Aplicaciones en ciencias naturales, económico-administrativas y sociales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones en ciencias naturales, económico-administrativas y sociales"

Transcripción

1 Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía, administración y ciencias sociales. Se va a construir una caja rectangular que tenga un volumen de 256 cm 3. Su base debe ser doble de largo que de ancho. El material de la tapa cuesta $0.10 por centímetro cuadrado y el de los lados, $0.05 por centímetro cuadrado. Encuentra las dimensiones que hagan el costo mínimo. Ejemplo 1 Empezamos con un diagrama para representar la situación: y V = 2 2 y 2 El área de la base y la tapa juntas es: A b = = 4 2 El costo de este material es: pesos, porque cada centímetro cuadrado cuesta 0.1 pesos. El área de las 4 caras laterales de la caja es: Y tienen un costo de: 0.3 y pesos. A c = 2 y + 4 y = 6 y El volumen total de la caja es de 256 cm 3, así que: V = 2 2 y = 256 y = = Así que el costo total del material requerido para construir la caja es: Ahora podemos calcular el mínimo: dc d C = Ab + A c = y = = ( ) = = 0 = /8

2 Entonces, las dimensiones de la caja son: 3 48, y y = = ( 128 ) Entoces, la caja con mínimo costo en materiales es: 128 ( ) Ejemplo 2 Un tanque de forma cilindrica circular recta, sin tapa y con base horizontal ha de contener 400 litros. El materia de la base cuesta el doble por metro cuadrado que el de los lados. Calcule las dimensiones del tanque más económico. Nota: 1 litro equivale a 1 dm 3. Empezamos con el diagrama que ilustra la situación: V = πr 2 h h r Definimos como c el costo por unidad de superficie al material para las paredes del cilindro y 2 c al del fondo. Utilizaremos r y h medido en decímetros, para simplificar los cálculos. Así, el volumen del cilindro estará en decímetros cúbicos, es decir, en litros. El área de material utilizado en la base es: A b = πr 2 2/8

3 El material para la base costará: C b = 2 c πr 2. El área de material requerido para las paredes del cilindro es: Y su costo es C p = 2 cπrh. Pero el volumen del cilindro es: A p = 2 πrh V = πr 2 h = 400 h = 400 πr 2 Entonces, el costo del material requerido para la construcción de ese cilindro es: C = C b + C p = 2 c πr cπrh Ahora podemos calcular el costo mínimo: dc dr Y la altura del cilindro debe ser: = 2 c πr cπr C(r) = 2 c πr c r ( ) 400 πr c 200 = 4 cπr r 2 = 0 r = 3 π h = 400 πr 2 = 400 ( ) π /π Verifica que el volumen del cilindro con estas dimensiones es 400 dm 3. El costo de un inventario en una cadena de comidas está dado por: I() = Cuál debe ser su inventario mensual para minimizar el costo? Ejemplo 3 Para conocer el mínimo costo de inventario derivamos, igualamos a cero y resolvemos para : di = d = 0 = Se sugiere que tenga un inventario de 167 productos. Función de costo La función de costo C = f () indica el costo total de producción al producir artículos /8

4 2 3 Función de ingreso La función de ingreso I = f () indica el ingreso total de vender artículos. Función de utilidad La función de utilidad se define como la diferencia entre las funciones de ingreso y de costo: U() = I() C() Para algunos problemas de economía y administración se utiliz muy frecuentemente la palabra «marginal». Esta palabra se refiere a: «para el siguiente producto». Por ejemplo, la utilidad marginal se refiere a la utilidad que obtendrán si venden un producto más; el costo marginal es el costo de producir un producto más, etc. En sí, la palabra marginal se refiere a una razón de cambio promedio medida en un punto dado, que puede aproimarse a través de la derivada evaluada en ese punto. 4 5 Ejemplo 4 Ingreso marginal Es la razón de cambio instantánea del ingreso con respecto a la cantidad de unidades vendidas. Utilidad marginal Es la razón de cambio instantánea de la utilidad con respecto a la cantidad de unidades vendidas. Una compañía fabricante de vestidos ha encontrado que la utilidad de producir vestidos está dada por: U() = Calcula la utilidad marginal. La utilidad marginal es la utilidad que obtedrán al vender un producto más. Es decir, si al vender 200 vestidos obtengo en promedio una utilidad de $12 pesos por vestido, qué utilidad obtendré por vender un vestido más? Esto se calcula con la derivada, pues se trata de la razón de cambio unitaria en un punto dado: d = ( ) 3/2 La función de ingreso por la venta de calculadoras científicas en total es: Ejemplo 5 I() = Calcula el ingreso marginal con = 100. Compara este resultado con I(101) I(100). Primero calculamos el ingreso marginal: di = d 4/8

5 El ingreso marginal de vender la calculadora 101 es: di d = (100) = 200 =100 Por otra parte, I(101) = (101) 0.25 (101) 2 = I(100) = (100) 0.25 (100) 2 = I(101) I(100) = = Qué concluyes? Profesor: La diferencia radica en que 200 es la razón de cambio porque se calculó con la derivada, instantánea, mientras que es la razón de cambio promedio. Una compañía ha encontrado que las funciones de ingreso I() y de costo C() para un ventilador de pedestal doméstico son: I() = C() = Ejemplo 6 Calcula la cantidad de ventiladores que deben producir para obtener la máima utilidad. Por definición, la utilidad U() es igual a la diferencia del ingreso y el costo: U() = I() C() = = Evidentemente, esta función tiene un máimo, pues es una parábola que abre hacia abajo. Ahora calculamos el máimo: d = = 0 = 110 Se recomienda que produzcan 110 ventiladores para obtener la mayor utilidad. Obviamente, lo mejor sería conocer la utilidad de vender un producto en función de su precio. Esto se puede lograr algunas veces, y el siguiente ejemplo muestra cómo determinar el precio que maimiza la utilidad. La utilidad U que obtiene una compañía al vender evaluaciones por Internet, cada una a p pesos, está dada por: U(p) = 1.25 p p 120 A qué precio deben ofertar las evaluaciones para obtener la mayor utilidad? Ejemplo 7 Debemos calcular el máimo de U en función de p. dp = p = 0 p = = /8

6 Al vender a $ pesos cada evaluación, la compañía obtendrá la mayor utilidad. La utilidad U() de producir reguladores de voltaje se puede calcular con: Ejemplo 8 Calcula: U() = i. La utilidad marginal ii. El número de reguladores de voltaje que deben producir para maimizar la utilidad. Empezamos calculando la utilidad marginal: d = Para calcular el número de reguladores de voltaje que deben producir para maimizar la utilidad, igualamos a cero el resultado anterior y resolvemos para : = = = Esto significa que deben producir = = 100 reguladores de voltaje para obtener la mayor utilidad posible. Un fabricante de altavoces para computadora ha encontrado que el precio p y el número de altavoces del modelo SR 71 que logra vender a ese precio están relacionados por la epresión: p = Ejemplo 9 Por otra parte, saben que el costo C de producir de esos altavoces viene dado por: C() = i. Determina como una función de p ii. Epresa C() como una función de p iii. Calcula el valor de p que minimiza el costo de producción. Para escribir en términos de p, debemos despejar: p = = 500 p 2 = p 6/8

7 Ahora vamos a sustituir este resultado en la epresión para C(): C() = = ( p) ( p) 2 = p ( p + 4 p 2 ) = p p p 2 = p p 2 Para minimizar el costo, derivamos C(p) respecto de p, igualamos a cero y resolvemos: dc dp = p = 0 p = Esto significa que debe venderlos a $ pesos para obtener la mayor utilidad posible. Observando la función de demanda que relaciona a y a p, crees que esto es posible? La utilidad U de producir artículos diariamente en una planta de fabricación de neumáticos en Apodaca, N.L., es: U() = Qué producción diaria les trae la mayor utilidad? Ejemplo 10 Para calcular el máimo de la función de utilidad usaremos el criterio de la segunda derivada. Empezamos calculando la derivada: d = Para conocer los puntos críticos igualamos a cero y resolvemos la ecuación cuadrática: = 0 = 64 ± (1.05)(250) = 64 ± = 64 ± ± Nosotros solamente consideramos el valor positivo: = Entonces, si la producción diaria se fija en 57 obtendrán una utilidad muy cercana a la máima posible de acuerdo al modelo. 7/8

8 Créditos Todo debe hacerse tan simple como sea posible, pero no más. Albert Einstein Este material se etrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 2010 Año de publicación: Pendiente. Última revisión: 01 de agosto de Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. Méico Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.m 8/8

Parábolas con vértice fuera del origen

Parábolas con vértice fuera del origen Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

Ecuaciones ordinarias de la parábola

Ecuaciones ordinarias de la parábola Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Integral indefinida de funciones algebraicas

Integral indefinida de funciones algebraicas Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada 0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Desigualdades con una incógnita

Desigualdades con una incógnita Desigualdades con una incógnita Nosotros utilizaremos las propiedades de las desigualdades para epresarlas de la manera más simple posible. Resuelve la desigualdad: 5 1 > 24 Ejemplo 1 Empezamos sumando

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Congruencia de triángulos

Congruencia de triángulos Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen

Más detalles

Forma pendiente-ordenada al origen

Forma pendiente-ordenada al origen Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

Ecuación ordinaria de la hipérbola

Ecuación ordinaria de la hipérbola Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones

Más detalles

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f

Más detalles

Clasificación y transformación de funciones

Clasificación y transformación de funciones Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Técnicas de integración. Cambio de variable

Técnicas de integración. Cambio de variable Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere

Más detalles

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Profr. Efraín Soto Apolinar. Función logarítmica

Profr. Efraín Soto Apolinar. Función logarítmica Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer

Más detalles

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio,

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas: Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,

Más detalles

Límites de funciones

Límites de funciones Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

Resolución de Ecuaciones de Segundo Grado

Resolución de Ecuaciones de Segundo Grado Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también

Más detalles

Profr. Efraín Soto Apolinar. Variación inversa. entonces,

Profr. Efraín Soto Apolinar. Variación inversa. entonces, Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Constante de integración

Constante de integración Constante de integración Cuando impongamos una condición que deba satisfacer la antiderivada de la función dada, por ejemplo, que pase por un punto dado, tendremos la posibilidad de reducir toda una familia

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Ángulos formados por dos rectas paralelas y una secante

Ángulos formados por dos rectas paralelas y una secante Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

S = x y = x(500 2x) = 500x 2x 2

S = x y = x(500 2x) = 500x 2x 2 .7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que

Más detalles

Teoremas de los límites

Teoremas de los límites Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo diferencial Soluciones Tarea. Para las siguientes funciones f encuentra la función lineal que mejor las aproima en el punto dado. Recordemos que la mejor aproimación lineal a una

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es,

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es, Análisis: Máimos, mínimos, optimización 1. Una multinacional ha estimado que anualmente sus ingresos en euros vienen dados por la función I( ) 8 6000, mientras que sus gastos (también en euros) pueden

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

En todas las representaciones el valor de la constante a nos indica para donde abre la parábola: abre hacia arriba (a > 0) o hacia abajo (a < 0):

En todas las representaciones el valor de la constante a nos indica para donde abre la parábola: abre hacia arriba (a > 0) o hacia abajo (a < 0): COLEGIO COLOMBO BRITANICO DPTO DE MATEMATICAS TALLER DE FUNCION CUADRATICA Una función cuadrática se puede representar de tres formas diferentes, equivalentes entre si, cada una de las cuales suministra

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

MATEMÁTICAS - GRADO 11

MATEMÁTICAS - GRADO 11 PRUEBA DE TERCER PERÍODO DE MATEMÁTICAS - GRADO 11 1 La siguiente representación gráfica corresponde a una función, de la cual se puede AFIRMAR que Su pendiente es 3 y corresponde a una función afín creciente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

GUÍA DE ESTUIO HABILIDAD MATEMÁTICA Problemas tipo resueltos

GUÍA DE ESTUIO HABILIDAD MATEMÁTICA Problemas tipo resueltos GUÍA DE ESTUIO HABILIDAD MATEMÁTICA Problemas tipo resueltos 1.- De cuántas maneras se puede llegar del punto A al punto B en una retícula de 4 si solo se puede caminar de izquierda a derecha y de abajo

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Función Lineal Una función lineal es una función de la forma: Se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función:

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 1.- Resolved: a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 2x 1 para x 2 f(x) x + 15x 16 para x > 2 b) Calculad el área de la región deitada per el eje

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

Ejercicios de máximos y mínimos de selectividad

Ejercicios de máximos y mínimos de selectividad 1. De entre todos los triángulos rectángulos con hipotenusa 10cm., calcula as longitudes de los catetos que corresponden ó de área máxima b a c segunda A (a)= ( ) = El área A de un triángulo rectángulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

1 Razones y proporciones

1 Razones y proporciones 1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos

Más detalles

PAIEP. Valores máximos y mínimos de una función

PAIEP. Valores máximos y mínimos de una función Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

Operaciones con polinomios

Operaciones con polinomios 1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión

Más detalles

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría 8 Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f() = representada en el margen, halla los máimos y los mínimos relativos y los intervalos de

Más detalles

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f.

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f. FUNCIONES Y SUS GRÁFICAS Funciones y notación de funciones Una relación entre dos conjuntos X e Y es un conjunto de pares ordenados, cada uno de la forma (, y) donde es un elemento del conjunto X e y,

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

TEMA 10. CÁLCULO DIFERENCIAL

TEMA 10. CÁLCULO DIFERENCIAL TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100 (1) Obtener la ecuación de la recta tangente a la curva x + y 6xy =0 en el punto, 8 ). (2) A un depósito cilíndrico de base circular de

Más detalles

Cálculo Diferencial Agosto 2018

Cálculo Diferencial Agosto 2018 Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10

Más detalles

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo Modelo 01. Problema B.- Calificación máima: puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función C) + 0 + 0000, donde representa el número de hornos fabricados. Supongamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2 CAPÍTULO 10 Pruebas Prueba N o 1 - Tema: Capitulo 1 y 2 1. 1 punto. Se espera que del total de alumnos inscritos en la asignatura, el 20 % obtendrá una nota no menor a 6,0; el 65 % obtendrá una nota no

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNITAT VALENCIANA MODELO CURSO - SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A A a) La matriz de coeficientes es la siguiente: A El determinante

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

(B) Segundo parcial (1) Dibuje una gráfica de una función f que satisfaga todas las condiciones siguientes:

(B) Segundo parcial (1) Dibuje una gráfica de una función f que satisfaga todas las condiciones siguientes: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1600 (A) Primer parcial (1) Si se lanza una pelota verticalmente hacia arriba con una velocidad de 5 m/seg, entonces su altura después de t segundos

Más detalles