Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema"

Transcripción

1 Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características que debe cumplir un conjunto de números aleatorios que pertenezcan a una distribución U (0,1). D.R. Universidad TecMilenio 1

2 Introducción del tema La generación manual de eventos aleatorios implica el uso de una tabla de números aleatorios. Dicha tabla es el resultado de una muestra aleatoria de enteros entre 00 y 99, donde cada número es igualmente probable. Otro método, aún más sencillo, consiste en rotular números en bolas idénticas, introducirlas en una urna e ir sacándolas al azar. Sin embargo, éste último puede ser muy tedioso cuando se desean generar grandes cantidades de números. Para qué sirve la generación de números aleatorios? Introducción del tema Supón que se tiene un producto cuya demanda es 0, 1, 2 ó 3. La probabilidad de que la demanda sea 0 es.25, P(1) =.25, P(2)=.3 y P(3)=.2 Se desea simular la demanda de lunes a viernes del producto a diferentes horarios. Qué método es el más conveniente para generar 100 observaciones diarias? Es el que dará un mejor resultado? Por qué? Ese es uno de los ejemplos en los que la generación de números aleatorios nos ayuda a responder qué pasa con la demanda a determinada hora en un cierto producto. D.R. Universidad TecMilenio 2

3 Números aleatorios En todo proceso de la vida real existe la variabilidad. Para modelar un fenómeno variable en la computadora digital, necesitamos valernos de una herramienta que nos permita generar observaciones que se comporten de forma probabilística. En general, para todos los experimentos de simulación existe la necesidad de generar valores de variables aleatorias que pertenezcan a una cierta distribución de probabilidad, tal como se comportan en la vida real. Una manera de generar estas observaciones simuladas es mediante los números aleatorios. La Distribución uniforme La distribución uniforme es una distribución de probabilidad cuyos valores tienen la misma probabilidad. Se dice que una variable aleatoria X continua tiene una distribución uniforme en el intervalo [a,b] si la función de densidad de probabilidad es: En la distribución uniforme, la media está dada por y su varianza por D.R. Universidad TecMilenio 3

4 Los números aleatorios y la distribución uniforme Para generar números aleatorios, deben de tener ciertas características deseables que aseguren la confiabilidad de los resultados de la simulación. 1. Uniformemente distribuidos. 2. Cada número generado debe ser estadísticamente independiente uno del otro. 3. Reproducibles (por medio de un algoritmo o método generador y una semilla). 4. Período largo. 5. Generados a través de un método rápido y que no requiera mucha capacidad de almacenamiento en la computadora. Números pseudoaleatorios y su validación La computadora se vale de algoritmos para obtener números aleatorios, por lo tanto, se conocen como pseudoaleatorios. Existen pruebas para validarlos: Característica Los números deberán pertenecer a la Distribución U con valores entre 0 y 1. Las observaciones deberán ser independientes a b La media deberá ser donde a=0 y 2 1 b=1 (Es decir ) 2 Validación Prueba de Bondad de Ajuste Prueba de independencia Prueba de medias a b La varianza deberá ser donde a= y b=1 (Es decir ) 12 El periodo donde se modelará el sistema deberá ser grande Prueba de Varianza n>30 D.R. Universidad TecMilenio 4

5 Generación de números aleatorios en Excel Para la generación de números aleatorios en Excel, contamos con la función RAND() o ALEATORIO(). Situación Se requiere generar observaciones que provengan de una distribución de probabilidad uniforme reales con distribución uniforme en un intervalo por ejemplo entre 0 y 150. Se requiere generar observaciones de números aleatorios reales con distribución uniforme entre dos valores a y b, donde a < b. Se requiere generar números aleatorios reales con distribución uniforme entre 30 y 50. Fórmula Excel =ALEATORIO()*150 (versión español) (Ver Figura 1) ó =RAND()*150 (versión inglés) =ALEATORIO()*(b-a)+a (Excel en español) ó =RAND()*(b-a)+a (Excel en inglés) =ALEATORIO()*(50-30)+30 (Excel en español) ó =RAND()*(50-30)+30 (Excel en inglés) Generación de números aleatorios en Excel Observaciones con distribución uniforme en un intervalo entre 0 y 150. Observaciones con distribución uniforme en un intervalo entre 0 y 150. D.R. Universidad TecMilenio 5

6 Generación de números aleatorios con Minitab Hacer clic en el menú Calc. Posteriormente, seleccionar Random data y elegir la distribución de probabilidad de la que queremos generar nuestras observaciones. Generación de números aleatorios con Minitab Minitab nos permite generar variables aleatorias de gran variedad de distribuciones y a diferencia de Excel, nos permite hacer pruebas estadísticas para evaluar la validez de los valores generados.. D.R. Universidad TecMilenio 6

7 Cierre Durante esta sesión se presentó el uso del Excel y Minitab como herramienta auxiliar para generar números aleatorios. La ventaja de utilizar estas aplicaciones es que la rapidez con que se generan los números es significativamente mayor a emplear la tabla de números aleatorios. Cierre Esta última opción tiene la desventaja que a pesar de ser un proceso más robusto, requiere más tiempo, según el tamaño de muestra requerido. Es importante señalar la importancia de generar los números al azar con el método adecuado, ya que posteriormente deberán primero ser identificadas las características de los números aleatorios y posteriormente, deberá validarse que el conjunto de datos cumple con ellas para emplearlo en el proceso de simulación para el cual se generaron. D.R. Universidad TecMilenio 7

8 Para aprender más En la siguiente liga encontrarás un documento donde se discuten varios métodos para generar números aleatorios: Generadores de números aleatorios. 15 Referencias bibliográficas Anderson, D., Sweeney, D. y Williams, T. (2006). Métodos Cuantitativos para los Negocios. (9ª Ed.) México: Cengage Learning. ISBN: García Dunna, E., García, L. y Cárdenas, L. (2006). Simulación y análisis de sistemas con Promodel. (1ª Ed.) México: Pearson Educación. ISBN: D.R. Universidad TecMilenio 8

9 Créditos Diseño de contenido: Ing. Sergio C. Ruiz Escobedo Coordinador académico del área: Lic. José de Jesús Romero A. MC y MED Edición de contenido: Lic. Mirthala García Aldrete, MA y ME Edición de texto: Lic. Sandra Gancz Kahan Diseño gráfico: Ing. Felipe Leyva Silva, MGTI D.R. Universidad TecMilenio 9

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Emplear la generación de números aleatorios con distribución

Más detalles

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema Tema 11 Conceptos básicos de Teoría de Colas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar en qué consiste la Teoría de Colas. D.R. Universidad TecMilenio 1 Introducción

Más detalles

Análisis de Decisiones II

Análisis de Decisiones II Tema 14 Distribución de llegadas Poisson, distribución de servicio Exponencial, varios servidores, servicio PEPS, población y cola infinita Objetivo de aprendizaje del tema Al finalizar el tema serás capaz

Más detalles

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema Tema 15 Solución de problemas de líneas de espera mediante WinQSB Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar las características y funcionalidades que ofrece WinQSB

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 4.

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 4. Actividad 4. La incertidumbre ambiental 1 Objetivo de aprendizaje del tema Al finalizar el tema, serás capaz de: Definir el entorno y la forma en que las pueden responder a él. Determinar la incertidumbre

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte

Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte 1. NÚMEROS ALEATORIOS 1.0 INTRODUCCIÓN El papel que desempeñan las variables aleatorias uniformemente distribuidas en la generación de variables aleatorias tomadas de otras distribuciones de probabilidad,

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 5 Enlaces químicos OBJETIVO Identificar el tipo de enlace que se presenta en un compuesto químico D.R. Universidad TecMilenio 1 INTRODUCCIÓN En este tema conocerás los tipos de enlaces que se

Más detalles

Nombre de la asignatura : Simulación. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9310

Nombre de la asignatura : Simulación. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9310 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Simulación Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB-910 Horas teoría-horas práctica-créditos : -0-8.

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 4 CONFIGURACIÓN ELECTRÓNICA OBJETIVO Utilizar la configuración electrónica de los elementos representativos 2 D.R. Universidad TecMilenio 1 INTRODUCCIÓN En esta actividad conocerás la distribución

Más detalles

FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES

FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS Hay muchos problemas de ingeniería que requieren números aleatorios para obtener una solución. En algunos casos, esos números sirven para crear una simulación

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 10 Nombre: Pruebas de Hipótesis. Parte II Objetivo Al término de la sesión el estudiante analizará la prueba

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Generación de números aleatorios con distribución uniforme

Generación de números aleatorios con distribución uniforme Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II IO04002 Investigación de Operaciones II Tema #4 Generación de números pseudo aleatorios y Objetivo de aprendizaje del tema Al finalizar la sesión serás capaz de: Calcular números pseudo aleatorios. Determinar

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS FACULTAD: INGENIERÍA CARRERA: SISTEMAS Asignatura/Módulo: Simulación Código: 15050 Plan de estudios: Nivel: VII Prerrequisitos 14259 Correquisitos: Materias de cadena: N Créditos:

Más detalles

Modelos Estocásticos. Simulación de fenómenos estocásticos. Simulación de fenómenos estocásticos. Definición. Por qué fenómenos estocásticos?

Modelos Estocásticos. Simulación de fenómenos estocásticos. Simulación de fenómenos estocásticos. Definición. Por qué fenómenos estocásticos? Definición Modelos Estocásticos Breve introducción Se denomina estocástico (del latín stochasticus, "hábil en hacer conjeturas") a un sistema cuyo comportamiento es intrínsecamente no determinístico. El

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística robabilidad y stadística robabilidad y stadística Tema 3 Técnicas de Conteo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Analizar los principios de conteo utilizados en probabilidad.

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 14. CÁLCULO DEL PESO MOLECULAR OBJETIVO Calcular los pesos moleculares de los compuestos químicos D.R. Universidad TecMilenio 1 INTRODUCCIÓN Las reacciones químicas son representadas mediante

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 13 Inferencia en una población Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar el procedimiento de pruebas en la inferencia estadística. Aplicar

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAD24.500919 HORAS TEORÍA: 4.5 SEMESTRE: CUARTO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA Módulo I Bioestadística Maestría en Investigación Médica PROGRAMA ACADÉMICO 2011-2 M.C. Enrique Villareal Ríos 1. ASIGNATURA: MÓDULO I BIOESTADÍSTICA

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación

Más detalles

Centro Universitario de Tonalá. Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I

Centro Universitario de Tonalá. Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I Nombre de la materia Estadística aplicada a los negocios Departamento Económico Administrativo Academia Economía y métodos cuantitativos Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos

Más detalles

Estadística. Sesión 4: Medidas de dispersión.

Estadística. Sesión 4: Medidas de dispersión. Estadística Sesión 4: Medidas de dispersión. Contextualización En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal es el caso del rango, la varianza y la desviación estándar,

Más detalles

Programa de estudio INVESTIGACIÓN DE OPERACIONES

Programa de estudio INVESTIGACIÓN DE OPERACIONES 1.-Área académica Técnica 2.-Programa educativo INGENIERÍA MECÁNICA ELÉCTRICA 3.-Dependencia académica Facultad de Ingeniería Mecánica Eléctrica Región Xalapa, Veracruz, Cd. Mendoza, Poza Rica y Coatzacoalcos.

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema #8

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema #8 IO04001 Investigación de Operaciones I Tema #8 Uso de software de PL Objetivos de aprendizaje Al finalizar el tema serás capaz de: Manejar una hoja de cálculo como Excel para la Manejar una hoja de cálculo

Más detalles

Nombre de la asignatura: Simulación. Créditos: Aportación al perfil

Nombre de la asignatura: Simulación. Créditos: Aportación al perfil Nombre de la asignatura: Simulación Créditos: 2-4-6 Aportación al perfil Analizar, diseñar y gestionar sistemas productivos desde la provisión de insumos hasta la entrega de bienes y servicios, integrándolos

Más detalles

Análisis de Datos y Probabilidad Grado 9

Análisis de Datos y Probabilidad Grado 9 Análisis de Datos y Probabilidad Grado 9 Estimando el área de un círculo usando simulación 1 Introducción Suponga que tengo un círculo de radio 1 y centro en (0,0) inscrito en un cuadrado cuyos vértices

Más detalles

Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS

Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS NUMEROS ALEATORIOS Los números random son un elemento básico en la simulación de la mayoría de los sistemas discretos.

Más detalles

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico.

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico. Simulación Temario de la clase Introducción. Generacion de variables aleatorias: método de la transformada inversa. Avance del tiempo de simulación. Determinación de la cantidad de iteraciones requeridas.

Más detalles

Cálculo de Incertidumbre Método de Monte Carlo. Expositor : Licenciado Aldo Quiroga Rojas Fecha : de Mayo del 2014 Lugar : Auditorio - Indecopi

Cálculo de Incertidumbre Método de Monte Carlo. Expositor : Licenciado Aldo Quiroga Rojas Fecha : de Mayo del 2014 Lugar : Auditorio - Indecopi Cálculo de Incertidumbre Método de Monte Carlo Expositor : Licenciado Aldo Quiroga Rojas Fecha : 20-21 de Mayo del 2014 Lugar : Auditorio - Indecopi PROGRAMA: 1er día 1) 14h30 a 15h30: - Introducción -

Más detalles

Actividad: Qué proporción del área terrestre de Puerto Rico está urbanizada?

Actividad: Qué proporción del área terrestre de Puerto Rico está urbanizada? Actividad: Qué proporción del área terrestre de Puerto Rico está urbanizada? Introducción En planificación el área urbanizada corresponde a la superficie de un terreno donde se han construido residencias

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Pontificia Universidad Católica del Ecuador Facultad de Ingeniería Escuela de Sistemas E-MAIL: dga@puce.edu.ec Av. 12 de Octubre 1076 y Roca Apartado postal 17-01-214 Fax: 593 2 299 16 56 Telf: 593 2 299

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PARA CIENCIAS ECONÓMICO ADMINISTRATIVAS FECHA DE ELABORACIÓN: ENERO

Más detalles

Simulación. Carrera: INE Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Simulación. Carrera: INE Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE - 0405 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Tema # 16. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de:

Tema # 16. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de: Tema # 16 Sistemas de Revisión Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar los sistemas de revisión de una empresa. D.R. Universidad TecMilenio 1 Introducción del

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática - Curso 2 Pablo Candela Departamento de Matemáticas (despacho 212) Universidad Autónoma de Madrid pablo.candela@uam.es Introducción 1 / 8 Organización

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE ECONOMÍA Y EMPRESA. Primer Semestre de 2010

UNIVERSIDAD DIEGO PORTALES FACULTAD DE ECONOMÍA Y EMPRESA. Primer Semestre de 2010 UNIVERSIDAD DIEGO PORTALES FACULTAD DE ECONOMÍA Y EMPRESA Primer Semestre de 2010 Estadística I STA2500 http://www.carlospitta.com/courses/estadistica/estadistica.html Profesor: Ayudante: E-Mail: Horario

Más detalles

UNIVERSIDAD DE GUADALAJARA

UNIVERSIDAD DE GUADALAJARA UNIVERSIDAD DE GUADALAJARA FORMATO GENERAL PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA ESTADÍSTICA I CÓDIGO DE MATERIA MC 106 DEPARTAMENTO ESTUDIOS ORGANIZACIONALES ÁREA DE FORMACIÓN BÁSICA COMÚN OBLIGATORIA

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Metodología de la Investigación IDENTIFICACIÓN

Más detalles

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta?

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta? Estadística 1 Sesión No. 9 Nombre: Distribuciones de probabilidad discreta. Segunda parte. Contextualización A qué nos referimos con probabilidad discreta? En la presente sesión analizarás y describirás

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2015/09/30 Revisión No. 2 AC-GA-F-8 Página 1 de 5 ESTADÍSTICA II CÓDIGO 160012 PROGRAMA ECONOMÍA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 3 Nombre: Estadística descriptiva: medidas numéricas. Objetivo Al término de la sesión el estudiante calculará

Más detalles

GUIA DE SIMULACION UNIVERSIDAD POLITECNICA DE NICARAGUA. Marzo 25, 2011 Autor: KATIA NORELLY MENDOZA FAJARDO

GUIA DE SIMULACION UNIVERSIDAD POLITECNICA DE NICARAGUA. Marzo 25, 2011 Autor: KATIA NORELLY MENDOZA FAJARDO GUIA DE SIMULACION UNIVERSIDAD POLITECNICA DE NICARAGUA Marzo 25, 2011 Autor: KATIA NORELLY MENDOZA FAJARDO Qué es la Simulación? Una definición más formal, es que la simulación es el proceso de diseñar

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 6. Reducción de circuitos y técnicas de divisor de voltaje y de corriente Objetivo de la actividad Al finalizar la actividad serás capaz de: Aplicar la combinación de resistencias y fuentes en la

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

Licenciatura en Contaduría. Tema: Teoría de las probabilidades

Licenciatura en Contaduría. Tema: Teoría de las probabilidades UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE ZIMAPÁN Licenciatura en Contaduría Tema: Teoría de las probabilidades L.C. Beatriz Caballero Máximo Julio Diciembre 2014 Tema: Conceptos generales

Más detalles

Universidad Tec Milenio: Profesional Contabilidad. Tema # 9.

Universidad Tec Milenio: Profesional Contabilidad. Tema # 9. Tema # 9. administrativa 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las herramientas actuales que apoyan la administración de los negocios. Distinguir las diferencias

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 3 Propiedades periódicas de los elementos químicos OBJETIVO - Identificar la clasificación y propiedades periódicas de los elementos químicos. 2 D.R. Universidad TecMilenio 1 INTRODUCCIÓN En

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #3 Prof.: MSc. Julio Rito Vargas A. Febrero 2013 Objetivos: Obtener muestras a partir de números aleatorios. Usando muestras

Más detalles

CAMPO DISCIPLINARIO CALIDAD

CAMPO DISCIPLINARIO CALIDAD CAMPO DISCIPLINARIO CALIDAD UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: Análisis de Calidad con

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Creación de empresas de alto valor agregado

Creación de empresas de alto valor agregado Creación de empresas de alto valor agregado Tema 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar la existencia de una necesidad. Distinguir si la idea de negocio constituye

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 11. Métodos de análisis Thévenin y Norton Objetivo de la actividad Al finalizar la actividad serás capaz de: Comprender ampliamente los pasos de los teoremas de Thévenin y Norton, y su aplicación

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Métodos de muestreo de variables con distribuciones continuas Dr. Ing. JORGE E. NÚÑEZ MC LEOD

Métodos de muestreo de variables con distribuciones continuas Dr. Ing. JORGE E. NÚÑEZ MC LEOD Métodos de muestreo de variables con distribuciones continuas Dr. Ing. JORGE E. NÚÑEZ MC LEOD 1. MÉTODO DE LA TRANSFORMADA INVERSA (Simulación Montecarlo) Se desean obtener muestras aleatorias de una variable

Más detalles

PROGRAMA INSTRUCCIONAL ESTADÍSTICA

PROGRAMA INSTRUCCIONAL ESTADÍSTICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE COMPUTACIÓN ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 13. NÚMEROS DE OXIDACIÓN DE LOS ELEMENTOS QUÍMICOS OBJETIVO Identificar los números de oxidación de los elementos que forman parte de un compuesto. D.R. Universidad TecMilenio 1 INTRODUCCIÓN

Más detalles

Evaluación económica de proyectos de inversión utilizando simulación

Evaluación económica de proyectos de inversión utilizando simulación Jiménez Boulanger, Francisco. Evaluación económica de proyectos de inversión utilizando simulación Tecnología en Marcha. Vol. 19-1. Evaluación económica de proyectos de inversión utilizando simulación

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de:

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de: Tema # 14 Proceso de Producción Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Determinar el proceso de producción. D.R. Universidad TecMilenio 1 Introducción del tema Al haber leído

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS DE LA COMUNICACIÓN

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS DE LA COMUNICACIÓN UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS DE LA COMUNICACIÓN Carrera: Licenciatura en Periodismo Asignatura: Estadística Social Curso: 2 año Año lectivo: 2016 Carga horaria

Más detalles

Tema # 2. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de:

Tema # 2. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de: Tema # 2 Conceptos y ejemplos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Reconocer las partes que conforman a la Cadena de Suministro. D.R. Universidad TecMilenio 1 Introducción

Más detalles

PROFESIONALES [PRESENCIAL]

PROFESIONALES [PRESENCIAL] SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: PESANTEZ VICUÑA SAUL FERNANDO(fernando.pesantez@ucuenca.edu.ec) Facultad(es): [FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS] Escuela: [DEPARTAMENTO

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 7. Métodos de análisis de mallas Objetivo de la actividad Al finalizar la actividad serás capaz de: Aplicar el método de mallas al análisis de circuitos. 1 Temas Introducción alanálisis de Mallas

Más detalles

Simulación computacional de cadenas de Markov

Simulación computacional de cadenas de Markov Simulación computacional de cadenas de Markov Presentación basada en el capítulo 3 de Finite Markov Chains and Algorithmic Applications (Häggström, 2002) Sebastián Castro Seminario de Probabilidad y Estadística

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No. 5 Nombre: Prueba de hipótesis Contextualización En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

UNIVERSIDAD PEDAGÓGICA NACIONAL

UNIVERSIDAD PEDAGÓGICA NACIONAL UNIVERSIDAD PEDAGÓGICA NACIONAL Área Académica: Política Educativa, Procesos Institucionales y Gestión Licenciatura en Administración Educativa Plan 2009 Fase: Profundización Línea: Matemáticas, Sistemas

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #3 Generación de números Aleatorios para modelos de simulación Prof.: MSc. Julio Rito Vargas A. Grupo: INGENIERIA INDUSTRIAL

Más detalles

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 3.

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 3. Actividad 3. El medio ambiente organizacional 1 Objetivo de la actividad Al finalizar el tema, serás capaz de: Identificar la importancia del medio ambiente en el estudio de las organizaciones. Identificar

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad 3. Conjunto de Números Reales. Introducción Ya aprendimos que es un conjunto, ahora vamos aprender un conjunto muy importante con el que trabajaremos en tus cursos de Matemáticas, llamado Conjunto

Más detalles

UNIVERSIDAD PILOTO DE COLOMBIA PLAN ANALÍTICO DEL PROGRAMA AREA COMÚN DE MATEMÁTICAS PROGRAMA DE PROBABILIDAD. Obligatorio

UNIVERSIDAD PILOTO DE COLOMBIA PLAN ANALÍTICO DEL PROGRAMA AREA COMÚN DE MATEMÁTICAS PROGRAMA DE PROBABILIDAD. Obligatorio UNIVERSIDAD PILOTO DE COLOMBIA PLAN ANALÍTICO DEL PROGRAMA AREA COMÚN DE MATEMÁTICAS PROGRAMA DE PROBABILIDAD 1. PRESENTACIÓN DE LA ASIGNATURA O CURSO ACADÉMICO Nombre del curso Código del curso (opcional)

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS SEMESTRE ASIGNATURA 8vo TEORÍA DE DECISIONES CÓDIGO HORAS MAT-31314

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles