LOGOTIPO Comunidad de Madrid Madrid

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LOGOTIPO Comunidad de Madrid Madrid"

Transcripción

1 Descripción Signo visul compuesto de crcteres tipográficos, el logotipo d form gráfic un o vris plbrs que, hst ese instnte, se poyn en su contenido purmente fonético. Existen dos versiones del logotipo: Comunidd de Mdrid y Mdrid. Ambs locuciones siguen vigentes, utilizándose en los diferentes csos que se presenten, según ls directrices y recomendciones que expone este Mnul de Identidd Como novedd, se introduce un vrición en l tipogrfí que se utiliz pr mbos logotipos. A prtir de hor, el nuevo tipo de letr será l Helvétic Blck, considerndo que con ello se refuerz el impcto visul, l presentr est fmili unos crcteres de plo más grueso y sin serif (terminles). d1

2 Alfbeto corportivo L tipogrfí conllev un presenci icónic de l plbr que, junto su función purmente verbl, port ciertos significdos complementrios totlmente visules. Por ello h de considerrse que culquier fmili tipográfic que se bse en el desrrollo de un logotipo debe reunir, ineludiblemente, crcterístics de funcionlidd, rápid legibilidd y permnenci en el tiempo, vlores que contribuirán que l form visul de dicho logotipo consig un eficci comuniccionl oportun. Por ello se h selecciondo l tipogrfí Helvétic Blck en versles y cj bj. Letr de rsgos sobrios, sólidos y clros, reúne tres vlores fundmentles: funcionlidd, permnenci y homogeneidd en su trzo. Los logotipos que presentmos en est págin están relizdos con crcteres de dich fmili tipográfic. Comunidd de Mdrid Mdrid d2

3 Alfbeto corportivo complementrio Junto l Helvétic Blck hy que seleccionr otr tipogrfí que sirv de complemento, teniendo en cuent que, pr mntener uniformidd y coherenci en tods ls comunicciones de l Comunidd de Mdrid, es consejble el uso de un fmili tipográfic comptible. Dich tipogrfí se utilizrá en l composición de los textos y epígrfes necesrios pr l relizción de impresos (crts, trjets, folletos, libros, etc.) o de culquier otro tipo de proyectos (crteles, vlls, señlétic, etc.). Se ofrecen directrices ms pormenorizds en los diferentes prtdos de este Mnul. Teniendo en cuent ls crcterístics puntds, se h selecciondo l Helvétic en sus diferentes vriciones (fin, médium, negr, etc.) y que, l ser l mism fmili tipográfic de l Helvétic Blck, se mntiene un fácil lectur y sensción de equilibrio. Helvétic Blck bcdefghijklmnñopqrstuvwxyz Helvétic Medium bcdefghijklmnñopqrstuvwxyz Helvétic Light bcdefghijklmnñopqrstuvwxyz Helvétic Itlic bcdefghijklmnñopqrstuvwxyz d3

4 Tipogrfís comptibles Mnteniendo l dinámic que este Mnul pretende -llevr delnte l unidd visul rmónic- se incide en el uso de tipogrfís que sen lo más fines posible con el lfbeto corportivo (Helvétic) y que conduzcn l consecución de un presenci visul uniforme y específic. Se propone l utilizción de fmilis con crcteres y rsgos similres l Helvétic, como es: principlmente l fmili Futur o, en su crenci, Univers, Avnt Grde o Folio, en sus diferentes vriciones (fin, medi, negr, etc.) y tmños, según ls necesiddes específics en cd cso. En publicidd pueden utilizrse ocsionlmente otrs fmilis tipográfics, dd l singulridd de este tipo de cciones, pero siempre será recomendble, sobre todo en l composición de los bloques de texto, no utilizr tipogrfís muy bigrrds o de difícil lectur. d4

5 Espcido de letrs En est págin se muestrn trzdos de los dos logotipos - Comunidd de Mdrid y Mdrid - con crcterístics, medids y proporciones reltivs de interletredo que son condición imprescindible pr l relizción de dichos signos visules. Se tom como bse l medid de ltur de l versl M, dividid por veinte (medid ). Ls diferentes vriciones de seprción entre lguns letrs se deciden en función del efecto óptico que los crcteres producen según su propi form y l de los dycentes. Por ello hn de lterrse mnulmente lgunos de los espcios que se producen en l composición mecánic. Es imprescindible que se mntengn ls puts de espcido que se muestrn continución, sobre todo en quells plicciones de grn tmño (crteles, rótulos, vlls, etc.) que ctún con un myor impcto visul. En el cso de reproducir los logotipos en medids inferiores l cuerpo 48, puede hcerse con el espcido utomático resultnte de l fotocomposición. Comunidd d 1,5 1,5 0,5 7 Mdrid20 0,5 1,5 d5

6 de Mdrid20 9 0,5 1,5 d6

3. IDENTIFICADOR (ESCUDO+LOGOTIPO)

3. IDENTIFICADOR (ESCUDO+LOGOTIPO) 3. IDENTIFICADOR (ESCUDO+LOGOTIPO) de Mnul de Identidd Gráfic En este prtdo procederemos unir y estblecer ls relciones entre los dos elementos que compondrán desde hor el conjunto que llmremos Identificdor

Más detalles

Manual gráfico de los descriptores nutricionales ALTO EN

Manual gráfico de los descriptores nutricionales ALTO EN Mnul gráfico de los descriptores nutricionles ALTO EN Ministerio de Slud - 2015 2 Descriptor nutricionl 1 2 3 4 5 Elementos del descriptor Ls crcterístics de este descriptor serán ls siguientes: Símbolo

Más detalles

Mnul de Identidd Corportiv Introdución 1. Identidd visul 2. Ppelerí 3. Publicidd Escudo Logotipo Colores Tipogrfí Identificdor Construcción y proporciones (serie rmónic) Versiones 4 tints y 1 tint Usos

Más detalles

Desarrollo Identidad Gráfica / BERCELONA RUM CONGRESS

Desarrollo Identidad Gráfica / BERCELONA RUM CONGRESS Desrrollo Identidd Gráfic / BERCELONA RUM CONGRESS LOGOTIPO El logotipo nce de l voluntd de juntr ls iniciles de ls respectivs plbrs (Bcn-Rum-Congress) en un únic pstill (BRC) con el soporte de ls misms

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

MANUAL DE IMAGEN CORPORATIVA

MANUAL DE IMAGEN CORPORATIVA MANUAL DE IMAGEN CORPORATIVA INDICE CONSTRUCCION LOGOTIPO Isotipo: Cudrícul de Construcción 2 Isotipo: Composición Color 3 Logotipo Principl: Composición 4 Logotipo Principl Fcultd: Composición 5 Logotipo

Más detalles

1. REPRESENTACIONES GRÁFICAS DE DATOS EXPERIMENTALES

1. REPRESENTACIONES GRÁFICAS DE DATOS EXPERIMENTALES 1. REPRESENTACIONES GRÁFICAS DE DATOS EPERIMENTALES A l hor de trzr un gráfic, se mnulmente sobre ppel milimetrdo, o utilizndo el ordendor medinte l hoj de cálculo o progrms gráficos, se debe tener en

Más detalles

Indice _. Fundamentos _. Logotipo Reticula. Logotipo. _ Estructura. Minimos. Flexografia. Tipografia. Monotonos _

Indice _. Fundamentos _. Logotipo Reticula. Logotipo. _ Estructura. Minimos. Flexografia. Tipografia. Monotonos _ Mnul dd Cptiv Mnul dd Cptiv Mnul d d Cpo Indice Fundmentos Logotipo Reticul Estructur de Are Protección Minimos ynegtivos 13 coles Positivos ynegtivos 8 coles Positivos Flexogrfi de Escl Grices Tipogrfi

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Transformadores de mando ST, DTZ, transformadores de varios devanados UTI, bloques de alimentación universales AING

Transformadores de mando ST, DTZ, transformadores de varios devanados UTI, bloques de alimentación universales AING Índice 12/1 de mndo ST, DTZ, trnsformdores de vrios devndos UTI, bloques de limentción universles AING Fuente de limentción universl Todos los trnsformdores están construidos y probdos según ls más ctules

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA N I 00.02.52 Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA Plegdo de plnos DESCRIPTORES: Plegdo de plnos. N O R M A N I 00.02.52 Septiembre de 1999 EDICION: 1ª I B E R D R O L A Plegdo de plnos Indice

Más detalles

LA MARCA ARCHIVOS FORMA ESTRUCTURA COLOR PROTAGONISMO NITIDEZ ESPACIO TIPOGRAFÍA GRAFISMO APLICACIONES MANUAL DE IMAGEN

LA MARCA ARCHIVOS FORMA ESTRUCTURA COLOR PROTAGONISMO NITIDEZ ESPACIO TIPOGRAFÍA GRAFISMO APLICACIONES MANUAL DE IMAGEN MANUAL DE IMAGEN 1 L Mrc 1.1 L Mrc I Reducciones L mrc ttm posee dos posibilidd de uso según su plicción. No se recomiend lcnzr límites tn extremos, pero si no hy lterntiv l Mrc se podrí reducir Por un

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

ayuda a víctimas de violación

ayuda a víctimas de violación . Mnul de Imgen Institucionl. Personlidd de mrc: Atributos y Conceptos Primer Prte. Investigción y Atributos de l Mrc . Mnul de Identidd 1 Investigción: Relidd, Identidd, Imgen y Comunicción A.VI.VI es

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

LA HERENCIA BIOLÓGICA. GENÉTICA MENDELIANA

LA HERENCIA BIOLÓGICA. GENÉTICA MENDELIANA 14 L HERENCI BIOLÓGIC. GENÉTIC MENDELIN 14.2. L GENÉTIC FORML O MENDELIN Hblr de genétic es hblr de Mendel. En este prtdo se trt de exponer los diferentes trbjos que relizó Mendel lo lrgo de su vid, y

Más detalles

normativa de marca y símbolo SOBRE APLICACIONES CORPORATIVAS EN PAPELERIA rev. 1/02.2007

normativa de marca y símbolo SOBRE APLICACIONES CORPORATIVAS EN PAPELERIA rev. 1/02.2007 normtiv de mrc y símbolo...for everydy dventure normtiv de mrc...for everydy dventure...for everydy dventure L mrc En 2 posiciones, como siempre. Con preferenci en l utilizción horizontl. Aplicd en l medid

Más detalles

CAPÍTULO 2. , para 0 p 1. [] x

CAPÍTULO 2. , para 0 p 1. [] x CAPÍTULO LAS CURVAS DE LORENZ Y EL SISTEMA DE PEARSON RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES Deprtmento de Métodos Cuntittivos pr l Economí y l Empres Fcultd de

Más detalles

ESCUELA UNIVERSITARIA FRANCISCO TOMAS Y VALIENTE DIPLOMATURA EN RELACIONES LABORALES 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN

ESCUELA UNIVERSITARIA FRANCISCO TOMAS Y VALIENTE DIPLOMATURA EN RELACIONES LABORALES 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN TEMA 5: EL CICLO CONTABLE 5.1 EL CICLO CONTABLE. CONCEPTO Y CONTENIDO 5.2 INICIACIÓN DE LA CONTABILIDAD 5.3 OPERACIONES DE DESARROLLO. EL BALANCE DE COMPROBACIÓN 5.4 DETERMINACIÓN DEL RESULTADO. OPERACIONES

Más detalles

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Qué se puede hcer? Pln de clse (1/) Escuel: Fech: Profr. (): Curso: Mtemátics 1 secundri Eje temático: FEyM Contenido: 7..6 Justificción de ls fórmuls de perímetro y áre de polígonos regulres, con poyo

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

CRISTALES METÁLICOS. Según se elija una u otra opción, se obtendrán estructuras con simetrías diferentes.

CRISTALES METÁLICOS. Según se elija una u otra opción, se obtendrán estructuras con simetrías diferentes. CRISTALES METÁLICOS El enlce entre átomos de electronegtividd igul, o muy similr, es normlmente metálico. Se trt de un enlce no direccionl, ls estructurs ls que drá lugr se pueden imginr como un empquetdo

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE MEDIDA DE LA DISTANCIA FCAL DE UNA LENTE CNVERGENTE Y UNA LENTE DIVERGENTE BJETIV El objetivo de l práctic es l medid de l distnci focl de un lente convergente delgd de otr divergente. Se utilizrán distintos

Más detalles

El ordenador como instrumento matemático.

El ordenador como instrumento matemático. El ordendor como instrumento mtemático. Autores: Joquín Jiménez Rmos y Mrí José Hro Delicdo joquin.jimenez@edu.jccm.es mjhro@ono.com Lugr de trbjo: I.E.S. Al-Bsit (Albcete-Espñ) Resumen: Construir el propio

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Protocolo de Prueba de Portales de Internet. Cómo probar

Protocolo de Prueba de Portales de Internet. Cómo probar Protocolo de Prueb de Portles de Internet. Cómo probr Elbordo por: Cecili Mrdomingo R. El presente documento pretende profundizr en cunto cómo deben probrse tods ls disposiciones presentds en l Norm Técnic

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Práctica 3. Convertidores de códigos

Práctica 3. Convertidores de códigos . Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 Introducción Este documento tiene como objetivo describir el instrumento trvés del cul se especificn, desde

Más detalles

PROYECCIÓN DIÉDRICA. capítulo 3. Geometría Descriptiva. Ing. Alberto M. Pérez G.

PROYECCIÓN DIÉDRICA. capítulo 3. Geometría Descriptiva. Ing. Alberto M. Pérez G. cpítulo 3 PRECCIÓN DIÉDRIC. Comienz en este cpítulo el estudio del sistem de Dole Proyección rtogonl ó Proyección Diédric, el cul es el ojetivo de estudio principl de est or. Se inici con un descripción

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias.

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias. UNIDADES DE GUIADO TIPOLOGIA L gm de uniddes de guí es muy mpli. Ls guís se pueden grupr en diverss fmilis. Uniddes de guí pr l conexión con cilindros estándres. Ests son uniddes pr su conexión con un

Más detalles

DEFINICIÓN DE IMAGEN CORPORATIVA LIBRO DE ESTILO

DEFINICIÓN DE IMAGEN CORPORATIVA LIBRO DE ESTILO DEFINICIÓN DE IMAGEN CORPORATIVA LIBRO DE ESTILO VALORES Y POSICIONAMIENTO 1.1 Definición de identidd corportiv... 1.2 Actulizción de imgen de mrc... 1.3 Atributos... 8 1.4 Posicionmiento... 8 1.5 Misión...

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014 GUÍA DOCENTE DE DERECHO MERCANTIL Curso 2013-2014 1 TITULACIÓN: GRADO ADE GUÍA DE DOCENTE DE LA ASIGNATURA: DERECHO MERCANTIL Coordindor: Césr Tpis. I.- Identificción de l signtur: Tipo Mteri Periodo de

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada. Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

FIN DE CURSO 2014 2015 APERTURA DEL CURSO 2015 2016

FIN DE CURSO 2014 2015 APERTURA DEL CURSO 2015 2016 FIN DE CURSO 2014 2015 APERTURA DEL CURSO 2015 2016 Terminmos el curso 2014 2015 con un stisfcción muy grnde por el grn trbjo desrrolldo y un sentimiento de grtitud muy profundo pr con tod l Comunidd Eductiv.

Más detalles

SEGURIDAD CONTRA INCENDIOS

SEGURIDAD CONTRA INCENDIOS Fundción Escuel de l Edificción Instituto Profesionl Duoc UC Curso de: SEGURIDAD CONTRA INCENDIOS (48 hors) PROGRAMA CALENDARIO PROFESORADO Junio-io 2013 Colegio Oficil de Aprejdores, Arquitectos Técnicos

Más detalles

La Mecánica Cuántica

La Mecánica Cuántica L Mecánic Cuántic 1. L Químic Computcionl L Químic Computcionl estudi l plicción de cálculos numéricos l conocimiento de l estructur moleculr. Un vez conocid l estructur, es posible predecir crcterístics

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

Error de cono. a b. Dastronomía.com Versión 2: actualizado 26 Feb 2013

Error de cono. a b. Dastronomía.com Versión 2: actualizado 26 Feb 2013 Error de cono 90 - Qué es el error de cono - Cómo fect - Cómo medirlo con SV ligner - Cómo corregirlo Ejemplo ED80 sujeto con nills Ejemplo cálculo de l elevción de l col de milno del VC200L VISAC Versión

Más detalles

HackatonCA Versión1.Agro

HackatonCA Versión1.Agro HcktonCA Versión1.Agro REGLAMENTO Y MECÁNICAS DEL EVENTO Objetivo: Desrrollr un nuevo producto de softwre pr dr solución necesiddes de los sectores productivos estrtégicos del Cuc de form colbortiv, durnte

Más detalles

C a r ta del Err a n t e

C a r ta del Err a n t e C r t del Err n t e c r i t e r i o s d e l e d i c i ó n p e R e d e r s K r l V r g s T l l e r de Diseño Gr á f i c o 6ª Et p. 2013 Visulizción de los contenidos Portd Texto Principl Imágenes Nots iniciles

Más detalles

Num. Título Horas Horario Requisitos Básicos del Alumno/a Inicio / Fin Formación complementaria. 48 11:00-12:30 (M y J) 64 17:30-19:30 (L y X)

Num. Título Horas Horario Requisitos Básicos del Alumno/a Inicio / Fin Formación complementaria. 48 11:00-12:30 (M y J) 64 17:30-19:30 (L y X) LISTADO DE CURSOS CON EL PLAZO DE INSCRIPCIÓN ABIERTO (03/08/2014) Ls fechs de inicio y finlizción, sí como el horrio de los cursos, podrín ser susceptibles de modificción Zon Alssu Formción complementri

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Introducción. Objetivos de aprendizaje. Determinar las propiedades de las operaciones de números racionales

Introducción. Objetivos de aprendizaje. Determinar las propiedades de las operaciones de números racionales L rect numéric, un cmino l estudio de los números reles Deducción de propieddes en ls operciones de números rcionles Introducción 0,1 1/ / 0,0 Multiplic por Rest 0, 1/ /7 1/ Figur 1. Rulet Objetivos de

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

Graficar datos experimentales

Graficar datos experimentales :: OBJETIVOS [4.1] o Aprender usr ls hojs de ppel logrítmico semilogrítmico o Determinr l relción mtemátic de un nube de dtos grfic, cu tendenci es Nolinel. o Presentr los dtos experimentles como grfics

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles