Tema 2 - Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2 - Introducción"

Transcripción

1 Tema 2 - Introducción 1 Tema 1. Introducción a la inferencia estadística Planteamientos y objetivos. Revisión de distribuciones multivariantes. Esperanza y varianza de sumas de v.a. independientes. Tema 2. Distribuciones en el muestreo Estadísticos. Concepto de distribución muestral. Distribución de estadísticos bajo normalidad.

2 Distribución temporal del temario Tema 1 T T T P Tema 2 T T T P T T T P P Tema 3 T T T P T T T P P Tema 4 T T T P T T T P P Tema 5 T T T P T T T P P Tema 6 T T T P T T T P P Tema 7 T T T P T T T P P T denota una hora de clase de teoría P denota una hora de clase práctica

3 3 Tema 2 Distribuciones en el muestreo Los contenidos a desarrollar en este tema son los siguientes: Estadísticos. Media y cuasivarianza. Concepto de distribución muestral. Distribución muestral de la media y de la cuasivarianza en el caso normal. Lema de Fisher. Muestras grandes. Lecturas recomendadas: Secciones 7.3 y 7.4 del libro de Peña (2005) y las secciones 6.2 a 6.4 de Newbold (2001).

4 4 Definición 1. Una muestra aleatoria simple de tamaño n de una población X con función de distribución F X es un vector aleatorio (X 1, X 2,..., X n ) que cumple que: ( i) La distribución marginal de cada X i viene dada por F X. ( ii) X 1, X 2,..., X n son variables aleatorias independientes. Definición 2. Un estadístico es una función real de la muestra aleatoria (X 1, X 2,..., X n ). Observación 1: Por tanto, un estadístico es una variable aleatoria. Ejemplo 1. X = 1 n n i=1 X i y S 2 = 1 n 1 n i=1 (X i X) 2. Observación 2: Notemos que X x.

5 5 Ejemplo 2. Tomando una muestra de tamaño 5 queremos saber cuántos individuos de esta comunidad están de acuerdo con la nueva L.O.U.: En este ejemplo ideal, sabemos a priori que la respuesta es 10.

6 6 Ejemplo 2. Podemos utilizar el estadístico suma: S = n i=1 X i y el estadístico total, T = N n n i=1 X i donde n = 5 y N = 20.

7 Distribución muestral 7 Definición 3. Sea T un estadístico basado en la muestra aleatoria (X 1, X 2,..., X n ). La distribución de la variable aleatoria T (X 1, X 2,..., X n ) se denomina distribución muestral del estadístico. Ejemplo 2. Supongamos que hemos tomado una muestra aleatoria simple, por tanto, X i es una v.a. que se distribuye Bernoulli(p). Entonces: La distribución muestral del estadístico suma, S = 5 i=1 X i, es Binomial(n = 5,p). La distribución muestral del estadístico total, T = 4S, podemos obtenerla a partir de la de S: ( ) 5 Pr(T = t) = Pr(S = t/4) = p t/4 t/4 (1 p) 5 t/4, donde t toma valores en {0, 4, 8, 12, 16, 20}.

8 Distribución muestral - Ejemplo 8 Ejemplo 3. Supongamos que tomamos una muestra aleatoria del número de clientes que llegan a una caja en un supermercado en un período de cinco minutos. Denotamos por X el número de clientes. Existe evidencia para suponer que X se distribuye como una Poisson(λ). Cuál es la distribución del número de clientes a lo largo de una hora? Recordamos que la distribución Poisson es reproductiva, es decir, si X 1 P oisson(λ 1 ), X 2 P oisson(λ 2 ) y son independientes, entonces X 1 +X 2 P oisson(λ 1 + λ 2 ). Queremos saber la distribución de T = 20 i=1 X i. Si suponemos que las X i son independientes entonces T P oisson(20λ).

9 Distribución muestral - Ejemplo 9 Ejemplo 3. Podemos generalizar este ejemplo, suponiendo que X i el número de clientes que llega durante los i-ésimos cinco minutos se distribuye como una P oisson(λ i ) y que las variables X 1, X 2,..., X 20 son independientes. Cuál es la distribución del número de clientes a lo largo de una hora? T = 20 i=1 X i P oisson( 20 i=1 λ i). Otras distribuciones reproductivas son la normal N (µ, σ 2 ) y la Cauchy C(µ, θ) respecto de sus dos parámetros; la binomial B(n, p) y la gamma γ(a, b) respecto de sus primeros parámetros. Un caso particular de la distribución gamma es la χ 2 n = γ(n/2, 1/2).

10 Propiedades de X y de S 2 10 Proposición 1. Sea (X 1, X 2,..., X n ) una muestra aleatoria simple (M.A.S.) de una población X con esperanza E[X] = µ y varianza V(X) = σ 2. Entonces: ( i) E[ X] = µ. ( ii) V( X) = σ2 n. ( iii) E[S 2 ] = σ 2. Ejercicio: E[V X ]? Ejemplo 4. Si X sigue una distribución normal de media µ y varianza σ 2, X N (µ, σ 2 ), entonces sabemos que: X = 1 n n i=1 X i N (µ, σ2 n ).

11 Propiedades de X y de S 2 en poblaciones normales 11 Definición 4. Sean X 1, X 2,..., X k variables aleatorias independientes e idénticamente distribuidas N (0, 1). La distribución χ 2 con k grados de libertad es la distribución de la v.a. k i=1 X2 i. Proposición 2. Sea W una v.a. que sigue una distribución χ 2 k. Entonces: (i) E[W ] = k. (ii) V(W ) = 2k. Lema 1. Sean X 1, X 2,..., X n v.a. i.i.d. N (µ, σ 2 ). Entonces: (i) X N (µ, σ2 n ). Lema de Fisher (ii) (n 1) S 2 χ 2 σ n 1. 2 (iii) X y S 2 son independientes.

12 12 Ejemplo 5. Supongamos que los rendimientos de las acciones de la empresa SEGURA.SA siguen una distribución normal de media µ euros y varianza σ 2. Se toma una m.a.s. de 20 rendimientos y se tiene: 5,29 3,66 5,71 6,62 4,30 5,85 6,25 3,40 3,55 5,57 4,60 5,69 5,81 5,71 6,29 5,66 6,19 3,79 4,98 4,84 (a) Calcular los valores de los estadísticos X y S 2 en esa muestra. s 2 = 1 19 x = 1 20 (5,29 + 3, ,84) = 5,188, ( (5,29 5,188) 2 + (3,66 5,188) (4,84 5,188) 2) = 0,9929. µ = 5,188 y σ 2 = 0,9929? X = 5,188 y S 2 = 0,9929?

13 13 Ejemplo 5. (b) El VaR (value at risk) es una medida de la máxima pérdida esperada en una cartera, durante período de tiempo específico con una probabilidad dada, α. Una manera de calcular el VaR es suponiendo que los beneficios diarios de un valor se distribuyen de acuerdo a la distribución normal. Esta simplificación permitió un importante avance de la teoría de carteras, y es frecuentemente empleada en cálculos estadísticos financieros. La empresa SEGURA.SL considera como pérdidas todos los rendimientos inferiores a 5 euros por acción. Es decir, los beneficios siguen una distribución N (µ 5, σ 2 ). En ese caso, las pérdidas máximas esperadas para un nivel α son: V ar = µ 5 z α σ. Suponiendo conocida σ. Calcule la media y la varianza del siguiente estadístico Ṽ ar = X 5 z α σ.

14 14 Ejemplo 5. El supuesto de σ conocida es poco realista pero simplifica mucho los cálculos. (c) Calcule aproximaciones de la media y la varianza del siguiente estadístico V ar = X 5 z α S. Ayuda: Sea Y χ 2 k, entonces para k suficientemente grande se tiene que A 2Y N ( 2k 1, 1). E[ V ar] = E[ X 5 z α S.] = µ 5 z α E[S] µ 5 z α. V ( V ar) = Por qué? = V ( X) + z 2 αv (S) σ2 n + z2 α.

15 Propiedades de X en muestras grandes 15 Teorema 1. Sean X 1, X 2,..., X n variables aleatorias independientes e igualmente distribuidas con media µ y desviación típica σ, ambas finitas. Si n es suficientemente grande, entonces X µ σ/ n A N (0, 1). Teorema Central del Límite Ejemplo 6. Se desea conocer la intensión de voto de los accionistas de la empresa DEMOCRACIA.SL respecto a dedicar el 0,7 % de los dividendos en obras sociales. Denotemos por X la respuesta de un accionistas: X = 1 si es positiva y X = 0 si no lo es. Suponiendo que X sigue una distribución Bernoulli de parámetro p y tenemos una m.a.s. de tamaño n. Entonces, podemos aproximar X A N ( p, ) p(1 p). Excel n

16 16 Ejemplo 7. Se quiere saber cuál es el número medio de clientes que es atendido en una caja de supermercado. Sea X el número de clientes que es atendido en un intervalo de cinco minutos. Suponemos que X sigue una distribución P oisson(λ) y que tenemos una m.a.s. de tamaño n. Entonces: X A N ( λ, λ ). n Excel Ejemplo 8. El tiempo entre la llegada de dos clientes a una caja de supermercado se supone que sigue una distribución exponencial de media θ. Obtenemos una m.a.s. de tamaño n y queremos aproximar la distribución de X. ( ) X A 1 N θ, 1 θ 2. n

17 17 Ejemplo 9. Volviendo al Ejemplo 5(b), donde queríamos obtener la media, varianza y distribución del estadístico (σ conocida): Ṽ ar = X 5 z α σ. Si la muestra es suficientemente grande, podemos prescindir del supuesto de normalidad sobre los rendimientos. En este caso, obtenemos que: ) Ṽ ar A N (µ 5 z α σ, σ2. n Y si los rendimientos no son independientes? Y si σ no es conocida? Econometría II y Técnicas de predicción. Econometría III.

18 Recapitulación 18 Tema 2. Distribuciones en el muestreo Estadísticos. Concepto de distribución muestral. Conceptos clave en inferencia Distribución muestral de X y S 2 en el caso normal. Distribución muestral de X en muestras grandes Ejemplos de interés práctico

19 19 Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2. Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia.

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Máster en ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Temario MÓDULO 0: HOMOGENEIZACIÓN Homogeneización en bases matemáticas 3,0 Cr. ECTS Espacios de Medida Algebra. Matrices y Determinantes

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

T.3 ESTIMACIÓN PUNTUAL

T.3 ESTIMACIÓN PUNTUAL T.3 ESTIMACIÓN PUNTUAL 1. INTRODUCCIÓN: ESTIMACIÓN Y ESTIMADOR 2. PROPIEDADES DE LOS ESTIMADORES 3. MÉTODOS DE ESTIMACIÓN. EJEMPLO 1, EJEMPLO 2 1. Introducción: Estimación y Estimador En este tema se analizan

Más detalles

Inferencia Estadística

Inferencia Estadística Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto

Más detalles

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT 6 10 3 2 5

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT 6 10 3 2 5 PROGRAMA DE CURSO Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Mecánica MCM - 0531 3 2 8 2.- HISTORIA DEL

Más detalles

TEMA 6: Gráficos de Control por Variables

TEMA 6: Gráficos de Control por Variables TEMA 6: Gráficos de Control por Variables 1 Introducción 2 Gráficos de control de la media y el rango Función característica de operación 3 Gráficos de control de la media y la desviación típica 4 Gráficos

Más detalles

Tema 3. Comparaciones de dos poblaciones

Tema 3. Comparaciones de dos poblaciones Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:

Más detalles

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 REQUISITO LICENCIATURA EN ENFERMERÌA PROFESOR 1. Justificación. Se requiere

Más detalles

APLICACIONES DE INFERENCIA

APLICACIONES DE INFERENCIA APLICACIONES DE INFERENCIA CONTENIDO DE LA PRESENTACIÓN Un ejemplo desarrollado dentro del marco del proyecto MaMaEuSch como aplicación de la Inferencia. Una serie de applets relacionados con la inferencia.

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

Curso de Inferencia y Decisión

Curso de Inferencia y Decisión Curso de Inferencia y Decisión Guadalupe Gómez y Pedro Delicado Departament d Estadística i Investigació Operativa Universitat Politècnica de Catalunya Enero de 2006 Índice abreviado Capítulo 1. Introducción.........................................

Más detalles

Estimación puntual. Estadística II. Curso 2011/2012. Universidad de Salamanca

Estimación puntual. Estadística II. Curso 2011/2012. Universidad de Salamanca Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 Introducción Una estimación puntual de algún parámetro poblacional θ es un valor único del estadístico θ. Por ejemplo,

Más detalles

TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6

TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6 TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6 OBJETIVOS: Conceptos básicos: población, muestra y variable.

Más detalles

Tema 1. Inferencia estadística para una población

Tema 1. Inferencia estadística para una población Tema 1. Inferencia estadística para una población Contenidos Inferencia estadística Estimadores puntuales Estimación de la media y la varianza de una población Estimación de la media de la población mediante

Más detalles

Estadística para las Ciencias Administrativas

Estadística para las Ciencias Administrativas Estadística para las Ciencias Administrativas Tercera edición LINCOLN L. CHAO California State University Long Beach, California Traducción JOSÉ MARÍA CASTAÑO Exjefe del Departamento de Matemáticas Universidad

Más detalles

GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING. Curso 2013-2014

GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING. Curso 2013-2014 GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING Curso 2013-2014 1 TITULACIÓN: GRADO MARKETING GUÍA DE DOCENTE DE LA ASIGNATURA: ESTADISTICA APLICADA AL MARKETING Coordinador: Manuel David Orden Erena.

Más detalles

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA CURSO 2010-2011 TITULACIÓN: CIENCIAS AMBIENTALES ASIGNATURA: ESTADISTICA ÁREA DE CONOCIMIENTO: Estadística e Investigación Operativa Número de

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Nombre...Apellidos... Grado en:...grupo:...

Nombre...Apellidos... Grado en:...grupo:... ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

Muestreo Estadístico

Muestreo Estadístico Muestr treo eo Estadís adístico tico M. Virtudes Alba Fernández Nuria Ruiz Fuentes Departamento de Estadística e Investigación Operativa Universidad de Jaén Muestr treo eo Estadís adístico tico SEPTEM

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

CURSO P para ti examen P SoA CAS repaso agilidad inscripción necesidades inglés calculadora Curso P

CURSO P para ti examen P SoA CAS repaso agilidad inscripción necesidades inglés calculadora Curso P 1 CURSO P Este curso es para ti si deseas fortalecer tus conocimientos prácticos de probabilidad y realizar el examen P (Probability) de la SoA (Society of Actuaries), a veces llamado examen 1/P por ser

Más detalles

ESTADÍSTICA Y DISEÑO EXPERIMENTAL

ESTADÍSTICA Y DISEÑO EXPERIMENTAL SILABO I. DATOS GENERALES 1.1 Nombre de la asignatura : ESTADÍSTICA Y DISEÑO EXPERIMENTAL 1.2 Carácter : Obligatorio 1.3 Carrera Profesional : Administración de Empresas 1.4 Código : AD0502 1.5 Semestre

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Introducción a la Econometría

Introducción a la Econometría Introducción a la Econometría Curso 2009/2010 Seriedeproblemas1 1.- Considere la siguiente distribución de probabilidad: Llueve (X=0) No llueve (X=1) Total Tiempo de viaje largo (Y=0) 0.15 0.07 0.22 Tiempo

Más detalles

Problemas. Intervalos de Confianza y Contrastes de Hipótesis

Problemas. Intervalos de Confianza y Contrastes de Hipótesis Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población

Más detalles

Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3

Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3 Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3 Nota: Para la dedicación total estimada sólo se consideran los ítems preguntados en las encuestas Todos los capítulos 8 Estimada Real 7

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

PRINCIPALES DISTRIBUCIONES DISCRETAS

PRINCIPALES DISTRIBUCIONES DISCRETAS PRINCIPALES DISTRIBUCIONES DISCRETAS Objetivos generales del tema En este tema definiremos y discutiremos diversas e imortantes distribuciones discretas, es decir, funciones masa de robabilidad o funciones

Más detalles

PROGRAMA ANALÍTICO. UBICACIÓN EN EL PLAN DE ESTUDIO DE MECÁNICA: 1er. CUATRIMESTRE DE 2do. AÑO

PROGRAMA ANALÍTICO. UBICACIÓN EN EL PLAN DE ESTUDIO DE MECÁNICA: 1er. CUATRIMESTRE DE 2do. AÑO PROGRAMA ANALÍTICO DEPARTAMENTO: CIENCIAS BÁSICAS CARRERAS: INGENIERÍA MECÁNICA - INGENIERÍA QUÍMICA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA CÓDIGO: 0406 AÑO ACADÉMICO: 2015 PLAN DE ESTUDIO: MECÁNICA 2005

Más detalles

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación ÍNDICE DE CONTENIDOS Capítulo 1 Presentación Capítulo 2 Introducción al proceso de decisión bajo riesgo e incertidumbre 2.1. Resumen del capítulo 2.2. Introducción 2.3. El concepto de riesgo e incertidumbre

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Tema 5: Estimación puntual y por intervalos

Tema 5: Estimación puntual y por intervalos Tema 5: Estimación puntual y por intervalos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Estimación puntual y por intervalos Curso

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

Relación de competencias. Resultado de aprendizaje REQUISITOS PREVIOS: MATERIA 2: Estadística 12 créditos (300 horas) 6 Básicos y 6 Obligatorios

Relación de competencias. Resultado de aprendizaje REQUISITOS PREVIOS: MATERIA 2: Estadística 12 créditos (300 horas) 6 Básicos y 6 Obligatorios Planificación del Módulo 4 Denominación: MÉTODOS CUANTITATIVOS PARA LA ECONOMÍA 39 créditos ECTS -21básicos y 18 obligatorios- Este módulo está integrado por tres materias que se imparten en tres cursos

Más detalles

TEMA 3 ESTIMACIÓN PUNTUAL

TEMA 3 ESTIMACIÓN PUNTUAL ESQUEMA 3.1.- Planteamiento del problema: La Estimación Puntual. 3.2.- Propiedades de los estimadores. 3.2.1.- Insesgadez. 3.2.2.- Eficiencia. La cota de Cramér-Rao. EIMV. 3.2.3.- Consistencia. 3.2.4.-

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

60! hrs.! hrs.! hrs.!!!

60! hrs.! hrs.! hrs.!!! Carta Descriptiva 1 UMA 1001-95 " Estadística Descriptiva #$%&'$()*+'$(,%) Ciencias Sociales y Administración Principiante Obligatoria 60 hrs. hrs. hrs. Matemáticas Básicas Estadística Inferencial #+&+'$-$%&.+)/%(0$.-1.$'(23,4%50(

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

Coordinador: HENRY MENDOZA RIVERA. Profesor Asistente Departamento de Estadística Facultad de Ciencias Sede Bogotá

Coordinador: HENRY MENDOZA RIVERA. Profesor Asistente Departamento de Estadística Facultad de Ciencias Sede Bogotá Coordinador: HENRY MENDOZA RIVERA Profesor Asistente Departamento de Estadística Facultad de Ciencias Sede Bogotá Introducción El diplomado en Probabilidad y Estadística Fundamental, es el primero de una

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA 1. IDENTIFICACIÓN ASIGNATURA: SIMULACIÓN ESTADÍSTICA CODIGO: 070110 NIVEL: VI CREDITOS: 3 DESCRIPCIÓN: DOCENTES:

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

1. IDENTIFICACION DE LA ASIGNATURA

1. IDENTIFICACION DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE ADMINISTRACION Y ECONOMIA DEPARTAMENTO DE CONTABILIDAD Y AUDITORIA PROGRAMA DE ESTUDIO ESTADISTICAS APLICADA I 1. IDENTIFICACION DE LA ASIGNATURA 2. OBJETIVOS

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

TEMA 1. Introducción al análisis empírico de variables económicas.

TEMA 1. Introducción al análisis empírico de variables económicas. TEMA 1. Introducción al análisis empírico de variables económicas. Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos Económicos Introducción Tipos de Datos. Tratamiento

Más detalles

Estadística Administrativa I

Estadística Administrativa I 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística Administrativa I Licenciatura en Administración ADT-0426 2-3-7 2.-

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO

Más detalles

DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS

DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS Objetivo y alcance del diplomado General Brindar al participante una actualización en diferentes temas de probabilidad y estadística,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Conteo con reemplazamiento Considerando ahora un experimento en que una bola, seleccionada de una caja con n bolas, se regresa a la misma caja. Si se hace un total de k selecciones

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

LA CONSTRUCCIÓN DEL SIGNIFICADO DE LA DISTRIBUCIÓN NORMAL A PARTIR DE ACTIVIDADES DE ANÁLISIS DE DATOS

LA CONSTRUCCIÓN DEL SIGNIFICADO DE LA DISTRIBUCIÓN NORMAL A PARTIR DE ACTIVIDADES DE ANÁLISIS DE DATOS LA CONSTRUCCIÓN DEL SIGNIFICADO DE LA DISTRIBUCIÓN NORMAL A PARTIR DE ACTIVIDADES DE ANÁLISIS DE DATOS Liliana Tauber Tesis Doctoral Universidad de Sevilla Directoras: Dra. Carmen Batanero Dr. Victoria

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Programa de la asignatura Curso: 2007 / 2008 ESTADÍSTICA (3174)

Programa de la asignatura Curso: 2007 / 2008 ESTADÍSTICA (3174) Programa de la asignatura Curso: 2007 / 2008 ESTADÍSTICA (3174) PROFESORADO Profesor/es: SANTIAGO RUIZ MIGUEL - correo-e: rumi@ubu.es FICHA TÉCNICA Titulación: INGENIERÍA DE CAMINOS, CANALES Y PUERTOS

Más detalles

Cálculo de probabilidades

Cálculo de probabilidades Cálculo de probabilidades 1. Sean A y B dos sucesos de un espacio muestral, con probabilidades P(A)=0.3, P(B)=0.7. Indica si son verdaderas o falsas las siguientes afirmaciones: a) Los sucesos A y B son

Más detalles

Carrera: ERF-1010 SATCA 1 3-2-5

Carrera: ERF-1010 SATCA 1 3-2-5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Estadística y Diseño de Experimentos Ingeniería en Energías Renovables ERF-1010 3-2-5 2.- PRESENTACIÓN Caracterización

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

MUESTREO TIPOS DE MUESTREO

MUESTREO TIPOS DE MUESTREO MUESTREO En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de

Más detalles

MATEMÁTICA NM4 4º EM

MATEMÁTICA NM4 4º EM MATEMÁTICA NM4 4º EM UNIDADES TEMÁTICAS UNIDAD Nº 01: ESTADÍSTICA Y PROBABILIDAD Conceptos generales : Población, muestra, parámetro y estadístico Variables y su clasificación Medición y escalas Organización

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

Formulario y Tablas de Probabilidad para el Curso de Estadística II

Formulario y Tablas de Probabilidad para el Curso de Estadística II Formulario y Tablas de Probabilidad para el Curso de Estadística II Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Octubre

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

Estimación puntual. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón

Estimación puntual. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón Estimación puntual Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón 1 ESTIMACIÓN PUNTUAL Tras hacernos a la idea en el tema anterior de lo que la inferencia estadística es y persigue,

Más detalles

PSICOLOGÍA EXPERIMENTAL

PSICOLOGÍA EXPERIMENTAL 09 PSICOLOGÍA EXPERIMENTAL Juan Antequera Iglesias Psicólogo Especialista en Psicología Clínica. FEA Psicología Clínica Hospital Virgen de la Misericordia de Toledo. Laura Hernangómez Criado Psicóloga

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Descripción y Exploración de Datos en Psicología 2015/2016

Descripción y Exploración de Datos en Psicología 2015/2016 GUIA DOCENTE DE LA ASIGNATURA Descripción y Exploración de Datos en Psicología 2015/2016 MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Formación Básica PROFESORES Estadística (Ciencias de la Salud) 1º 1º

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

Tema 1: Introducción a la Estadística

Tema 1: Introducción a la Estadística Tema 1: Introducción a la Estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 1: Introducción a la Estadística Curso 2009-2010

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II Asignatura: Código: ESTADÍSTICA II 1. DATOS GENERALES 1.1. Departamento Académico Ingeniería Industrial 1.2. Escuela profesional Ingeniería

Más detalles

Econometría de Económicas

Econometría de Económicas Econometría de Económicas Apuntes para el tema 6 Curso 2004-2005 Profesoras Amparo Sancho Guadalupe Serrano Modelos de panel de datos Datos de Panel son aquellos que surgen de la observación de una misma

Más detalles