2 Deniciones y soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 Deniciones y soluciones"

Transcripción

1 Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última expresión sustituimos e 3x por y queda que es una ecuación diferencial. dx = 6xy, Dada una ecuación diferencial, nos planteamos encontrar, si es posible, la función que verica la ecuación. Es la función incógnita..1. Denición Una ecuación diferencial ordinaria es una ecuación que contiene las derivadas de una variable dependiente respecto a una variable independiente. y = y(x): variable dependiente o función incógnita. x: variable independiente. dx = xy... Ejemplos de ecuaciones diferenciales 1. La ecuación diferencial que proporciona el volumen de una esfera que se derrite en cualquier tiempo t viene dada por dv dt = k(4π)1/3 3 /3 V /3. En esta ecuación la función incógnita es V = V (t). Como la derivada que aparece es la primera derivada, se dice que la ecuación es de primer orden.. La ecuación de Hermite: d y 4x + αy = 0, dx dx es una ecuación de segundo orden, pues la derivada mayor que aparece es la derivada segunda. 1

2 .3. Distintas notaciones para las derivadas sucesivas Ejemplos: Notación de Leibnitz: dx, d y dx,..., dn y dx n,... Notación con primas: y, y, y,..., y (n),... Notación de Newton: ẏ, ÿ,... La ecuación se puede escribir como d[a] dt tomando [A] = x, A 0 = x 0, B 0 = y 0. = k[a]([a] A 0 + B 0 ), x = kx(x x 0 y 0 ), La ecuación de Bernouilli dx + f(x)y = g(x)yn, es una ecuación de primer orden, se puede escribir y + f(x)y = g(x)y n. En general, una e.d.o. de orden n se puede representar mediante los símbolos: F (x, y, y,..., y (n) ) = 0. Si se puede despejar la derivada de orden máximo, y (n), de una e.d.o., es decir, si se puede escribir así se dice que está escrita en forma normal. y (n) = f(x, y, y,..., y (n 1) ), Para la ecuación diferencial ordinaria de primer orden y x + 4xy = 0, es donde En forma normal: donde F (x, y, y ) = 0, F (x, y, y ) = y x + 4xy. y = f(x, y), f(x, y) = x y 4x

3 .4. Solución de una ecuación diferencial ordinaria Una solución de una e.d.o. de orden n, F (x, y, y, y,..., y (n) ) = 0, en un intervalo I, es una función y = φ(x), denida en I y con al menos n derivadas continuas en I, que tiene la propiedad de que al sustituirla en la ecuación la transforma en una identidad: F (x, φ(x), φ (x),..., φ (n) (x)) = 0. Al intervalo I se le llama intervalo de denición, intervalo de existencia, intervalo de validez o dominio de la solución. La gráca de una solución φ de una ecuación diferencial ordinaria se llama curva solución. La función y = xe x es solución de la e.d.o. Derivadas y = xe x, y = xe x + e x e y = xe x + e x. Para todo x real se obtiene y y + y = 0 : El intervalo de denición es I = R. y y + y = (xe x + e x ) (xe x + e x ) + (xe x ) = 0. La solución viene dada de forma explícita, es decir, la variable dependiente se expresa tan sólo en términos de la variable independiente. Una ecuación diferencial, en general, tiene más de una solución. Por ejemplo, la ecuación tiene toda una familia de soluciones: y = 1 y, y = 1 + ce x. Para cada valor del parámetro c tenemos una solución distinta. Se dice que es una familia uniparamétrica de soluciones de la ecuación. En la gráca están representadas las curvas solución correspondientes a los valores del parámetro c =, 1, 0, 1,, 3, 4, 5:

4 .4.1. Solución implícita Se dice que una relación G(x, y) = 0 es una solución implícita de una e.d.o., en un intervalo I, siempre que exista al menos una función φ que satisfaga tanto la relación como la ecuación diferencial en I. La relación x + y = 5 es una solución implícita en el intervalo 5 < x < 5 de la ecuación diferencial dx = x y : Por diferenciación implícita: d dx (x + y ) = d dx 5, es decir Observación: x + y dx = 0. La relación x + y = c también es solución de la e.d.o. dx = x y.5. Condiciones adicionales para cualquier c. Las condiciones adicionales en un problema hacen que de la familia de soluciones tomemos alguna o algunas en particular. Por ejemplo, de la familia y = 1 + ce x, la curva solución que pasa por el punto (0, 6) es la representante de la familia con c = 5. La ecuación diferencial ordinaria de segundo orden tiene una familia biparamétrica de soluciones los parámetros son c 1 y c. ẍ + 16x = 0, x(t) = c 1 cos(4t) + c sen(4t), Queremos determinar la solución de entre ( todas las de la familia que satisfaga las condiciones π ) (condiciones de frontera) x(0) = 0 y x = 0. Entonces: de modo que Imponiendo la otra condición: x(0) = 0 0 = c 1 cos 0 + c sen 0 c 1 = 0, x(t) = c sen(4t). ( π ) x = 0 0 = c sen(π), que se satisface para cualquier valor de c. En este caso existen innitas soluciones. ( Grácamente π ) existen innitas soluciones de la ecuación que pasan por los puntos x(0) = 0 y x = 0. Ahora si consideramos la ecuación con las condiciones x(0) = 10 y ẋ(0) = 0 (condiciones iniciales): la función es x(0) = = c 1 cos(0) + c sen(0) c 1 = 10, x(t) = 10 cos(4t) + c sen(4t) ẋ(t) = 40 sen(4t) + 4c cos(4t), ẋ(0) = 0 c = 0. La solución que estamos buscando es, de entre todas: x(t) = 10 cos(4t). 4

5 Ejercicios del capítulo 1. Escribe las siguientes ecuaciones con otras notaciones: a) p = k(a 0 + p 0 p) b) x 3 y (4) x y + 4xy 3y = 0 c) d r dt = k r d) ml d θ dt = mg sen(θ) e) Ld q dt + R dq dt + 1 C q = E(t). ¾De qué orden es la ecuación de Cauchy-Euler? a n x n y (n) + a n 1 x n 1 y (n 1) a 1 xy + a 0 y = g(x), donde a n, a n 1,..., a 1 son constantes y g(x) es una función de variable x. 3. a) Verica que la familia biparamétrica c 1 cos(4t) + c sen(4t) es solución de la ecuación x(0) = 0, { ẍ + 16x = 0, x(0) = 0, ẍ + 16x = 0. b) Determina en cada caso cuántas soluciones tienen los siguientes problemas: { ẍ + 16x = 0, x(0) = 0, x ( ) π. = 0 { ẍ + 16x = 0, x ( ) π. 8 = 0 x ( ) π. = 1 4. Verica que la función P = aceat dp es solución de la e.d.o. 1 + bceat dt 5. Sea la ecuación dn dt = kn. ¾Qué relación han de tener τ 0, k y N 0 para que ( N(t) = N t ) 1 τ 0 sea solución? 6. Todas las funciones de la familia uniparamétrica y = 1 + ce4x 1 ce 4x, son soluciones de la ecuación de primer orden y = y 4. = P (a bp ). a) Verica que para c = 1, la función resultante es solución de la ecuación. (Solución particular). b) Además la función constante y = es solución de la ecuación. (Solución singular). 7. Determina m para que y = x m sea solución de la ecuación xy + y = Da una interpretación física del modelo: { ẍ + 16 = 0 x(0) = 10, ẋ(0) = 0 5

6 Ejercicios del texto recomendado Ejercicios 1, 14, 16, 19, 4(a), del Capítulo 1: Introducción a las ecuaciones diferenciales. Págs. 11 y 1 de la séptima edición: 1. Comprueba que la función indicada es una solución explícita de la ecuación: + 0y = 4; dt y = e 0t. Comprueba que la función indicada es una solución explícita de la ecuación: y + y = tan(x); y = (cos(x)) ln(sec(x) + tan(x)) 3. Comprueba que la expresión indicada es solución implícita de la ecuación diferencial dada. Determina al menos una solución explícita: xydx + (x y) = 0; x + y = 1 4. La función indicada es solución de la ecuación diferencial respectiva. Determina, al menos, un intervalo de denición I de la solución: y = 5 + y ; y = tan(5x) Ejercicios 4, 6, 8, 10 del Capítulo 1: Introducción a las ecuaciones diferenciales. Pág. 19 de la séptima edición: 5. Aprovecha que x = c 1 cos(t) + c sen(t) es una familia biparamétrica de soluciones de x + x = 0 para determinar una solución del problema de valores iniciales formado por la ecuación diferencial y las condiciones iniciales dadas. x(π/) = 0, x (π/) = 1, 6. Aprovecha que x = c 1 cos(t) + c sen(t) es una familia biparamétrica de soluciones de x + x = 0 para determinar una solución del problema de valores iniciales formado por la ecuación diferencial y las condiciones iniciales dadas. x(π/4) =, x (π/4) =. 7. Aprovecha que y = c 1 e x + c e x es una familia biparamétrica de soluciones de y y = 0 para determinar una solución del problema de valores iniciales formado por la ecuación y las condiciones iniciales dadas. y(1) = 0, y (1) = e 8. Aprovecha que y = c 1 e x + c e x es una familia biparamétrica de soluciones de y y = 0 para determinar una solución del problema de valores iniciales formado por la ecuación y las condiciones iniciales dadas. y(0) = 0, y (0) = 0 6

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje:

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: Análisis Numérico y Ecuaciones Diferenciales Unidad 1.

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES INGENIERÍA (NIVEL LICENCIATURA) Curso Básico - Primavera 2017 Omar De la Peña-Seaman Instituto de Física (IFUAP) Benemérita Universidad Autónoma de Puebla (BUAP) 1 / Omar De la

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

1. Introducción a las ecuaciones diferenciales. ( Chema Madoz, VEGAP, Madrid 2009)

1. Introducción a las ecuaciones diferenciales. ( Chema Madoz, VEGAP, Madrid 2009) 1. Introducción a las ecuaciones diferenciales ( Chema Madoz, VEGAP, Madrid 009) 1 Profesores: Manuel Abejón (grupos A y B) Bartolo Luque (grupos C y D) Página del departamento de Matemática Aplicada y

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

CAPÍTULO 1 INTRODUCCION

CAPÍTULO 1 INTRODUCCION CAPÍTULO 1 INTRODUCCION Definición 1.1. Si una ecuación contiene las derivadas o las diferenciales de una o más variables dependientes con respecto a una o más variables independientes, se dice que es

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D) Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A B) Encargado de responder a todas las preguntas de la asignatura de todas las tutorías. Bartolo Luque (grupos C D) Este no tiene ni idea. No

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales 1. Conceptos generales Ecuación diferencial ordinaria. Definición Se llama ecuación diferencial ordinaria (E.D.O.) a una relación entre la variable independiente x, una función

Más detalles

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes http://personales.upv.es/ serblaza Instituto de Matemtica Multidisciplinar Universidad Politécnica de Valencia Edificio 8-G, entrada

Más detalles

Ecuaciones Diferenciales. Conceptos Generales

Ecuaciones Diferenciales. Conceptos Generales Tema 1 Ecuaciones Diferenciales. Conceptos Generales Introducción La Modelización y Simulación es una área enorme de la ciencia pura y aplicada, a la que intentamos aproximarnos en esta asignatura. Dadas

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4.1. Ecuaciones lineales La e.d.o. de primer orden lineal es Si g(x) = 0: ecuación lineal homogénea. a 1 (x) +

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 7: EDO s de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

2. Actividad inicial: Crecimiento del dinero.

2. Actividad inicial: Crecimiento del dinero. Índice 1. Introducción 6 2. Actividad inicial: Crecimiento del dinero. 6 3. EDO de variables separables 7 3.1. Técnica de resolución de una ODE de variables separables........... 8 3.2. Ejemplos desarrollados...............................

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Ecuaciones Diferenciales (MA-841)

Ecuaciones Diferenciales (MA-841) Ecuaciones Diferenciales (MA-841) Ecuaciones de Departmento de Matemáticas / CSI ITESM Ecuaciones de Ecuaciones Diferenciales - p. 1/16 Ecuaciones de Iniciaremos nuestras técnicas de solución a ED con

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos Ecuaciones diferenciales ordinarias 1. Ecuaciones diferenciales lineales de orden n Considera un número n de funcines de una variable

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Introducción y algunos métodos de solución) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 8: Ecuaciones Diferenciales Ordinarias Elaborado por los profesores Edgar Cabello y Marcos González Es muy común encontrar que los modelos matemáticos que se necesitan para el estudio de problemas

Más detalles

1. Ejercicios propuestos

1. Ejercicios propuestos Coordinación de Matemática I (MAT0 er Semestre de 05 Semana 4: Guía de Ejercicios de Complementos, lunes 0 de Marzo viernes de Abril. Contenidos Clase : Funciones trigonométricas. Clase : Funciones sinusoidales

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas.

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. MATEMÁTICAS ESPECIALES II - 2018 PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. Una ecuación diferencial de primer orden de la forma dy + p(x) y = q(x)

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8 Laboratorio: Curvas paramétricas En el applet de la figura siguiente puedes representar curvas dadas en paramétricas. Los valores a introducir son: xt: La expresión de x(t) yt: La expresión de y(t) x1t:

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Tema 4 Diferenciación de funciones de una y varias

Tema 4 Diferenciación de funciones de una y varias Tema 4 Diferenciación de funciones de una y varias variables. CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE Definición.: Función derivable Sea f : R R definida en un entorno de a R, se dice que f es

Más detalles

Lección 1. Ecuaciones y sistemas

Lección 1. Ecuaciones y sistemas Lección 1. Ecuaciones y sistemas Ecuaciones Diferenciales I Apuntes de Rafael Ortega Ríos transcritos por Gian Nicola Rossodivita 1 Introducción a las ecuaciones diferenciales En las ecuaciones polinómicas

Más detalles

Problema de Cauchy. Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial

Problema de Cauchy. Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial Problema de Cauchy Un Problema de Cauchy viene denido por una ecuación o sistema de ecuaciones de primer orden y una condición inicial x (t) = F(t, x(t)) x(t 0 ) = x 0 La función incógnita x es una función

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del segundo examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

X (t ) w t + sen w t.

X (t ) w t + sen w t. 1 2 8 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR En los problemas 11 y 12, un intervalo que abarque x = 0 para el cual el problema de valor inicial correspondiente tenga solución única. ll. (x =x, y(o)=

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +.

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +. CURSO 7-8. Septiembre de 8. ) (,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x -x tiene en +. ) (,p) Calcula: -cos(x-) x ln x 3) (,p) La

Más detalles

PRECÁLCULO -Décimo Año- IV EXAMEN PARCIAL 2016

PRECÁLCULO -Décimo Año- IV EXAMEN PARCIAL 2016 Universidad de Costa Rica Instituto Tecnológico de Costa Rica PRECÁLCULO -Décimo Año- IV EXAMEN PARCIAL 016 Nombre: código: Colegio: Fórmula 1 Sábado 1 de noviembre de 016 INSTRUCCIONES 1. El tiempo máximo

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

Clase 4: Diferenciación

Clase 4: Diferenciación Clase 4: Diferenciación C.J Vanegas 27 de abril de 2008 1. Derivadas Parciales Recordemos que la definición de derivada parcial: sea fa R R, definida sobre un f(x) f(x 0 ) intervalo abierto A. f es derivable

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Cálculo Diferencial Enero 2015

Cálculo Diferencial Enero 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN REFLEXIONA Y RESUELVE Tangentes a una curva y = f (x) 5 3 5 3 9 14 Halla, mirando la gráfica y las rectas trazadas, f'(3), f'(9) y f'(14). Di otros tres puntos en los

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 3

Análisis Numérico para Ingeniería. Clase Nro. 3 Análisis Numérico para Ingeniería Clase Nro. 3 Ecuaciones Diferenciales Ordinarias Introducción Problemas de Valores Iniciales Método de la Serie de Taylor Método de Euler Simple Método de Euler Modificado

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

3. FUNCIONES DERIVABLES.

3. FUNCIONES DERIVABLES. 3. FUNCIONES DERIVABLES. 3.1. Derivada de una función. El concepto de derivada aparece en diversos problemas como un mismo tipo de ite. Veamos dos ejemplos: la denición de la recta tangente a una curva

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

3. FUNCIONES DERIVABLES.

3. FUNCIONES DERIVABLES. 3. FUNCIONES DERIVABLES. 3.1. Derivada de una función. El concepto de derivada aparece en diversos problemas como un mismo tipo de ite. Veamos dos ejemplos: la denición de la recta tangente a una curva

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas Unidad. Trigonometría.5 funciones trigonométricas e identidades trigonométricas Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Problemario de la asignatura de Ecuaciones Diferenciales

Problemario de la asignatura de Ecuaciones Diferenciales Problemario de la asignatura de Ecuaciones Diferenciales Alejandro Hernández Madrigal Maxvell Jiménez Escamilla Academia de Matemáticas y Física Unidad Profesional Interdisciplinaria de Biotecnología,

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

X (t ) w t + sen w t.

X (t ) w t + sen w t. 1 2 8 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR En los problemas 11 y 12, un intervalo que abarque x = 0 para el cual el problema de valor inicial correspondiente tenga solución única. ll. (x =x, y(o)=

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016 Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate 332 5 de mayo de 26 Nombre. Sección Número de Estudiante Profesor Número de puntos disponibles:

Más detalles

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función:

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función: Matemáticas Convocatoria Extraordinaria 4 de junio de 14 1 3 puntos) a) Estudia el ite: en función del valor del parámetro real k e x 1 + kx x 1 cos x b) Halla los intervalos de crecimiento, decrecimiento,

Más detalles

PROBLEMARIO DE ECUACIONES DIFERENCIALES

PROBLEMARIO DE ECUACIONES DIFERENCIALES PROBLEMARIO DE ECUACIONES DIFERENCIALES PARA LA CARRERA DE COMUNICACIONES Y ELECTRÓNICA DE LA ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELECTRICA DEL INSTITUTO POLITÉCNICO NACIONAL ELABORADO POR EL LIC.

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 29. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+ y- az -x+ay+ az2a+ x+ y+(a 3-2a)z a- (3

Más detalles

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Universidad de Chile Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Profesora Salomé Martínez Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Pauta: Auxiliar

Más detalles

Capítulo 2. Funciones

Capítulo 2. Funciones Capítulo 2. Funciones Objetivo: El alumno analizará las características principales de las funciones reales de variable real y formulará modelos matemáticos. Contenido: 2.1 Definición de función real de

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles