Integrales y ejemplos de aplicación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrales y ejemplos de aplicación"

Transcripción

1 Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir un tratamiento riguroso, sino que se intenta presentar una noción intuitiva del concepto de integral y algunos ejemplos de sus aplicaciones. Este material fue escrito con la intención de cubrir la situación inconveniente de que algunos alumnos que se encuentran cursando Física General I no realizaron previamente el curso de Matemáticas I ó Cálculo I, u otro curso en dónde se estudien estos temas. Dado que en cierta medida esta situación es ajena a la responsabilidad de los estudiantes, entendimos pertinente realizar esta guía para permitirles manejar problemas en los cuáles es necesario calcular integrales. La resolución de tales tipos de ejercicios es totalmente necesario en el curso de Física General I. Se espera que los estudiantes tomen lo antes posible el curso correspondiente de Matemáticas, a efectos de tener la formación adecuada al momento de cursar materias más avanzadas de la carrera. II. LA VELOCIDAD COMO UNA DERIVADA Dado que los conceptos que manejaremos aquí serán posteriormente utilizados en la resolución de problemas de Física, resulta natural comenzar con ejemplos tomados de la misma. Consideremos una partícula que se mueve en una cierta dirección fija, es decir se mueve a lo largo de una línea recta. Supongamos que medimos la posición de la misma usando una coordenada x, tal como se muestra en la figura 1. La posición x, será una función del tiempo t. Esto quiere decir que para cada valor de t, x tendrá un valor determinado. Podemos expresar esto denotando x = x(t), y representarlo como una curva, como se muestra en la figura 2. A medida que transcurre el tiempo, la posición de la partícula irá cambiando, y el desplazamiento x de la misma entre los instantes t 1 y t 2 está dado por x = x(t 2 ) x(t 1 ). Se define a la velocidad media v m en el intervalo (t 1, t 2 ) mediante la relación v m = x(t 2) x(t 1 ) t 2 t 1 Supongamos que ahora, manteniendo fijo el valor de t 1, consideramos un valor de t 2 más cercano a t 1. El valor de v m en el nuevo intervalo será en general diferente al obtenido en 1

2 x 0 Figura 1 x Figura 2 t el intervalo anterior. Supongamos que consideramos ahora otros valores de t 2, cada vez más cercanos a t 1. Los valores de t 1 se irán acercando un cierto valor v. Diremos que ese es el valor de la velocidad instantánea en el instante t 1 (para ciertas funciones x(t) el valor de v podría ser, pero en estos casos la función x(t) no es física, dado que partículas reales no tienen velocidad infinita). Dado que la velocidad instantánea depende del valor de t 1 elegido, esta es una función del tiempo, y podemos expresarla en la forma v = v(t). La definición de la velocidad instantánea se puede escribir usando el concepto de límite, en la forma v(t 1 ) = lim t 2 t 1 x(t 2 ) x(t 1 ) t 2 t 1 (1) Esto quiere decir que v(t 1 ) es el valor al cuál se acerca el cociente q(t) = x(t 2) x(t 1 ) t 2 t 1 medida que t 2 se acerca t 1. (De manera más formal, en general, definimos que L = lim t t1 q(t) si para cualquier número arbitrario ɛ > 0, existe un número δ > 0, tal que para todo t entre t 1 δ y t 1 + δ, se verifica que q(t) L < ɛ). En los casos en que está definido el valor de q(t) en t = t 1, el límite L es el valor q(t 1 ). t 2 t 1 Ejemplo: obtener el límite lim t t1 t 2 1 t. Sustituyamos el valor t por t 1 y veamos que sucede. En este caso obtenemos t2 1 t 1 = 1, por lo que entonces el límite es 1. t 2 1 t 1 a 2

3 En otros casos, sin embargo, el valor de q(t) no está definido en t = t 1. Esto es lo que sucede en el cálculo de la velocidad instantánea, como veremos posteriormente, lo cuál no quiere decir que no exista el límite. Definiendo = t 2 t 1, t = t 1 (lo cuál implica que t 2 = t + ), podemos escribir a la definición (1) en la forma x(t + ) x(t) v(t) = lim 0 (2) Se define a la derivada de una función f(t) con respecto a t ( la cuál se denota como f (t), f(t) ó df(t) dt ) en la forma f f(t + ) f(t) (t) = lim 0 ( esta defición requiere que el límite exista). Por lo tanto, la velocidad instantánea v(t), es la derivada de la posición x(t) con respecto al tiempo. A modo de ejemplo, supongamos que la posición de una partícula viene dada por la función x(t) = At 3 y queremos calcular su velocidad instantánea. O sea que queremos calcular el límite A(t + ) 3 At 3 v(t) = lim 0 = lim A((t + )3 t 3 ) 0 (3) (t+) 3 t 3 = Utilizando el desarrollo de la potencia del binomio, obtenemos t 3 +3t t+ 3 t 3 = 3t t t Entonces v(t) = lim 0 A(3t2 ). Para obtener el valor del límite, podemos substituir el valor = 0 y ver que sucede. En este caso obtenemos 0, que es un número no definido. Sin embargo, podemos solucionar este problema 0 simplificando la expresión. Si dividimos numerador y denominador por, obtenemos que + t + 2 v(t) = lim 0 A(3t2 ) 1 Ahora podemos substituir = 0 en la expresión, con el resultado de que la velocidad instantánea es v(t) = 3At 2. Utilizando un desarrollo similar, se puede obtener que la función f(t) = At n (dónde A y n son constantes) tiene como derivada f (t) = nat n 1. Si n = 0, f(t) es una constante, y su derivada es cero. A continuación, daremos las derivadas correspondientes a varias funciones que se usan con frecuencia. 3

4 siendo a,b constantes. f(t) f (t) cos(at) a sin(at) sin(at) e bt a bt a cos(t) be bt b ln(a)a bt 1 ln(bt) t En libros de cálculo se pueden obtener listas muy completas de derivadas. Algunas propiedades de las derivadas son las siguientes: 1) Si u(t) = Af(t), ( A constante), u (t) = Af (t). 2) Si u(t) = f(t)+g(t), u (t) = f (t)+g (t). 3) Si f(t) = u(t)v(t), f (t) = u (t)v(t) + u(t)v (t). 4) Función compuesta: si u(t) = f(g), (siendo g una función de t), u (t) = df dg g (t). El símbolo df dg argumento g, y no con respecto a t. (4) significa que debemos derivar a f con respecto su Ejemplo: Obtener la derivada con respecto a t de f(t) = sin(3t 2 ). Denominando g(t) = 3t 2, tenemos que f (t) = df dg g (t). La derivada df dg 3.2t = 6t. Entonces f (t) = 6t cos(3t 2 ). es d sin(g) dg = cos(g), y por otro lado g (t) = A. Interpretación geométrica de la derivada La derivada de una función f(t) tiene una interpretación geométrica muy directa. Consideremos la figura 3, y en ella, la recta que pasa por los puntos (t, f(t)) y (t+, f(t+)). La tangente del ángulo que forman esa recta con el eje horizontal (eje t), es igual a tan α = f(t + ) f(t) A medida que hacemos tender 0, esa recta tiende a ser la tangente a la curva, y el lado derecho de la igualdad (5) tiende al valor de la derivada. O sea que la derivada f (t) es igual a la pendiente de la tangente a la curva f(t) en t. Cuando la tangente es horizontal, α = 0. Esto implica que tan(α) = 0, y que entonces la derivada se anula. Esto significa que cuándo la función alcanza un máximo o un mínimo, la derivada (asumiendo que exista), será nula (puede suceder que la derivada se anule aunque no se alcance ni un máximo ni un mínimo, ver figura 4). 4 (5)

5 f f(t+ t)-f(t) t t + t Figura 3 f f '(t)=0 Máximo (tangente horizontal) f '(t)=0 Tangente horizontal sin máximo t Figura 4 B. Aceleración instantánea En forma similar a como definimos la velocidad intantánea, la aceleración instantánea se define en la forma v(t + ) v(t) a(t) = lim 0 O sea que a(t) es la derivada con respecto a t de la velocidad instantánea, ó la derivada segunda de la posición x(t). O sea que a(t) = v (t) = x (t). (6) 5

6 III. INTEGRALES Anteriormente vimos que, si conocemos a la posición en función del tiempo x(t), podemos obtener a la velocidad y a la aceleración derivando. La pregunta es si teniendo a la velocidad v(t), o la aceleración a(t), podemos obtener a la posición x(t). Supongamos que la aceleración es constante: a(t) = A En este caso, la velocidad debe ser de la forma v(t) = At+C, para que se verifique v (t) = A. Aquí C es una constante cualquiera. Cualquier valor de C es válido, ya que la derivada de una constante es cero, de forma que para cualquier C se verifica v (t) = A. El procedimiento que hemos realizamos es inverso a la derivación, y se denomina integración. La función F (t) es la integral indefinida de f(t) si se verifica F (t) = f(t). Continuando con el ejemplo, el valor de C tiene un significado preciso. Si damos a t el valor t = 0, vemos que v(0) = C. O sea que C representa el valor de la velocidad en t = 0, ó valor inicial de v. Podemos escribir entonces que v(t) = At + v 0 Por otro lado, vemos que la posición debe ser de la forma x(t) = 1 2 At2 + v 0 t + C 2, a efectos que se verifique x (t) = v(t). Nuevamente, al asignar el valor t = 0, vemos que C 2 es la posición inicial, o sea el valor de x en t = 0. En definitiva x(t) = 1 2 At2 + v 0 t + x 0, que es una fórmula ya conocida. Por lo tanto teniendo a a(t), podemos obtener a x(t) si además conocemos un número de condiciones iniciales. A. Integral definida Consideremos a la figura 5, dónde se representa a x(t) en función de t entre los instantes t a y t b. Supongamos que dividimos al intervalo (t a, t b ) en N subintervalos. La cantidad = t b t a N representa entonces la duración de cada subintervalo. Denominamos a x i, x i+1 6

7 x x b x a t a t b Figura 5 a la posición al comienzo y al final del intervalo i-ésimo, como se muestra en la figura 5, y t i, t i+1 a los instantes en que comienza y finalizan los subintervalos (o sea que x i = x(t i ) y t i+1 = t i + ). Tenemos entonces que x a = x 1 y x b = x N+1. Podemos escribir x(t b ) x(t a ) = x b x a = x N+1 x 1 = x N+1 x N + x N x N x 3 x 2 + x 2 x 1 = (x N+1 x N ) + (x N x N 1 ) (x 3 x 2 ) + (x 2 x 1 ) = (x i+1 x i ) = (x(t i+1 ) x(t i )) = (x(t i + ) x(t i )) = x(t i + ) x(t i ) Al comienzo de estas operaciones, solamente sumamos y restamos x N, x N 1,...x 2, y al final multiplicamos y dividimos por. Si ahora hacemos tender 0, (esto es, hacemos tender el número N de subintervalos a ), la cantidad x(t j+) x(t j ) tiende al valor de la derivada de x(t) en t = t j (asumimos que en el intervalo (t a, t b ) la función f(t) y su derivada están bien definidos). Podemos escribir entonces que x(t b ) x(t a ) = lim 0 7 x (t j ) (7)

8 f f(b) f(a) f(x) a x b x Figura 6 A la expresión al lado derecho de la igualdad (7) se la denomina integral definida, y se la representa en la forma tb t a x (t)dt = lim 0 x (t j ) (8) Si llamamos F (t) = x(t), f(t) = x (t), (o sea que F (t) = f(t), de manera que F es la integral indefinida de f) podemos expresar a las igualdades anteriores en la forma tb t a f(t)dt = lim 0 f(t j ) F (t b ) F (t a ) = tb (9) t a f(t)dt Es útil tener en cuenta ambas expresiones ya que la primera de ellas surge con frecuencia al resolver algún problema y la segunda nos dice como calcularla. B. Interpretación geométrica de la integral Consideremos a la figura 6, dónde se grafica a una cierta función f(x), entre los valores x = a y x = b. Se divide al intervalo (a, b) en N subintervalos y se define x = b a N. Se denomina x i al valor de x al final de cada subintervalo. Consideremos la cantidad S = f(x i ) x. El área de un rectángulo está dado por xf(x), así que S representa lim x 0 el área total debajo de los rectángulos, tal como se muestra en la figura 6. A medida que 8

9 x 0, el área total de todos los rectángulos S tiende a ser igual al área bajo la curva. Por otro lado, usando las relaciones (9) (substituyendo t por x), obtenemos que S = b a f(x)dx = F (a) F (b) O sea que la integral de f(x) es igual al área bajo la curva. C. Ejemplo de aplicación Se define el momento de inercia de un conjunto de partículas con respecto a un eje de la siguiente forma: I = i m i r 2 i (10) siendo r i la distancia desde la partícula i hasta el eje considerado y m i la masa de la partícula. Supongamos que queremos determinar el momento de inercia de una barra de densidad uniforme con respecto a un eje que pasa por uno de sus extremos, tal cómo se ve en la figura 7. La longitud de la barra es L y su masa M. A efectos de aplicar la definición (10), podemos dividir a la barra en un cierto número N de fragmentos de igual longitud x = L/N, (11) y luego suponer que cada fragmento se comporta como una partícula, asumiendo que toda la masa del fragmento está concentrada en el punto medio del mismo. Esto constituye una aproximación, pero a medida que hacemos tender el número N a, este error disminuye y en el límite el cálculo es exacto. Como la distribución de la masa sobre la barra es uniforme, entonces la masa m i de cada fragmento es: m i = M N entonces m i = M x. Tenemos entonces que L I = lim x 0 i m i x 2 M i = lim x 0 i L x2 i x. De (11), tenemos que x L = 1 N y Aquí x i mide la distancia desde el eje al punto del fragmento i. Notamos que obtuvimos una sumatoria del tipo (9), por lo tanto, I = L 0 M L x2 dx = M L L 0 x 2 dx (12) 9

10 y x L Figura 7 Los extremos de la integral definida son L y 0 porque son los valores máximo y mínimo que toma la variable x. Para calcular esta integral usamos ahora la segunda ecuación (9). Debemos encontrar la integral indefinida de la función f(x) = x 2. Esta es F (x) = 1 3 x3, como podemos verificar derivando. Entonces L 0 x 2 dx = F (L) F (0) = 1 3 L = 1 3 L3 Substituyendo en (12) y simplificando, obtenemos entonces que I = 1 3 ML2... Notas redactadas por el Prof. Gustavo Sarasúa 10

2. Fórmula para el cálculo de áreas de figuras de tres o cuatro lados:

2. Fórmula para el cálculo de áreas de figuras de tres o cuatro lados: 9. Integral Definida 9.1. Definición de Integral definida Este artículo permite captar rápidamente la interpretación geométrica de la Integral Definida: área bajo la curva entre dos puntos dados. Se utiliza

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

48 Apuntes de Matemáticas II para preparar el examen de la PAU

48 Apuntes de Matemáticas II para preparar el examen de la PAU 48 Apuntes de Matemáticas II para preparar el eamen de la PAU Unidad. Funciones. Derivabilidad TEMA FUNCIONES.DERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Tema 1.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN Ampliación de Matemáticas Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Índice General 1 Ecuaciones diferenciales ordinarias.

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

La derivada. 5.2 La derivada de una función

La derivada. 5.2 La derivada de una función Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES. INTRODUCCIÓN A LOS LÍMITES. Definición intuitiva de límite.. DEFINICIÓN RIGUROSA DE LÍMITE. Límites reales.. Propiedades de los límites.. Estrategias para calcular límites. - Límites

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Funciones. Capítulo 1

Funciones. Capítulo 1 Capítulo Funciones En la base de muchos modelos matemáticos se halla el concepto de función. La descripción de un fenómeno que evoluciona con respecto al tiempo se realiza generalmente mediante una función

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Un modelo que se ajustaría a esta situación bien podría ser fácilmente con el programa GeoGebra.

Un modelo que se ajustaría a esta situación bien podría ser fácilmente con el programa GeoGebra. CÁLCULO DIFERENCIAL Vamos a introducir el concepto de derivada a través de los dos problemas que le dieron origen: el de la velocidad instantánea y el de la recta tangente a una curva en un punto. Una

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS

MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS Colegio Nacional de Educación Profesional Técnica MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS Al finalizar la unidad el resolverá problemas prácticos usando integrales Reforma Académica 003

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'. .- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

CÁLCULO INTEGRAL. Por: Edivar Fernández Hoyos INTRODUCCIÓN

CÁLCULO INTEGRAL. Por: Edivar Fernández Hoyos INTRODUCCIÓN CÁLCULO 1 INTEGRAL Por: Edivar Fernández Hoyos INTRODUCCIÓN Esta guía tiene como objetivo darte una introducción rápida para que inicies el curso de Cálculo Integral, comprendiendo: Qué es? Y Cómo se relaciona?

Más detalles

Anexo 2: Demostraciones

Anexo 2: Demostraciones 0 Matemáticas I : Cálculo diferencial en IR Aneo : Demostraciones Funciones reales de variable real Demostración de: Propiedades del valor absoluto 79 de la página 85 Propiedades del valor absoluto 79.-

Más detalles

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA Función Lineal Ecuación de la Recta 4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA El concepto de función es el mejor objeto que los matemáticos han podido inventar para epresar el cambio que se produce en las

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 En esta segunda práctica tratamos los siguientes temas: Representación de

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

ASIMOV MATEMÁTICA PARA EL CBC, Parte 2

ASIMOV MATEMÁTICA PARA EL CBC, Parte 2 MATEMÁTICA PARA EL CBC, Parte Matemática para el CBC, Parte - da. edición. Buenos Aires: Editorial Asimov, 0 6 p.; 7 cm. ISBN: 978-987-54-4-5 Matemática para el CBC, Parte - da ed. - Buenos Aires : Asimov,

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR.

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR. Matemáticas I : Cálculo diferencial en IR Tema Funciones derivables. Derivada de una función en un punto Definición 4.- Se dice que f: (a, b IR es derivable en el punto (a, b si f( f( = L IR es decir,

Más detalles

Deseamos, pues, al alumno el mayor de los éxitos en su intento.

Deseamos, pues, al alumno el mayor de los éxitos en su intento. INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Límites y continuidad 1. Límite de funciones de dos variables Hasta ahora hemos evitado entrar en la

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeriería Técnica Industrial. Especialidad en Mecánica. Boletin 6. Funciones de Varias Variables EJERCICIOS RESUELTOS Curso 003-004 1. En cada apartado, calcular

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles