UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos"

Transcripción

1 UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo Fracciones continuas simles TRABAJO MONOGRÁFICO Para otar el Título de Licenciado en Matemática ura AUTOR Sonia Alanya Pérez LIMA PERÚ 2004

2 FRACCIONES CONTINUAS SIMPLES Dado cualquier fracción racional 0 en su mas simle exresión de manera que ( 0, ) = y > 0, alicando el algoritmo Euclidiano se obtiene: 0 = a < 2 < = 2 a < 3 < 2 2 = 3 a < 4 < 3 j = j a j + j+ j = j+ a j < j+ < j () i Si escribimos x i en lugar de, ara todos los valores de i en el rango i+ 0 i j, entonces las ecuaciones de () se transforman en: x i = a i + x i+ ; 0 i j ; además j = y x j = a j (2) Tomando las dos rimeras de estas ecuaciones con i = 0 e i = y eliminamos x obtenemos: x 0 = a 0 + a + x 2 Ahora reemlazamos x 2 or su valor dado en (2) y continuamos reemlazando x 3, x 4, ara obtener: 0 = x 0 = a 0 + a + a a j + a j (3) Este es un desarrollo en fracciones continuas de x 0 = 0 Los enteros a i se llaman cocientes arciales dados que son los cocientes en la alicación reetida del algoritmo de la división en () Al inicio se suuso que era ositivo, ero no uede hacerse lo mismo con 0 De aquí que a 0 uede ser ositivo negativo o cero 2

3 Como 0 < 2 <, se nota que el cociente a es ositivo y del mismo modo los cocientes a 2, a 3, a j son enteros ositivos En el caso de que i esto es si () contiene mas de una ecuación entonces a j = j y 0 < j+ < j imlica que a j > j+ Notación: Para designar la fracción continua en (3) usaremos la siguiente notación [a 0, a,, a j ] = a 0 + a + a a j + a j Definición Una fracción continua (fc) es una exresión de la forma a 0 + a + a 2 + a 3 + a 4 + b 0 b b 2 b 3 + b n a n + b n a n+ donde los a i y b i ueden ser reales o comlejos Sin embargo si cada b i es igual a, a 0 es un entero y cada a i es un entero mayor que cero ara i ; entonces la fracción continua se llama fracción continua simle (fcs) Los a i de la fracción continua simle (4) se llaman términos de la fracción continua Si el número de términos de una fracción continua es finita, entonces se dice que la fracción continua es una fracción continua simle finita si el número de términos es infinito la fracción continua es una fracción continua simle infinita Todo número real uede ser exresado como una fracción continua simlelos números racionales tendrán una fracción continua simle finita (ver teorema ) y los irracionales tendrán una fracción continua simle infinita (ver teorema 3) Ilustraremos el rocedimiento con algunos ejemlos antes de demostrarlo Ejemlo 3 (4)

4 Exresar el número racional como una fracción continua simle finita 3 2 Solución: Usando el algoritmo de Euclides tenemos: 3 = 2 (2) = 7 () = 5 () = 2 (2) + 2 = (2) = = = = = = = luego 3 = [2,,, 2, 2] 2 Ejemlo 2 Exresar 64 como una fracción continua simle 3 Solución: Como el (64, 3) = y usando el algoritmo de Euclides tenemos 64 = 3 (4) = 2 () + 2 = (2) + 0 4

5 Ejemlo 3 Exresar 8 57 Solución: = = = [4,, 2] = como una fracción continua simle 8 = 57 ( 2) = 33 () = 24 () = 9 (2) = 6 () = 3 (2) = [ 2,,, 2,, 2]

6 Teorema Todo número racional uede ser exresado como una fracción continua simle finita Demostración Sea q el número racional 2 suongamos que q > 0, entonces or la roiedad de la división existen a, r Z tales que entonces q = a 0 + r q = a 0 + q donde a 0 < r 0 q = a + r = a + r 0 q r 0 donde a < 0 r r 0 r = a 2 + r 2 r = a 2 + r r 2 donde a 2 < q y 0 < r 0 < q q r 0 y 0 < r < r 0, r 0 r y 0 < r 2 < r, r n 4 = a n 2 + r n 2 = a n 2 + r n 4 r n 3 r r n 3 donde a n 2 < y 0 < r n 2 < r n 3 n 3 r n 3 r n 2 Observemos que 0 < r n < r n 2 < < r 3 < r 2 < r < r 0 {r n 2 } es una sucesión decreciente de enteros ositivos Como solo existen un número de finito de enteros ositivos menores que q (z i ) tal que z i < q entonces este roceso debe terminar, esto es solo existe σ i un número finito de Z + que satisfacen las ecuaciones Usando lo anterior: q = a 0 + a + a 2 + q = [a 0, a,, a n ] +a j + a j 6

7 or lo tanto, como solo usamos un número finito de términos el número racional queda reresentado or una fracción continua simle y finita q Nota Si a n > entonces a n = (a n ) + = (a n ) + y q = [a 0, a,, a n ] = [a 0, a,, a n 2, a n, ] 2 Si a n = entonces a n + a n = a n + = a n + y q = [a 0, a, a 2,, a n ] = [a 0, a,, a n 2, a n + ] Por lo tanto todo número racional uede ser exresado como una fracción continua simle finita en exactamente dos formas Teorema 2(Unicidad) Si [a 0, a,, a j ] = [b 0, b,, b n ] donde estas fracciones continuas finitas son simles y si a j > y b n > entonces j = n y a i = b i ara i = 0,,, n Demostración Sea y i = [b i, b i+,, b n ] se observa que [b i, b i+,, b n ] = b i + [b i+, b i+2,, b n ] = b i + (5) y i+ se tiene entonces y i > b i y y i > ara i =, 2,, n y y n = b n > Entonces b i = [y i ] ara todos los valores de i en el rango 0 i n Como las fracciones continuas iniciales son iguales, ueden escribirse en la forma: y 0 = x 0 or (3) Ahora como x i = i q i+ imlica que x i+ > ara todos los valores de i 0 y así a i = [x i ] ara 0 i j or (2) A artir de que y 0 = x 0 se deduce que tomando las artes enteras Por (2) y (5) se obtiene b 0 = [y 0 ] = [x 0 ] = a 0 x = x 0 a 0 = y 0 b 0 = y ; x = y ; a = [x ] = [x 2 ] = b 7

8 Podemos establecer or inducción que veamos: x i = y i y a i = b i, imlican que x i+ = y i+ y a i+ = b i+ x i+ = x i a i = y i b i = y i ; x i+ = y i+ ; a i+ = [x i+ ] = [y i+ ] = b i+ or demostrar que j = n (es decir tienen la misma longitud) Suongamos que j < n x i = y j y y j = b j or (2) se tiene x i = a j y or (5) y j > b j ( ) Caso análogo con n < j Por lo tanto j = n Observación Toda fracción continua simle finita reresenta un número racional 8

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPRESIONES ALGEBRAICAS (Tomado de: Stewart, James. "Precálculo". Quinta Edición. Sección.3.) Una exresión algebraica es una combinación

Más detalles

Clase 3: Teorema de Fundamental de la Aritmética

Clase 3: Teorema de Fundamental de la Aritmética Clase 3: Teorema de Fundamental de la Aritmética Dr. Daniel A. Jaume, * 12 de agosto de 2011 1. Primos Definición 1.1 Un entero ositivo se dice que es un número rimo si tiene exactamente 2 divisores ositivos

Más detalles

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales.

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales. AN ALISIS MATEM ATICO B ASICO. DE LOS NATURALES A LOS REALES. Los numeros Naturales N: Los numeros naturales los escribimos con diez dgitos: N = f0; ; ; :::; 8; 9; 0; ::::; 87; 88; :::::; n; n + ; (n +

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

EL SÍMBOLO DE LEGENDRE Y LA LEY DE RECIPROCIDAD CUADRÁTICA. Proposiciones Previas. Dos hechos que se deben tener presentes:

EL SÍMBOLO DE LEGENDRE Y LA LEY DE RECIPROCIDAD CUADRÁTICA. Proposiciones Previas. Dos hechos que se deben tener presentes: EL SÍMBOLO DE LEGENDRE Y LA LEY DE RECIPROCIDAD CUADRÁTICA Sea un rimo imar y a Z. El Símbolo de Legendre ( a ) se define de la siguiente manera: ( a 0, if divide a a ) := 1, si existe x Z tal que x 2

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

XAX > i 0. i 4 2i. 2 i i 8

XAX > i 0. i 4 2i. 2 i i 8 Álgebra Lineal Caítulo. Tóicos Eseciales y Alicaciones.. Matrices y formas ositivas En esta sección estudiamos matrices ositivas, formas sesquilineales ositivas, y formas cuadráticas ositivas. a. Matrices

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Conjunto de estabilidad y aproximación de Yosida para un sistema hiperbólico

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Conjunto de estabilidad y aproximación de Yosida para un sistema hiperbólico UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P DE MATEMÁTICA PURA Conjunto de estabilidad y aroximación de Yosida ara un sistema hierbólico Caítulo I. Preliminares TRABAJO

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integración.8 Combinación de métodos de integración.8. Introducción En las secciones anteriores hemos tratado con tres métodos de integración: cambio de variable, or artes y fracciones

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Náoli clase 11 1. Introducción Recordamos que Z n = unidades del anillo Z n = {a Z n : (a, n) = 1} es un gruo abeliano [=conmutativo] (con la oeración

Más detalles

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a:

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a: Potenciación Sea a R; n N; la eresión a n de ne un número real asi: a n a a ::: a; n veces El número real a recibe el nombre de base, n el de eonente y el resultado del roducto es la otencia de orden n

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica Proosiciones atómicas y comuestas Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES Francisco Hernández Quiroz Deartamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fh@cienciasunammx Página

Más detalles

Proceso Selectivo para la XXIII IMC, Bulgaria

Proceso Selectivo para la XXIII IMC, Bulgaria Proceso Selectivo ara la XXIII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Esera la indicación ara voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

ESTALMAT ANDALUCIA ORIENTAL. Ley de reciprocidad cuadrática. Veteranos (5/mayo/2018)

ESTALMAT ANDALUCIA ORIENTAL. Ley de reciprocidad cuadrática. Veteranos (5/mayo/2018) ESTALMAT ANDALUCIA ORIENTAL Ley de recirocidad cuadrática Veteranos 5/mayo/018 017 018 Ponentes: Pascual Jara Blas Torrecillas . . Resumen Ley de recirocidad cuadráticas y alicaciones a la aritmética de

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT0) Primer semestre de 0 Semana 7: Lunes 9 de Abril Viernes 0 de Mayo CÁLCULO Contenidos Clase : Técnicas de Integración: Fracciones Parciales. Clase : Sustituciones trigonométricas.

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

Cálculo II 8 de junio de 2016

Cálculo II 8 de junio de 2016 Cálculo II 8 de junio de 6 Publicación de notas: 3-6-6. Revisión del examen: 6-6-6. Problema (3 untos). Se de ne la siguiente función en R : f (x; y) x 4 + y 4 4xy: (a) Calcula la derivada de f en el unto

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

Fase nacional 2010 (Valladolid, 26 y 27 de Marzo) Soluciones oficiales

Fase nacional 2010 (Valladolid, 26 y 27 de Marzo) Soluciones oficiales Olimiada Matemática Esañola RSME XLVI Olimiada Matemática Esañola Fase nacional 010 (Valladolid, 6 y 7 de Marzo) Soluciones oficiales Problema 1 Una sucesión ucelana es una sucesión creciente de dieciséis

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles

Es bien conocido que tres números e; f; g están en progresión aritmética (AP) si f e = g f: Además, f = e+g

Es bien conocido que tres números e; f; g están en progresión aritmética (AP) si f e = g f: Además, f = e+g TRIÁNGULOS ARMÓNICOS K.R.S.SASTRY, Bangalore, India Es bien conocido que tres números e; f; g están en rogresión aritmética (AP) si f e = g f: Además, f = e+g 2 es la media aritmética de los números e;

Más detalles

Guía de estudio División de polinomios y división sintética Unidad A: Clase 16

Guía de estudio División de polinomios y división sintética Unidad A: Clase 16 Guía de estudio División de polinomios y división sintética Unidad A: Clase 16 Camilo Ernesto Restrepo Estrada, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 6. División de polinomios y división

Más detalles

10. GASES Y FLUIDOS REALES

10. GASES Y FLUIDOS REALES 10. GASES Y FLUIDOS REALES En caítulos anteriores estudiamos las consecuencias de la Primera y Segunda Ley y los métodos analíticos ara alicar la ermodinámica a sistemas físicos. De ahora en más usaremos

Más detalles

Son los llamados números naturales { 1,2,3,4,5,6,7,8,9} El símbolo utilizado para denotar a este conjunto de números es la letra N

Son los llamados números naturales { 1,2,3,4,5,6,7,8,9} El símbolo utilizado para denotar a este conjunto de números es la letra N I UNIDAD PRE- I.1 LOS LA CLASIFICACION DE LOS NUMEROS LOS NUMEROS QUE SIRVEN PARA CONTAR.- Son los llamados números naturales { 1,2,3,4,5,6,7,8,9} Esta representación nos lleva a preguntarnos: Cuántos

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009 Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 9. a) Prueba, usando el teorema de Bolzano, que la función f.x/ D e x Cx x se anula en al menos tres untos del intervalo

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señales en Geofísica 4 Clase Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina 1 kz cula o diolo 1 1 kz inversa de un diolo 1+kz cociente de diolos

Más detalles

Dulcinea Raboso 18 de Noviembre, 2017

Dulcinea Raboso 18 de Noviembre, 2017 www.estalmat.org Dulcinea Raboso 8 de Noviembre, 07 Fracciones continuas I Problema Queremos embaldosar una habitación rectangular utilizando exclusivamente baldosas cuadradas, no necesariamente iguales.

Más detalles

Práctico N o 1. Números Complejos

Práctico N o 1. Números Complejos Práctico N o. Números Comlejos ) Clasi car los siguientes números comlejos en reales o imaginarios. Eseci car en cada caso cuál es la arte real y cuál es la imaginaria: a) 5 + 7i b) c) 5 d) i e) f) + g)

Más detalles

FÓRMULA DE TAYLOR Y RESTOS DE LAGRANGE Y DE CAUCHI

FÓRMULA DE TAYLOR Y RESTOS DE LAGRANGE Y DE CAUCHI FÓRMULA DE TAYLOR Y RESTOS DE LAGRANGE Y DE CAUCHI En los libros elementales de Cálculo Infinitesimal se demuestra en forma algo deficiente el teorema de Taylor, y se da como fórmula del resto casi únicamente

Más detalles

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica Proosiciones atómicas y comuestas Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES Francisco Hernández Quiroz Deartamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fh@cienciasunammx Página

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Visión or Comutadora Unidad III Procesamiento Digital de Imágenes Rogelio Ferreira Escutia Contenido 1) Oeraciones Individuales a) Transformaciones Punto a Punto b) Transformaciones de 2 Imágenes Punto

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Problemas del capítulo cuarto de Álgebra Local. José Navarro Garmendia

Problemas del capítulo cuarto de Álgebra Local. José Navarro Garmendia Problemas del caítulo cuarto de Álgebra Local José avarro Garmendia 005 0.1 Problemas 1. Probar que los anillos de valoración del cuero de fracciones de C[x, y]/(x + y 1), que contienen a C, se corresonden

Más detalles

Matemáticas - Guía 1 Proposiciones

Matemáticas - Guía 1 Proposiciones LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición

Más detalles

TEMA 1 CONCEPTOS BÁSICOS

TEMA 1 CONCEPTOS BÁSICOS Matemática Financiera Diaositiva 1 TEMA 1 CONCEPTOS BÁSICOS 1. Caital financiero. Fenómeno Financiero 2. Elección financiera. Postulado de royección financiera 3. Conceto de ley y sistema financiero. Proiedades

Más detalles

LECCIÓN 44A EXPRESIONES ALGEBRAICAS

LECCIÓN 44A EXPRESIONES ALGEBRAICAS LECCIÓN 44A EXPRESIONES ALGEBRAICAS Las exresiones algebraicas son como las exresiones numéricas que vimos en la lección anterior exceto que usted uede usar letras y números en tales exresiones. Para resolver,

Más detalles

Naturales (avanzado) Propiedades de la suma y de la resta. Propiedades de la multiplicación y la división. Jerarquía de operaciones.

Naturales (avanzado) Propiedades de la suma y de la resta. Propiedades de la multiplicación y la división. Jerarquía de operaciones. LEYENDA: (unidad interactiva) (unidad interactiva con ejercicios extra) (unidad no interactiva) (en roceso) ARITMÉTICA Naturales Naturales (básico) Sistema decimal. Orden. Oeraciones. Aroximación. Naturales

Más detalles

Fracciones Continuas

Fracciones Continuas Fracciones Continuas Capítulo 5 5. Introducción Las fracciones continuas son uno de los temas más interesantes dentro de la teoría de números, así como también uno de los más antiguos. Su origen se remonta

Más detalles

El algoritmo de Euclides con residuos de menor valor absoluto

El algoritmo de Euclides con residuos de menor valor absoluto Miscelánea Matemática 6 05) -9 SMM El algoritmo de Euclides con residuos de menor valor absoluto Jesús Efrén Pérez Terrazas, Luis Felipe Solís Sansores, Emmanuel Vázquez Cetina Facultad de Matemáticas

Más detalles

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores.

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. MATEMÁTICAS BÁSICAS TEORÍA DE ECUACIONES DEFINICIÓN DE OLINOMIO Y DE ECUACIÓN Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. Una constante es una magnitud

Más detalles

Eficiencia del Equilibrio de Mercado y Fallas de Mercado

Eficiencia del Equilibrio de Mercado y Fallas de Mercado Eficiencia del Equilibrio de Mercado y Fallas de Mercado Cuando estudiamos equilibrio general, se demostró que la asignación del mercado bajo cometencia erfecta es eficiente (Primer Teorema del Bienestar).

Más detalles

Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática

Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática 1 Capítulo 4 Inecuaciones M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

PLANTEAMIENTO DEL PROBLEMA INVERSO DE IDENTIFICACIÓN DE FUENTES DIPOLARES EN CORTEZA CEREBRAL.

PLANTEAMIENTO DEL PROBLEMA INVERSO DE IDENTIFICACIÓN DE FUENTES DIPOLARES EN CORTEZA CEREBRAL. PLANTEAMIENTO DEL PROBLEMA INVERSO DE IDENTIFICACIÓN DE FUENTES DIPOLARES EN CORTEZA CEREBRAL María M Morín a, José J Oliveros b, Andrés Fraguela b, Eladio Flores a, Moisés Gutierrez a, Miguel A Saloma

Más detalles

Lógica Proposicional (LP)

Lógica Proposicional (LP) Lógica Proosicional (LP) Proosición Enunciado del ue uede afirmarse si es verdadero o falso Oración declarativa Cuáles de las siguientes son roosiciones? ) Pedro es alto. 2) Juan es estudiante. 3) Vayan

Más detalles

Una función constante. Figura 7.1

Una función constante. Figura 7.1 Caítulo 7 Ecuación de la recta Vamos a ver que, si a y b son dos números reales, el gráfico de la función f() =a+b es una recta. Si a =0entonces f() =bes la función constante: su gráfico, (figura 7.1)

Más detalles

PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1

PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1 PROF. JESÚS OLIVAR Prof. Jesús Olivar Página 1 Límite y Continuidad de Funciones Resumen Estudio del límite de funciones en un punto; comenzaremos dicho estudio analizando la gráfica de una función. Trataremos

Más detalles

IRREDUCIBILIDAD EN K[X 1,..., X n ]

IRREDUCIBILIDAD EN K[X 1,..., X n ] IRREDUCIBILIDAD EN K[X 1,..., X n ] SAURON Índice General 1. DFU y anillos de olinomios 1 2. Irreducibilidad de olinomios sobre un DFU 3 3. Algunos ejemlos 5 Referencias 6 1. DFU y anillos de olinomios

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

APROXIMACIONES RACIONALES DE 2

APROXIMACIONES RACIONALES DE 2 APROXIMACIONES RACIONALES DE 2 CÁLCULO FING/UDELAR Uno de los resultados matemáticos más importantes de la antigüedad griega (escuela pitagórica, siglo VI a. C.) es ue la diagonal D de un cuadrado y su

Más detalles

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos II. Teoría del Consumidor EJERCICIO Considere a un individuo que maximiza la siguiente función de utilidad: ux (, x) x a - = x a, 0< a 0. a. Derive

Más detalles

El Teorema de Recurrencia de Poincaré

El Teorema de Recurrencia de Poincaré El Teorema de Recurrencia de Poincaré Pablo Lessa 9 de octubre de 204. Recurrencia de Poincaré.. Fracciones Continuas Supongamos que queremos expresar la relación que existe entre los números 27 y 0. Una

Más detalles

UPR Departamento de Ciencias Matemáticas RUM I MATE 3171 Práctica # 1. respuesta iii

UPR Departamento de Ciencias Matemáticas RUM I MATE 3171 Práctica # 1. respuesta iii UPR Deartamento de Ciencias Matemáticas RUM 00-0 I MATE 7 Práctica # Profesor Nombre Instrucciones. Resuelva cada uno de los ejercicios or usted mismo y si tienen dudas reguntele a su instructor.. En los

Más detalles

1. Espacio de funciones esencialmente acotadas

1. Espacio de funciones esencialmente acotadas AMARUN www.amarun.net Comisión de Pedagogía - Diego Chamorro Teoría de la medida (Nivel 2). Lección n 6: Esacios de Lebesgue EPN, verano 2009 Todos los resultados anteriores ermiten el estudio de esacios

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

INTRODUCCIÓN A LA ECONOMÍA. Ramón Fuentes Pascual Carmen Martínez Mora

INTRODUCCIÓN A LA ECONOMÍA. Ramón Fuentes Pascual Carmen Martínez Mora INTRODUCCIÓN A LA ECONOÍA Ramón Fuentes Pascual Carmen artínez ora Título: Introducción a la economía Autor: Ramón Fuentes Pascual y Carmen artínez ora I.S.B.N.: 84-8454-8-6 Deósito legal: A-73- Edita:

Más detalles

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice

Tema 12: Cálculo diferencial de funciones de varias variables I: Apéndice Tema : Cálculo diferencial de funciones de varias variables I: Aéndice Ejercicio: Comrobar que la derivada direccional de la función f, ) + si, ) 6 0, 0) 0 si, ) 0, 0) en el origen en la dirección del

Más detalles

Prof. Daniel Villar Escuela Técnica del Buceo 2009

Prof. Daniel Villar Escuela Técnica del Buceo 2009 Matemática: Teórico 009 Seguramente el lector ya conoce estructuras numéricas, naturales, enteros, racionales. Sus diferencias y carencias. Qué hizo necesario la creación de una estructura aún más amlia

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ).

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ). EDO ara Ingenieros CAPITULO 4 FACTORES ITEGRATES Suongamos que aora que nos dan una ecuación diferencial M (, ) + (, ) d = 0 ( I) Que no es eacta Eiste alguna forma de acerla eacta? Con más recisión, Eistirá

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C.

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C. Solución del do. nivel (ra. etaa) da. Olimiada Cientí ca Estudiantil Plurinacional Boliviana Resonzable: Mgr. Alvaro H. Carrasco C.. Como 000 = entonces los divisores ares de 000 son: ; ; ; ; ; ; ; ; ;

Más detalles

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8 Plan de Estudios: Semestre 1 Área: Matemática 1 Nº Créditos: Intensidad horaria semanal: 3 Hrs T Hrs P Total horas: 6 Tema: Desigualdades 1. OBJETIVO Apropiar los conceptos de desigualdades y establecer

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Derivadas en variedades

Derivadas en variedades Derivadas en variedades Luis Guijarro UAM 19 de mayo de 2010 Luis Guijarro ( UAM) Derivadas en variedades 19 de mayo de 2010 1 / 68 Curvas suaves en una variedad Definición Una curva suave en una variedad

Más detalles

Paramagnetismo de Pauli

Paramagnetismo de Pauli Paramagnetismo de Pauli Hasta ahora no habíamos tenido en cuenta el esín electrónico a la hora de tratar sistemas magnéticos. En realidad, el hamiltoniano comleto de un electrón sometido a un camo magnético

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

Notas XII Escuela de Probabilidad y Estadística 1

Notas XII Escuela de Probabilidad y Estadística 1 otas XII Escuela de Probabilidad y Estadística 1 Víctor RIVERO 2 14 de marzo de 2014 1 En estas notas se describen algunos resultados ue fueron mencionados o utilizados en charlas de la XII Escuela de

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5 UNIDAD DIDÁCTICA #5 INDICE PÁGINA Números Irracionales -------------------------------------------------------------------------------------2 Los Pitagóricos y 2 ----------------------------------------------------------------------3

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Solución de la Ecuación Cúbica. Discusión de la Fórmula detartaglia-cardano.

Solución de la Ecuación Cúbica. Discusión de la Fórmula detartaglia-cardano. Solución de la Ecuación Cúbica. Discusión de la Fórmula detartaglia-cardano. Alvaro H. Salas Universidad de Caldas Universidad Nacional de Colombia-sede Manizales FIZMAKO Research Grou email: asalash00@yahoo.com

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

1 Con juntos de Números: Axiomas 1

1 Con juntos de Números: Axiomas 1 ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD

7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD 7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD La Distribución Binomial Esta distribución fue elaborada or Jacobo Bernoulli y es alicable a un gran número de roblemas de carácter económico y en numerosas alicaciones

Más detalles

Capitulo I - Lógica Matemática

Capitulo I - Lógica Matemática UNIERSIDAD PRIADA DE MOQUEGUA JOSE CARLOS MARIATEGUI Caitulo I - Lógica Matemática Todos los tóicos relativos a las matemáticas se razonan desde el unto de vista lógico y or lo tanto hay ue tener muy en

Más detalles

t t 20 + y 17 = R, en donde R sale de: 19a n. Veamos la tabla de cálculo de a

t t 20 + y 17 = R, en donde R sale de: 19a n. Veamos la tabla de cálculo de a A continuación veremos las soluciones de algunos ejercicios de diversas Olimíadas de Matemáticas resueltas or jóvenes almassorenses, actualmente alumnos del Colegio y Liceo Esañol del Uruguay, Liceo Miguel

Más detalles

2. Hallar las soluciones enteras de la ecuación. x 4 + y 4 = 3x 3 y.

2. Hallar las soluciones enteras de la ecuación. x 4 + y 4 = 3x 3 y. Sesión 1. Se considera un polígono regular de 90 vértices, numerados del 1 al 90 de manera aleatoria. Probar que siempre podemos encontrar dos vértices consecutivos cuyo producto es mayor o igual que 014.

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Profesor: Blas Torres Suárez. Versión.0 Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Competencias a desarrollar: Aplicar el teorema del residuo, para hallar el residuo de un cociente entre un polinomio

Más detalles