primera ,093 Segunda ,207 Fuente: Equipo de estadística Dirección de Evaluación de la Calidad. Como se observa en la tabla, el puntaje promedio obtenido en la primera convocatoria es superior al obtenido en la segunda pero en ambos casos es bajo. 36

38 Lógico conjuntista Algebraico Geométrico Trigonométrico Estadístico 4.2. Promedio de respuestas correctas e incorrectas Tabla No. 8. Composición de la prueba de Matemática, Nivel Medio, Modalidad Técnico Profesional y promedios de porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 Dominios Número de ítems / dominio % ítems/ dominio % Respuestas correctas (RC) % Respuestas incorrectas (RI) Lógico conjuntista Algebraico Geométrico Trigonométrico Estadístico Total Fuente: Equipo de estadística Dirección de Evaluación de la Calidad. Gráfica No. 4. Porcentajes de respuestas correctas e incorrectas en la 1 a y 2 a Convocatoria de las Pruebas Nacionales 2014 de Matemática, Nivel Medio, Modalidad Técnico Profesional Promedio % respuestas correctas 20 0 Promedio % respuestas incorrectas Fuente: Equipo de estadística Dirección de Evaluación de la Calidad. 37

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Matemáticas. Currículum Universal. Índice de contenidos 08-09 años 2013-2014. Índice de contenidos 10-11 años 2013-2014

Matemáticas. Currículum Universal. Índice de contenidos 08-09 años 2013-2014. Índice de contenidos 10-11 años 2013-2014 Matemáticas Currículum Universal Índice de contenidos 08-09 años 2013-2014 Índice de contenidos 10-11 años 2013-2014 Índice de contenidos 12-14 años 2013-2014 Índice de contenidos 14-16 años 2013-2014

Más detalles

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

3. Aplicar adición y sustracción en números del 0 al Adición, sustracción y resolución de problemas. 4. Reconocer, escribir y aplicar números

3. Aplicar adición y sustracción en números del 0 al Adición, sustracción y resolución de problemas. 4. Reconocer, escribir y aplicar números TABLA DE ESPECIFICACIÓN PRUEBA DE SÍNTESIS MATEMÁTICA PRIMER SEMESTRE 2015 Nivel: 1 BÁSICO Profesor (a) (es) (as) Ana María Casals y Margarita Sánchez Fecha de Aplicación: 22 de junio del 2015 Números

Más detalles

PLAN ANUAL DE MATEMÁTICAS 2012

PLAN ANUAL DE MATEMÁTICAS 2012 PLAN ANUAL DE MATEMÁTICAS 2012 I.- Datos Generales: Colegio: Colegio Católico Guadalupano Directora: Lic. Adriana Rodríguez G. Asignatura: Matemáticas Nivel: Secundaria Grados: Primero Segundo Tercero

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo.

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo. ARITMETICA I. NÚMEROS NATURALES Ν Es el conjunto de los números positivos desde el cero hasta el infinito ( ). Ejemplo: Ν{0,1,,3,4,, } I.1 PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES. Dentro de las

Más detalles

Programa del curso de matemática

Programa del curso de matemática Universidad de San Carlos de Guatemala Escuela de Formación de Profesores de Enseñanza Media (EFPEM) Programa Académico Preparatorio (PAP) Guatemala, febrero a octubre de 2012 Parte informativa Programa

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 República de Costa Rica Ministerio de Educación Pública PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 Basado en los programas de estudio en Matemáticas aprobados por el Consejo Superior de Educación

Más detalles

PRUEBA DE MATEMÁTICAS

PRUEBA DE MATEMÁTICAS PRUEBA DE MATEMÁTICAS PRIMERO, SEGUNDO Y TERCERO DE BACHILLERATO El presente instructivo tiene como finalidad orientarlo en la selección y el estudio de los contenidos fundamentales de matemáticas para

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS Basado en los Programas de Estudio en Matemáticas aprobados por el Consejo Superior de Educación el 21 de mayo del 2012 y en el Plan de Transición

Más detalles

Guía para resolver la prueba Graduandos 2015

Guía para resolver la prueba Graduandos 2015 1 Prueba de Matemáticas 1. Objetivo del documento El objetivo principal de este documento es dar a conocer los temas de Matemáticas que se incluyen en la Evaluación Nacional de. 2. La importancia de evaluar

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Mejoramiento Matemático 7º año

Mejoramiento Matemático 7º año Mejoramiento Matemático 7º año Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden

Más detalles

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

Mapa Curricular / Matemáticas Séptimo Grado

Mapa Curricular / Matemáticas Séptimo Grado ESTADO LIBRE ASOCIADO DE PUERTO RICO Programa de Matemáticas Mapa Curricular / Matemáticas Séptimo Grado Estándar, Dominio N.SO.7.2.1 Modela la suma, resta, multiplicación y división con números enteros,

Más detalles

F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2014 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA TEMARIO

F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2014 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA TEMARIO Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2014 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA TEMARIO

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo

Más detalles

MATEMÁTICAS 3º E.S.O

MATEMÁTICAS 3º E.S.O MATEMÁTICAS 3º E.S.O Desarrollado en DECRETO 48/2015, de 14 de mayo (B.O.C.M. Núm. 118; 20 de mayo de 2015) PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 11 1. CONTENIDOS Y

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos

Más detalles

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO MATEMÁTICAS PENDIENTES º ESO Operaciones combinadas con enteros Calcula + ( (+ 0 ) ) + 0 + ( + ) ( (+ 8 + 9 )) 0 + + + + 6 68 + 6+ 9 6 ( + 6+ ( + 6)) + 0 (( + 8 ) + (+ ) + ) + + 8 + ( + + 6+ ) 66 ( + 6

Más detalles

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos.

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Alberto Moreira Fontes Yordanis Valdés Llanes Introducción. Muchos han sido los esfuerzos de los docentes

Más detalles

CURSO BASICO. Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales 64 horas totales

CURSO BASICO. Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales 64 horas totales 1 CONSEJO DE EDUCACION TECNICO PROFESIONAL Programa Planeamiento Educativo Área Diseño y Desarrollo Curricular CURSO BASICO Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización PROGRAMACIONES DE AULA 4º MATEMÁTICAS Unidad 0. Números y operaciones Números de hasta cinco cifras. Comparación de números. Tablas de multiplicar. Multiplicación y sus términos. División y sus términos.

Más detalles

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

Taller de Matemáticas II

Taller de Matemáticas II Taller de Matemáticas II 1 Universidad CNCI de Méico Temario 1. Funciones Trigonométricas para ángulos agudos 1.1. Unidades de medición de ángulos 1.. Funciones Trigonométricas Directas 1.3. Funciones

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

Ecuaciones y sistemas lineales

Ecuaciones y sistemas lineales UNIDAD Ecuaciones y sistemas lineales D e sobra son conocidas las ecuaciones. Refrescamos y profundizamos en su estudio: ecuaciones de primer y segundo grado, así como otras polinómicas de grados superiores,

Más detalles

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM I. DATOS INFORMATIVOS: NIVEL DE EDUCACIÓN: Bachillerato. ÁREA: Matemáticas CURSO: Segundo de bachillerato (1º año de Diploma) PARALELO:

Más detalles

Rige a partir de la convocatoria 01-2015

Rige a partir de la convocatoria 01-2015 LISTADO DE OBJETIVOS Y CONTENIDOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DE LOS PROGRAMAS: Bachillerato por Madurez Suficiente Bachillerato de Educación Diversificada a Distancia Este documento

Más detalles

Capítulo 2 Números Reales

Capítulo 2 Números Reales Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,

Más detalles

GLOSARIO DE TÉRMINOS MATEMÁTICOS

GLOSARIO DE TÉRMINOS MATEMÁTICOS GLOSARIO DE TÉRMINOS MATEMÁTICOS Adición Aleatorio Algebra Algoritmo Altura de un paralelogramo Altura de un triángulo Amplificar una fracción Amplitud de un conjunto de datos Ángulo Ángulo agudo Ángulo

Más detalles

GUÍA DE MATEMÁTICA 101

GUÍA DE MATEMÁTICA 101 GUÍA DE MATEMÁTICA 101 CRISTIAN M. GONZÁLEZ CRUZ, MSc. Revisada y Corregida Por: PATRIA FERNÁNDEZ Derechos Reservados Prohibida la copia parcial o total de este documento Guía de matemática 101, Por: Cristian

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales 7 Potenciación 7 Radicación 7 Propiedades de los números

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

V OLIMPIADA BINACIONAL DE MATEMÁTICA RAZONADA UEPRIM 2015 BASES

V OLIMPIADA BINACIONAL DE MATEMÁTICA RAZONADA UEPRIM 2015 BASES V OLIMPIADA BINACIONAL DE MATEMÁTICA RAZONADA UEPRIM 2015 BASES Antecedentes: Art. 1. La V Olimpiada Binacional de Matemática Razonada 2015, para Primaria y Secundaria, es organizada por la Unidad Educativa

Más detalles

Se considera el triángulo de vértices A(1, 3); B(2, 5); C(3, -1). Calcular las coordenadas del ortocentro.

Se considera el triángulo de vértices A(1, 3); B(2, 5); C(3, -1). Calcular las coordenadas del ortocentro. TEMAS DE MATEMÁTICAS REVÁLIDA GRADO SUPERIOR (5º Y 6º CURSO DE BACHILLERATO AÑOS 60) Eamen para estudiantes de 16 años de edad (El problema 4 puntos, cada cuestión puntos) 1 Se considera el triángulo de

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

MATEMÁTICA APLICADA PARA INGRESANTES

MATEMÁTICA APLICADA PARA INGRESANTES MATEMÁTICA APLICADA PARA INGRESANTES 2015 v TECNICATURA SUPERIOR EN HIGIENE Y SEGURIDAD EN EL TRABAJO. TECNICATURA SUPERIOR EN MECATRONICA. TECNICATURA SUPERIOR EN MANTENIMIENTO INDUSTRIAL. TECNICATURA

Más detalles

ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8

ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8 ÍNDICE 1. OBJETIVOS DEL ÁREA / COMPETENCIAS CLAVE... 2 2. OBJETIVOS... 3 3. CONTENIDOS... 6 4. CRITERIOS DE EVALUACIÓN... 8 5. PROCEDIMIENTOS E INSTRUMENTOS DE EVALUACIÓN. CRITERIOS DE CALIFICACIÓN...

Más detalles

Elaborado por la Subdirección de Desarrollo de Instrumentos de Evaluación e Investigación Educativa.

Elaborado por la Subdirección de Desarrollo de Instrumentos de Evaluación e Investigación Educativa. Licenciada Cynthia del Aguila Mendizábal Ministra de Educación Licenciada Evelyn Amado de Segura Viceministra Técnica de Educación Licenciado Alfredo Gustavo García Archila Viceministro Administrativo

Más detalles

Programaciones Educativas Nacionales

Programaciones Educativas Nacionales República de Honduras Secretaría de Educación Programaciones Educativas Nacionales Matemáticas Diseño Curricular Programaciones es Materiales Educativos Evaluación Edición 2011 7 mo - 11 mo grado Abogado

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

PROGRAMA FORMATIVO. Competencia Clave: Competencia Matemática N3

PROGRAMA FORMATIVO. Competencia Clave: Competencia Matemática N3 PROGRAMA FORMATIVO Competencia Clave: Competencia Matemática N3 Agosto de 2013 DATOS GENERALES DEL CURSO 1. Familia Profesional: Formación Complementaria Área Profesional: Competencias Clave 2. Denominación

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Geometría Analítica. Efraín Soto Apolinar

Geometría Analítica. Efraín Soto Apolinar Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

GEOMETRÍA PLANA TFM 2013 DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA

GEOMETRÍA PLANA TFM 2013 DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA GEOMETRÍA PLANA María Pérez Prados DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA TFM 2013 Ámbito MATEMÁTICAS MÁSTER UNIVERSITARIO EN FORMACIÓN

Más detalles

Matemática 8. Programación dosificada por trimestres

Matemática 8. Programación dosificada por trimestres Matemática 8 Programación dosificada por trimestres Programación dosificada A continuación se presenta la distribución de los contenidos programáticos del Meduca en el libro Matemática 8, serie Ser competentes.

Más detalles

UNIDAD N 4: TRIGONOMETRÍA

UNIDAD N 4: TRIGONOMETRÍA Matemática Unidad 4 - UNIDD N 4: TRIGONOMETRÍ ÍNDICE GENERL DE L UNIDD Trigonometría....... 3 Sistema de medición angular... 3 Sistema seagesimal...... 3 Sistema Radial....... 3 Tabla de conversión entre

Más detalles

Guía de Matemáticas Segundo Grado

Guía de Matemáticas Segundo Grado Guía de Matemáticas Segundo Grado 1 A cuántos gramos equivale una libra? a) 0022 b) 022 c) 2020 d) 22 2 A cuántos centímetros equivale una pulgada? a) 2.54 cm b) 2.5 cm c) 2 cm d) 1 cm 3 A cuántos kilómetros

Más detalles

Matemáticas Parte introductoria

Matemáticas Parte introductoria Matemáticas Parte introductoria Propósitos del estudio de las Matemáticas para la Educación Básica Mediante el estudio de las Matemáticas en la Educación Básica se pretende que los niños y adolescentes:

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

SECUENCIACIÓN DE CONTENIDOS

SECUENCIACIÓN DE CONTENIDOS DEPARTAMENTO DE SECUENCIACIÓN DE CONTENIDOS PRUEBA DE DIAGNÓSTICO 1. Números y operaciones Descomposición de números en las distintas clases de unidades y como suma de sumandos de unidades. Lectura y escritura

Más detalles

1 er CONCURSO ESCOLAR DE HABILIDAD MATEMÁTICA

1 er CONCURSO ESCOLAR DE HABILIDAD MATEMÁTICA A BASES Y TEMARIO 1 er Concurso Escolar de Habilidad Matemática 2015 MUNICIPALIDAD DE CIENEGUILLA 1 er CONCURSO ESCOLAR DE HABILIDAD MATEMÁTICA (PARA ALUMNOS DEL 3 er GRADO DE PRIMARIA 5 to AÑO SECUNDARIA)

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Los contenidos básicos exigibles a la finalización del curso serán:

Los contenidos básicos exigibles a la finalización del curso serán: 1. CONTENIDOS BÁSICOS. Los contenidos básicos exigibles a la finalización del curso serán: BLOQUE I: ESTADÍSTICA Y PROBABILIDAD Población y muestra. Tipos de caracteres estadísticos: cualitativos y cuantitativos.

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Guia Temário Matemáticas hasta los 18 años

Guia Temário Matemáticas hasta los 18 años Guia Temário Matemáticas hasta los 18 años Primaria Años 1 Primaria Matemáticas 7 2 Primaria Matemáticas 8 3 Primaria Matemáticas 9 4 Primaria Matemáticas 10 5 Primaria Matemáticas 11 6 Primaria Matemáticas

Más detalles

CENTRO UNIVERSITARIO MONTEJO A. C. SECUNDARIA Temario de Matemáticas 2

CENTRO UNIVERSITARIO MONTEJO A. C. SECUNDARIA Temario de Matemáticas 2 Bloque I Resuelve problemas que implican el uso de las leyes de los exponentes y de la notación científica. Resuelve problemas que impliquen calcular el área y el perímetro del círculo. Resuelve problemas

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS (Actualizado el 08 de septiembre de 2009) Esta es la lista de videos que tenemos disponibles para descargar hasta la fecha actual. Esta lista se va actualizando

Más detalles

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015 MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS SOCIALES I tetraedro cubo octaedro dodecaedro icosaedro 8 de septiembre de 05 Germán Ibáñez http://www.otrapagina.com/matematicas . Índice general.

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE º ESO PENDIENTE TEMA 5: ÁLGEBRA: MONOMIOS Y POLINOMIOS- OPERACIONES-, PRODUCTOS NOTABLES, ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA,

Más detalles

NÚMEROS COMPLEJOS página 181 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS página 181 NÚMEROS COMPLEJOS página 181 11.1 RECORRIDO HISTÓRICO Para comprender el por qué y para qué existen los números complejos y todo lo que se hace con ellos es necesario, aunque sea de manera muy sintética, hacer un breve

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

Lenguaje Algebraico Ing. Gerardo Sarmiento

Lenguaje Algebraico Ing. Gerardo Sarmiento Agosto 2009 Unidad 1 LENGUAJE ALGEBRAICO 1.1.1 DEFINICION DE ALGEBRA 1.1.2 SIMBOLOS Y LENGUAJE 1.1.3 EXPRESIONES ALGEBRAICAS Lenguaje Común y Lenguaje Algebráico 1.1.4 NOTACION ALGEBRAICA Elementos de

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

EDUCACIÓN SECUNDARIA OBLIGATORIA 3º E.S.O. MATEMÁTICAS

EDUCACIÓN SECUNDARIA OBLIGATORIA 3º E.S.O. MATEMÁTICAS EDUCACIÓN SECUNDARIA OBLIGATORIA 3º E.S.O. MATEMÁTICAS I.E.S Esteban Manuel de Villegas Nájera UNIDAD 1: Números reales I. OBJETIVOS Saber reconocer los números racionales y ser capaces de realizar con

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

M A T E M Á T I C A S 1 º E. S. O.

M A T E M Á T I C A S 1 º E. S. O. 1 M A T E M Á T I C A S 1 º E. S. O. ÍNDICE Objetivos 1 Contenidos 2 Temporalización 2 Metodología 6 Texto 7 Competencias básicas 7 Criterios de evaluación 8 Procedimientos e instrumentos de evaluación

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles