FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0"

Transcripción

1 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones racionales: ( ) p ( ) q ( ).- La unción ( ) es racional.- La unción ( ) es racional 3.- La unción ( ) es racional 4.- La unción ( ) es racional. 5.- La unción ( ) es racional. 6.- la unción ( ) ( )( ) ( 3)( 8) El dominio de toda unción racional es igual al conjunto ( ) 0 ( ) 0 D q q al conjunto de valores de para los cuales la unción ( ) 0 también se les llama singularidades de la unción racional: El rango de la unción no puede determinarse de una orma general a que depende de la estructura de su numerador denominador. En el caso en que el comportamiento de la unción cuando & cuando 0 así como el comportamiento de la unción para cada una de las singularidades que tiene. Los ceros del denominador son los valores de que se EXCLUYEN del Dominio, además, representan las asíntotas de la unción = (), las cuales son rectas perpendiculares al eje X que pasan por cada raíz del denominador q ( ) 0 la gráica de

2 la unción tiene un comportamiento asintótico, es decir conorme un punto de la gráica se aleja del origen a sea en la dirección del eje X o en la del eje Y, la gráica se aproima a la asíntota vertical D R raíces de q( ) r o a la asíntota horizontal k. i Ejemplos.- Consideremos a la unción ( ), observemos que no ha actores comunes entre el numerador el denominador. Para determinar al dominio de la unción debemos ecluir de los números reales los valores en donde el denominador se hace cero, es decir los ceros del polinomio = 0, por lo tanto la asuntota vertical es la recta vertical cua ecuación es 0 la cual corresponde a l eje Y. De donde se obtiene que el dominio 0 D, para obtener el rango observamos el comportamiento la unción cuando se tiene que ( ) 0 lo cual indica que = 0 es una asíntota horizontal de la unción racional, entonces, el rango de la unción es ( ) 0 0 R. unción = () = / X / -/4 /99 () ( ) 0 Función = () = / ()

3 cuando se aproima a cero con valores positivos la unción ) tiende a mas ininito se aproima al eje Y Asíntota vertical = 0 (eje Y) tiende a - ininito =() tiende (se aproima) a cero tiende a + ininito =() tiende (se aproima) a cero Asíntota horizontal = 0 (eje X) cuando se aproima a cero con valores negativos la unción () tiende a menos ininito se aproima al eje Y.- consideremos la unción racional ( ), observemos que no ha actores comunes entre el numerador el denominador. Para determinar al dominio de la unción debemos ecluir de los números reales los valores en donde el denominador se hace cero, es decir los ceros del polinomio + = 0, eiste un solo valor, =. Entonces el dominio es: D R. Para obtener al rango, analizamos el comportamiento de la unción en los intervalos (,) (, ) obteniendo los valores que toma la unción para cada valor del dominio dando por lo menos un valor cercano a cada cero determinar el comportamiento de la gráica de la unción. Para esto ormemos las siguientes tablas unción = () = / ( - ) X ()

4 Función = () = / ( - ) () Rango = R - { } = () = / [ - ] Asíntota = Dominio = R - { } - - Asíntota -3 Como ejemplo consideremos a la unción racional ( ) en donde los ceros del denominador son = -3, -, - por lo tanto el dominio es: D R 3,,, ; Las asíntotas verticales de la unción racional son: = -3; = -; = - & =. Para determinar el rango analizaremos el comportamiento de la unción en los intervalos (, 3]; (-3, -); (-, -); (-, ) & (, ) la graica de la unción es: 3 Ceros de la unción = () = / [ ^4 + 5 ³ + 5 ² ]

5 En el intervalo (, 3), para valores de son cercanos a 3, la gráica se acerca a la asíntota hacia la parte negativa del eje Y, por lo que el rango de la unción contiene a los todos los números reales negativos R en el intervalo (, ) la unción toma valores reales positivos para valores cercanos a, por ejemplo =.00, el valor de la unción es mucho mu grande, es decir la tendencia de la gráica es hacia mas ininito acercándose cerradamente a la asíntota, entonces, el rango de la unción contiene a todos los números reales positivos R, por lo tanto el único valor que alta por analizar es el correspondiente a = 0, en este punto, el valor de la unción es igual a cero, por lo tanto el rango de la unción contiene al cero, entonces el rango de la unción es todo el conjunto de los números reales R R R 0. Las unciones racionales pueden tener asíntotas horizontales, oblicuas o un comportamiento asintótico a una curva en particular o no tener ninguna asíntota. La relación entre los grados de las unciones numerador denominador de la unción racional deine el tipo de asíntota que tiene de acuerdo a la siguiente tabla: p ( ) Función racional ( ) q ( ) Coeiciente principal de p( ) es a 0 coeiciente principal de q( ) es b 0 Grado de p ( ) < grado de q ( ) asíntota horizontal 0 a0 Gradi de p( ) Grado de q( ) asíntota horizontal b0 Grado de grado de p ( ) grado de q() No tiene asíntota horizontal En este último caso se tiene comportamiento asintótico a la unción c ( ) obtenida de la división p( ) r( ) c ( ) q( ) q( ) Ejemplo. Determina las asíntotas verticales horizontales de la unción ( ) 5 4 Solución. La ecuación de la asíntota vertical la obtenemos igualando a cero al denominador 4 0 de donde se tiene la ecuación 4 Para la obtención de la asíntota horizontal, analizamos los grados del numerador denominador de la unción obtenemos que son iguales por lo tanto, la ecuación de la asíntota a0 horizontal es igual al cociente de los coeicientes principales de los polinomios, el b 0

6 coeiciente del numerador a 5 el del denominador es b0 entonces la ecuación de la asíntota horizontal es 5 Ejemplo. Determina las asíntotas verticales horizontales de la unción ( ) 4 denominador Solución. La ecuación de la asíntota vertical la obtenemos igualando a cero al 4 0 cua solución es 4 4 las cuales representan a las ecuaciones de las asíntotas verticales. Para la obtención de la asíntota horizontal, analizamos los grados del numerador denominador de la unción obtenemos que el grado del numerador es menor que el grado del denominador por lo tanto la ecuación de la asíntota es 0. Ejemplo 3. Determina las asíntotas verticales horizontales de la unción ( ) 3 9 denominador Solución. La ecuación de la asíntota vertical la obtenemos igualando a cero al 9 0 cua solución es 3 3 las cuales representan a las ecuaciones de las asíntotas verticales. Para la obtención de la asíntota horizontal, analizamos los grados del numerador denominador de la unción obtenemos que el grado del numerador es maor que el grado del denominador por lo tanto la unción no tiene asíntotas horizontales. Es conveniente que antes de obtener las asíntotas verticales de la unción racional analicemos que el numerador denominador no tienen actores comunes, en este caso la unción racional tendrá una simpliicación de dichos actores generando con esta a una nueva unción racional p ( ) g ( ) en donde las unciones ( ) g( ) tienen las mismas asíntotas sus gráicas q ( ) diieren en el punto h correspondiente al actor común de los polinomios, la ordenada de este punto es igual a gh ( ) el punto correspondiente es H[ h, g( h )] al cual se le llama hueco de la unción ( ). El punto H[ h, g( h)] no pertenece a ( ) pero si pertenece a la unción g ( ) en este punto la unción ( ) tiene una discontinuidad removible. Ejemplo 4. Determina las asíntotas verticales horizontales t traza la gráica de la unción ( ) 5 Solución. Antes de tratar de iguales el denominador a cero, actoricemos tanto el numerador como el denominador para determinar si la unción racional tiene actores comunes,.

7 ( ) 5 ( )( ) ( )( ) construimos la unción g ( ) el punto H(, g( )) H(,). observamos que tienen un actor común ( ), cua gráica con respecto a la gráica de ( ) diieren en La asíntota vertical tiene como ecuación la horizontal es ( a0 / b0 / ) el hueco es el punto H(,) Graica: H ( -, ) = = Ejercicios. Para cada uno de los siguientes ejercicios, determina: a. Sus asíntotas verticales b. Sus asíntotas horizonbtales c. Sus huecos ( si tiene) d. Traza su gráica ( ). ( ) ( ) 4. ( ) ( ) 6. ( ) 4

UNIDAD III Límites. Límites infinitos. En el límite de una función, cuando x a y resulta que f x crece sin límite, entonces se tendrá: lim

UNIDAD III Límites. Límites infinitos. En el límite de una función, cuando x a y resulta que f x crece sin límite, entonces se tendrá: lim UNIDAD III Límites Límites ininitos En el límite de una unción, cuando a resulta que crece sin límite, entonces se tendrá: lim a Mientras que cuando a resulta que decrece sin límite, entonces se tendrá:

Más detalles

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a -

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a - Representación gráica de unciones. Un ejemplo resuelto Consideremos la unción deinida por la epresión + =. Dominio Debemos ecluir del dominio los valores de que anulan el denominador. Así, el dominio Dom

Más detalles

Tema 10: Funciones racionales y potenciales. Asíntotas.

Tema 10: Funciones racionales y potenciales. Asíntotas. 1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

Completar con letra clara, mayúscula e imprenta

Completar con letra clara, mayúscula e imprenta ANÁLIS. MAT. ING. - EXACTAS C 7 R TEMA - 4--7 APELLIDO: NOMBRES: DNI/CI/LC/LE/PAS. Nº: E-MAIL: TELÉFONOS part: cel: Completar con letra clara, maúscula e imprenta SOBRE Nº: Duración del eamen: hs CALIFICACIÓN:

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Funciones racionales

Funciones racionales Funciones racionales Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( 1 3 5 3 ) ( 4 3 4 ) ( 3 4 4 )

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031

Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031 Funciones racionales Profa. Caroline Rodríguez UPRA MECU 01 Una función racional es una función que se puede epresar de la forma ( ( ( g f p donde f( y g( son funciones polinómicas. Ejemplos: g f y 9 (

Más detalles

UNIDAD 8 Representación de funciones

UNIDAD 8 Representación de funciones Pág. de 6 Representa las siguientes funciones racionales: y 5 + 7 es raíz del denominador y no lo es del numerador, es asíntota vertical. Veamos la posición de la curva respecto a ella estudiando sus signos

Más detalles

Componentes polinomiales de una función racional

Componentes polinomiales de una función racional Funciones racionales Componentes polinomiales de una función racional Son las funciones que están formadas por el cociente de dos funciones polinomiales, son de la forma: f x = P(x) donde P(x) y Q(x) son

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de: Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,

Más detalles

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01

Más detalles

"""##$##""" !!!""#""!!!

##$## !!!#!!! Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21 Límites ininitos MATE 303 Cálculo 0//06 Pro. José G. Rodríguez Ahumada de Cálculo - MATE 303 Actividades.4 Reerencia: Reerencia: Sección.5 Límites ininitos. Ver ejemplos al 5 Ejercicios de Práctica: Páginas

Más detalles

"""##$##""" !!!""#""!!! """##$##""" (c) Verdadero siempre que los términos en grado p = q se anulen.

##$## !!!#!!! ##$## (c) Verdadero siempre que los términos en grado p = q se anulen. Unidad nº 0 FFUNCI IONEES POLLI INÓMICAS YY RACIONALLEES! 7 AUTOEVALUACIÓN Halla la suma y el producto de los polinomios P() y Q() - - 5 -. P() + Q() 5 - +.. P() Q() ( ) ( 5 ) - 6 5 5 + + 0 + - 6 5 + 5

Más detalles

Estudio de las funciones RACIONALES

Estudio de las funciones RACIONALES Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función

Más detalles

SEGUNDO TURNO TEMA 1

SEGUNDO TURNO TEMA 1 TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto

Más detalles

FUNCIONES RACIONALES. Sec. 3.5

FUNCIONES RACIONALES. Sec. 3.5 FUNCIONES RACIONALES Sec..5 DOMINIO DE FUNCIONES RACIONALES Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son polinomios. Ejemplos: g f y 9 4 )

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1 Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

Campo de Existencia. El campo de existencia de una función, son los conjuntos de primeros componentes de pares ordenados que conforman una función.

Campo de Existencia. El campo de existencia de una función, son los conjuntos de primeros componentes de pares ordenados que conforman una función. Ejercicios Resueltos MAT B Cálculo I Au. Univ. Henr Colque Choque Campo de Eistencia El campo de eistencia de una unción son los conjuntos de primeros componentes de pares ordenados que conorman una unción.

Más detalles

TEMA 10.- FUNCIONES ELEMENTALES

TEMA 10.- FUNCIONES ELEMENTALES º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x http://matematicas-tic.wikispaces.com Lamberto Cortázar Vinuesa 07 LÍMITES EN EL INFINITO. ASÍNTOTAS EJERCICIOS WIKI Idea Se trata de estudiar lo que sucede con la unción () cuando damos a valores tan

Más detalles

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

x f(x) ?

x f(x) ? Idea intuitiva de ite: Sea c R y una función f definida cerca de c aunque no necesariamente en el mismo c. El número L es el ite de f cuando se aproima a c, y se escribe f() = L si y sólo si los valores

Más detalles

lim lim 3 2x + = lim lim 4 = es: lim = 2 x x x + 5 A) 4 B) 0 C) D) 2 E) lim x x 7 x+ lim Lim x lim 4x Sesión 5 Unidad II Límite de una función.

lim lim 3 2x + = lim lim 4 = es: lim = 2 x x x + 5 A) 4 B) 0 C) D) 2 E) lim x x 7 x+ lim Lim x lim 4x Sesión 5 Unidad II Límite de una función. Sesión Unidad II Límite de una unción. 7.- Calcula el +.- El ite.- El E. Límites en el ininito 7 9 + 8 + A) B) 9 C) D) 0. 8.- El A) B) C) D) 0 + + + A) 0 B) C) D) - 9.- El valor del + 9 A) B) C) D) A)

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

f : R R y en cuanto a los elementos x f ( x)

f : R R y en cuanto a los elementos x f ( x) CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

CAPÍTULO. Continuidad

CAPÍTULO. Continuidad CAPÍTULO Continuidad. Continuidad en intervalos Una función es continua en un conjunto si es continua en cada punto del conjunto. Entonces, una función es continua en un intervalo abierto.a; b/ si es continua

Más detalles

Resuelve tú ( Pág "#$) %%%&&'&&%%% Hacemos la división por Ruffini : El cociente C(x) = 5x 3 27x x 227 y el resto r = 681.

Resuelve tú ( Pág #$) %%%&&'&&%%% Hacemos la división por Ruffini : El cociente C(x) = 5x 3 27x x 227 y el resto r = 681. Unidad nº 10 FFUNCI IONEES POLLI INÓMICAS YY RACIONALLEES! 1 Resuelve tú ( Pág "#$) Halla el cociente del polinomio 5 4 1 3 6 por + 3. Verifica el resultado. Hacemos la división por Ruffini : El cociente

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES

Más detalles

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos

Más detalles

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

I.- Límite de una función

I.- Límite de una función I.- Límite de una función a) En un punto En la mayoría de las funciones que vas a encontrarte, el límite, cuando tiende a un número real c, coincide con el valor numérico f(c), siempre que c pertenezca

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2 EJERCICIOS,.Calcular las ecuaciones de la tangente y de la normal a la parábola y en el punto en que la abscisa es Punto de tangencia,, ' Tangente... y y y y y Normal... y y y 8.- Calcular la ecuación

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

FUNCIONES RACIONALES. Sec. 3.5

FUNCIONES RACIONALES. Sec. 3.5 FUNCIONES RACIONALES Sec. 3.5 DOMINIO DE FUNCIONES RACIONALES Funciones racionales Una función racional es una función que se puede epresar de la forma p( ) f ( ) g( ) donde f() y g() son polinomios. Ejemplos:

Más detalles

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011 Matemáticas I. o de Bachillerato - Suficiencia. de junio de 20. Juan y Ana ven desde las puertas de sus casas una torre de televisión situada entre ellas bajo ángulos de 5 y 60 grados. La distancia entre

Más detalles

Cálculo de límites. Ejercicio nº 1.- Haz una gráfica en la que se reflejen estos resultados: Ejercicio nº 2.-

Cálculo de límites. Ejercicio nº 1.- Haz una gráfica en la que se reflejen estos resultados: Ejercicio nº 2.- Cálculo de ites Ejercicio nº.- Haz una gráica en la que se relejen estos resultados: d) Ejercicio nº.- Representa gráicamente los guientes resultados: 0 0 d) Ejercicio nº.- Representa en una gráica los

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

Una función es una correspondencia única entre dos conjuntos numéricos.

Una función es una correspondencia única entre dos conjuntos numéricos. FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto

Más detalles

Matemáticas I - 1 o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 2011

Matemáticas I - 1 o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 2011 Matemáticas I - o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 20. En el centro de un lago sale verticalmente hacia arriba un chorro de agua caliente (géiser) y queremos

Más detalles

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A Tema 8.Estudio Global de unciones. Aplicaciones a la representación graica de unciones 1 Tema 8. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRAFICA DE FUNCIONES 1. Introducción. Deinición

Más detalles

LÍMITES DE FUNCIONES GBG

LÍMITES DE FUNCIONES GBG LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más

Más detalles

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal.

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal. Límites y continuidad de funciones. Curso 4/5 Ejercicio. Determina las asíntotas de la función f ( ) y analiza la posición de la gráfica con respecto a ellas. f ( ) 3 8 p ( ) q( ) R Una función cuya epresión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones

Más detalles

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1 Tema : Qué empiece la función! Apuntes: Parte.- Idea de función Se define función real de variable real, a una relación que asocia a un número de un conjunto inicial, otro número de un conjunto final.

Más detalles

Tema II: Análisis Límites

Tema II: Análisis Límites Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

lím f(x) lím f(x) lím f(x) lím f(x) lím f(x)

lím f(x) lím f(x) lím f(x) lím f(x) lím f(x) . La siguiente gráfica corresponde a la función f(). Halla el valor de los siguientes ites: 0 - y 9 8 7 6 5-9 -8-7 -6-5 - - - - - 5 6 7 8 9 - - - -5-6 -7-8 -9. La siguiente gráfica corresponde a la función

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Junio b) Para que la matriz C(y) no tenga inversa su determinante debe ser nulo.

Junio b) Para que la matriz C(y) no tenga inversa su determinante debe ser nulo. Bloque. ÁLGEBRA LINEAL Problema. Junio 007 8 8 F F a) B() 8 F F 0 8 8 0 b) Para que la matri C() no tenga inversa su determinante debe ser nulo. 4 7 F F F F 4 0 0 0 por tener el determinante filas iguales.

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales.

Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Contextualización Las funciones polinomiales son las más básicas en matemáticas porque se definen solo en términos

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES 4/2 ACADEMIA DE FISICO-MATEMÁTICAS

DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES 4/2 ACADEMIA DE FISICO-MATEMÁTICAS DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES / ACADEMIA DE FISICO-MATEMÁTICAS GUIA DE ESTUDIO DE MATEMÁTICAS IV DICIEMBRE, 0. PROFESORA: PROFESORA MARTHA

Más detalles