Transformada de Laplace: Aplicación a vibraciones mecánicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformada de Laplace: Aplicación a vibraciones mecánicas"

Transcripción

1 Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com Septiembre 2011 Resumen: Los métodos de la transformada de Laplace tienen un papel clave en el enfoque moderno del análisis y diseño en los sistemas de ingeniería. En el siguiente informe se detallará como utilizar dicha transformada para la resolución de ecuaciones diferenciales de movimiento en sistemas mecánicos de traslación, condicionados por determinadas amortiguaciones. Palabras clave: Movimiento, Laplace, ecuaciones diferenciales, amortiguados. I. INTRODUCCIÓN Se define la transformada de Laplace (L) mediante la expresión: L[ f (t)]= F (s)= e st f (t)dt 0 para los sr, para los cuales la integral converge, y donde f (t) es la función original, F (s) es la función transformada y e st es el núcleo de la transformación. Las propiedades que se utilizarán en este trabajo de aplicación serán, Considerando el siguiente par de transformadas de Laplace con sus correspondientes regiones de convergencia: Propiedad de linealidad: Para α, β C f (t) F (s) (s)> p g (t) G (s) (s)> q α f (t)+ β g (t) α F (s)+ β G(s) (s)> máx ( p,q) Propiedad de la derivada: Sea F(s) la transformación de la función f(t) para los números reales (s > p) f (n) (t) s (n) F (s) s (n 1) f (0) f (n 1) (0) (s)> p ( 1) n t n f (t) f n (s) (s)> p La transformada de Laplace provee un método para resolver ecuaciones diferenciales lineales con coeficientes constantes al transformarlas, a través de la propiedad anteriormente descripta, en el problema sencillo de resolver una ecuación algebraica lineal. Una vez hecha la transformación, se desarrollan

2 manipulaciones algebraicas y finalmente se aplica la transformación de Laplace inversa para obtener el resultado del problema planteado. En la aplicación de este informe se utiliza el desarrollo de Heaviside de la transformada de Laplace, el cual (P (s)) consiste en, luego de obtener una solución de la forma Y (s)= donde P y Q son polinomios en s, se (Q (s)) determina la solución y(t)= L ( 1) [Y (s)], expresando primero Y(s) en términos de fracciones parciales y luego antitransformando. II. VIBRACIONES MECÁNICAS Los sistemas mecánicos de traslación pueden ser usados para modelar muchas situaciones e involucran tres elementos básicos: masas, resortes y amortiguadores, cuyas unidades de medida son, respectivamente, Kg (kilogramos), N/m (Newton por metro) y Ns/m (Newtons y segundos por metro). Las variables asociadas son el desplazamiento x(t) (medido en metros) y la fuerza F(t) (medida en Newtons). Podemos ver en la Figura 1, una representación de los tres elementos básicos nombrados anteriormente: Figura 1: Elementos componentes de un sistema mecánico de traslación. (1) Suponiendo que estamos tratando con resortes y amortiguadores ideales (esto es, suponiendo que se comportan linealmente), las relaciones entre las fuerzas y los desplazamientos en el tiempo t son Masa: F M ( d 2 dt x)= M ẍ (Ley de Newton) Resorte: F = K (x 2 x 1 ) (Ley de Hooke) Amortiguador: F = B( d dt x 2 d dt x 1)= B( x 2 ẋ 1 ) Usando estas relaciones llegamos a las ecuaciones del sistema, las que pueden ser analizadas utilizando las técnicas de la transformada de Laplace. III. EJEMPLO La masa del sistema masa-resorte-amortiguador de la figura 2 está sometida a una fuerza periódica externa F(t) = 4 sin (ωt) aplicada en el tiempo t = 0. Determinaremos el desplazamiento resultante de x(t) de la masa en el tiempo t, suponiendo que la velocidad y posición iniciales son cero para ambos casos presentados a continuación: (a) ω = 2 (b) ω = 5 Determinaremos también, lo que sucedería en el caso de ω = 5 si el amortiguador no estuviera presente.

3 Figura 2: Sistema masa-resorte-amortiguador del ejemplo presentado Como está indicado en la figura 2(b), las fuerzas que actúan sobre la masa M son las fuerzas aplicadas F(t) y las fuerzas de restauración F 1 y F 2 debidas al resorte y al amortiguador respectivamente. Así, por la ley de Newton, M ẍ(t)= F (t) F 1 (t) F 2 (t) Como M = 1,F(t)= 4sin(ωt ),F 1 (t)= Kx (t)= 25x(t),F 2 (t)= B ẋ(t)= 6 ẋ(t), ésto da ẍ(t)+ 6 ẋ(t)+ 25x(t)= 4sin(ωt ) (1) la ecuación diferencial representa el movimiento del sistema. Aplicando la transformada de Laplace en todo (1) se obtiene (s 2 + 6s+ 25) [ sx(0)+ ẋ(0)]+ 6x(0)+ 4ω s 2 + w 2 donde X(s) es la transformada de x(t). Incorporando las condiciones iniciales dadas x(0)= ẋ(0)= 0 llegamos a 4ω (s 2 + ω 2 )(s 2 + 6s+ 25) (2) En el caso (a), con ω=2, (2) da 8 (s 2 + 4)(s 2 + 6s+ 25) la cual, resolviendo en fracciones parciales, lleva a 4 4s s s+ 20 s 2 + 6s+ 25 = 4 4s s (s+ 3) 4 (s+ 3)

4 Aplicando la transformada inversa de Laplace se obtiene la respuesta requerida esto es, x(t)= 4 2 7sin(2t) 4cos(2t) e 3t (8cos(4t) sin(4t)) (3) En el caso (b), con ω=5, (3) da 20 (s )(s 2 + 6s+ 25) (4) 2 15 s s (s+ 3)+ 6 (s+ 3) la cual, aplicando la transformada de Laplace inversa, da la respuesta requerida x(t)= 2 15 cos(5t) e 3t (2cos(4t)+ 3 2 sen(4t)) (5) Si no hay amortiguador entonces (4) será 20 (s ) 2 (6) Aplicando la transformada de Laplace, esto es, L[tcos(5t)]= d ds L[cos(5t)]= d ds ( s s ) L[tcos(5t)]= 1 s s 2 (s ) 2= 1 s (s ) 2= 1 5 L[sen(5t)] 50 (s ) 2 Así, por la propiedad de linealidad nombrada previamente, L[ 1 5 sin(5t) tcos(5t)]= 50 (s ) 2 de manera que aplicando la transformada inversa de Laplace en (6) se obtiene la respuesta x(t)= 2 (sin(5t) 5tcos(5t)) 25 Debido al término t cos (5t), la respuesta x(t) no está acotada cuando t. Esto se debe a que en este caso la fuerza aplicada F(t) = 4 sen (5t) está en resonancia con el sistema (esto es, la masa vibrante)

5 cuya frecuencia de oscilación natural es 5/2π Hz, igual que la fuerza aplicada. Aún en la presencia del amortiguamiento, la amplitud de respuesta del sistema es maximizada cuando la fuerza aplicada se aproxima a la resonancia con el sistema. En ausencia de amortiguamiento tenemos el caso limite de resonancia pura, y se obtiene una respuesta no acotada. REFERENCIAS [1] G. Calandrini, Guía de Definiciones y Teoremas estudiados en el curso de Funciones de Variable Compleja. 1er. Cuatrimestre 2011, paginas 56, 60, 62. [2] G. James, "Matemáticas avanzadas para ingeniería", Pearson Educación, segunda edición 2002, paginas

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Transformada Z en el diseño de Sistemas de tiempo Discretos

Transformada Z en el diseño de Sistemas de tiempo Discretos Transformada Z en el diseño de Sistemas de tiempo Discretos Cardozo Jorge Silvio Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca,

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-118-2-V-2--217 CURSO: SEMESTRE: Segundo CÓDIGO DEL CURSO: 118 TIPO DE EXAMEN: Segundo parcial FECHA DE EXAMEN:

Más detalles

Transformada de Laplace Juan Manuel Rodríguez Prieto

Transformada de Laplace Juan Manuel Rodríguez Prieto Juan Manuel Rodríguez Prieto L{ f (t)}(s) = e st f (t)dt Ejemplo 1: Calcular la transformada de Laplace de f(t)=1 L{ f (t)}(s) = e st f (t)dt L{ 1}(s) = e st 1dt L{ 1}(s) = lim B B e st dt e st B L{ 1}(s)

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace

Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace Cristian Iván Eterovich Estudiante de Ingeniería Electricista/Electrónica/en Sistemas de Computación Universidad Nacional

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

IV. Vibración bajo condiciones forzadas generales

IV. Vibración bajo condiciones forzadas generales Objetivos: 1. Reconocer que existen excitaciones periódicas no harmónicas y no periódicas.. Analizar la respuesta de un sistema de primer y de segundo orden bajo una fuerza periódica general. 3. Analizar

Más detalles

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales 2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace

Más detalles

Schmeigel Nicolas. Marzo 2014

Schmeigel Nicolas. Marzo 2014 Transformada de Laplace: Intercambiador de calor Schmeigel Nicolas Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina nicoschmeigel@gmail.com

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Seminario: Sistemas Analógicos S.0 S.1 S.2 S.3 S.4 Introducción: Control Transformada de Laplace Funciones

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

II. Vibración libre de un sistema de un grado de libertad

II. Vibración libre de un sistema de un grado de libertad Objetivos: 1. Definir que es vibración libre. 2. Recordar el método de diagrama de cuerpo libre para deducir las ecuaciones de movimiento. 3. Introducir el método de conservación de energía para deducir

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Transformada Zeta Aplicación: Filtros digitales

Transformada Zeta Aplicación: Filtros digitales Transformada Zeta Aplicación: Filtros digitales Luciano Andrés Cardozo Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina Lucianocardozo7@gmail.com

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

Contenido. 5. Transformada de Laplace. Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/19 19

Contenido. 5. Transformada de Laplace. Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/19 19 Contenido 5. Transformada de Laplace 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/19 19 Contenido: Tema 5 5. Transformada de Laplace 5.1 Definiciones: transformada

Más detalles

(a) [0,7 puntos] Encuentre los valores de las constantes A y B, y del punto x 2 (0, 1) de modo que la fórmula de cuadratura:

(a) [0,7 puntos] Encuentre los valores de las constantes A y B, y del punto x 2 (0, 1) de modo que la fórmula de cuadratura: UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 3. Semestre Otoño 7 Problema ( puntos) (a) [,7 puntos] Encuentre los valores de las constantes

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

CÁLCULO III. Apuntes

CÁLCULO III. Apuntes CÁLCULO III. Apuntes Grado en Ingeniería en Tecnologías Industriales Tema 3 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 3 TRANSFORMADA DE LAPLACE La transformada

Más detalles

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) de Laplace. (secc..) 5 Apéndice DI_UIV Más ejercicios de Solución de una ecuación diferencial lineal con condiciones iniciales por medio de la trasformada de Laplace (Secc..).[] Ejemplo DI. Teniendo encontrar

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Hoja de ejercicios n 2-A. Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia.

Hoja de ejercicios n 2-A. Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia. Hoja de ejercicios n 2-A Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia. 1) Transformada de Laplace a) Determine la transformada de Laplace de las

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS. Definición de Transformada de Laplace Sea E el espacio vectorial de las funciones continuas a trozos y de orden exponencial (esto es, dada una

Más detalles

Y ANÁLISIS DE SISTEMAS

Y ANÁLISIS DE SISTEMAS DEPARTAMENTO DE MECÁNICA FACULTAD DE CIENCIAS EXÁCTAS Y TECNOLOGÍA UNIVERSIDAD NACIONAL DE TUCUMÁN INSTRODUCCIÓN AL MODELO Y ANÁLISIS DE SISTEMAS 1 Modelos y análisis de sistemas (conceptos generales)

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

3. Propiedades de la transformada de Laplace

3. Propiedades de la transformada de Laplace Transformada de Laplace 2. Sea F(s) = L [ f (t)]. Pruebe que, para cualquier constante a positiva, se cumple que L [ f (at)] = ( s ) a F. a En los ejercicios del 2 al 4 pruebe que la función dada es de

Más detalles

Material suplementario en modelado de sistemas mecánicos. R. Alzate. Control de Sistemas Eléctricos

Material suplementario en modelado de sistemas mecánicos. R. Alzate. Control de Sistemas Eléctricos Material suplementario en modelado de sistemas mecánicos R. Alzate Control de Sistemas Eléctricos - 27126 Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones Universidad Industrial de

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido 4. Modelos lineales oscilatorios 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido: Tema 04 4. Modelos lineales oscilatorios 4.1 Oscilaciones:

Más detalles

DEPARTAMENTO DE INGENIERÍA MECÁNICA. Cátedra: Sistemas de Control TEO 03/2015

DEPARTAMENTO DE INGENIERÍA MECÁNICA. Cátedra: Sistemas de Control TEO 03/2015 FUNCIÓN TRANSFERENCIA 1 Función Transferencia Es una expresión matemática que caracteriza lasrelacionesde Entrada Salida de sistemas lineales invariantes en el tiempo. Se define como la relación de la

Más detalles

Ejemplos de los capítulos V, VI, y VII

Ejemplos de los capítulos V, VI, y VII . Derive las ecuaciones de movimiento del sistema de tres grados de libertad mostrado a continuación por medio de: a) La Segunda Ley de Newton. b) Las ecuaciones de Lagrange. Suposiciones: El sistema es

Más detalles

el alargamiento s Masa Longitud Masa peso

el alargamiento s Masa Longitud Masa peso MODELADO ORDEN SUPERIOR SISTEMA RESORTE-MASA, MOVIMIENTO LIBRE NO AMORTIGUADO I. Modelos lineales. Con valores iniciales: 1) Sistemas resorte-masa, movimiento libre no amortiguado (SRM/MLNA). ) Sistemas

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

Formación para la Investigación Escuela de Física, Facultad de Ciencias Universidad Industrial de Santander Construimos Futuro

Formación para la Investigación Escuela de Física, Facultad de Ciencias Universidad Industrial de Santander Construimos Futuro I1. ESTUDIO DEL M.A.S DEL SISTEMA MASA-RESORTE Y ANALISIS DE LAS OSCILACIONES CON CASSY-M. RESUMEN El conocimiento de los fenómenos oscilatorios es esencial para comprender situaciones tan familiares como

Más detalles

Fundamentos de espectroscopia: Vibraciones

Fundamentos de espectroscopia: Vibraciones Fundamentos de espectroscopia: Vibraciones Jesús Hernández Trujillo Facultad de Química, UNAM Agosto de 2017 Vibraciones/JHT 1 / 28 Oscilador armónico Movimiento oscilatorio: Una partícula describe un

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace El par de funciones transformada y antitransformada de Fourier son, según vimos: La condición de existencia de la transformada es: Como en general F( ) es una función compleja,

Más detalles

Taller No. 9: Ecuaciones Lineales de Segundo Orden El oscilador masa-resorte

Taller No. 9: Ecuaciones Lineales de Segundo Orden El oscilador masa-resorte Taller No. 9: Ecuaciones Lineales de Segundo Orden El oscilador masa-resorte Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden, en el caso específico

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

Modos transitorios. Ignacio Díaz Blanco. Universidad de Oviedo

Modos transitorios. Ignacio Díaz Blanco. Universidad de Oviedo Modos transitorios Ignacio Díaz Blanco Método directo: Afortunadamente casi siempre, F(s) es una expresión racional (un polinomio dividido por otro) descomposición en fracciones simples Descomposición

Más detalles

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático:

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático: Modelo matemático de procesos 1. Modelo Matemático Un modelo matemático muy exacto implica un desarrollo matemático muy complejo. Por el contrario, un modelo matemático poco fino nos deparará un desarrollo

Más detalles

Ejemplos de los capítulos I, II, III y IV

Ejemplos de los capítulos I, II, III y IV 1. Considere el péndulo compuesto mostrado a continuación. Dicho péndulo consiste de una barra esbelta de longitud L, masa m, pivotada en el punto O. Utilizando el desplazamiento angular de la barra θ

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Tema 9: Movimiento oscilatorio*

Tema 9: Movimiento oscilatorio* ema 9: Movimiento oscilatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez/Prof.Dra. Ana M. Marco Ramírez Física I. Grado en Ingeniería

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de: MATERIA: Ecuaciones Diferenciales CÓDIGO: 08278 REQUISITOS: Cálculo en Varias Variables (08275) PROGRAMAS: Ingeniería Industrial, Ingeniería Telemática, Química PERIODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL:

Más detalles

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en el

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE OSCILADOR ARMÓNICO: Si sobre un cuerpo de masa m se aplica una fuerza resultante proporcional a la distancia a la posición de equilibrio x y siempre dirigida hacia esa posición,

Más detalles

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido 1. Pequeñas oscilaciones 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido: Tema 02 1. Pequeñas oscilaciones 1.1 Oscilador armónico 1.2 Oscilador armónico

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo II Transformada de Laplace D.U. Campos-Delgado Facultad de Ciencias UASLP Agosto-Diciembre/218 1 CONTENIDO Definición

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL II. 1ª Evaluación. Tema 7.- La función de transferencia.

CIDEAD. TECNOLOGÍA INDUSTRIAL II. 1ª Evaluación. Tema 7.- La función de transferencia. CIDEAD. TECNOLOGÍA INDUSTRIAL II. ª Evaluación. Desarrollo del tema.. Introducción.. Concepto de función de transferencia. 3. Operaciones con los diagramas de bloques. 4. Estabilidad. Criterio de Routh.

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS A 4 SOLUCIONES PROBLEMA. Cálculo de transformada de Laplace a) Por aplicación de la definición de la transformada. Aplicando

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto.

La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto. Movimiento periódico F = k x La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto. FIS1503 - Griselda Garcia - 1er. Semestre 2009 1 /

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Sistemas Automáticos. Modelado de sistemas. D. Tardioli, R. Martínez Centro Universitario de la Defensa Academia General Militar A. A.

Sistemas Automáticos. Modelado de sistemas. D. Tardioli, R. Martínez Centro Universitario de la Defensa Academia General Militar A. A. Sistemas Automáticos Modelado de sistemas D. Tardioli, R. Martínez Centro Universitario de la Defensa Academia General Militar A. A. 2016/2017 Sistemas Automáticos Índice Obtención de modelos Modelado

Más detalles

Aplicación de la Transformada de Laplace en la resolución de circuitos RLC

Aplicación de la Transformada de Laplace en la resolución de circuitos RLC Aplicación de la Transformada de Laplace en la resolución de circuitos RLC Franco Moiola Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 153, B8000CPB Bahía Blanca, Argentina

Más detalles

Algunas aplicaciones

Algunas aplicaciones Capítulo 3 Algunas aplicaciones Entre las aplicaciones que se han encontrado de los operadores que hemos estudiado las relacionadas con las ecuaciones integrales, las ecuaciones diferenciales y con la

Más detalles

Transformadas de Laplace y Z de funciones causales: tablas y propiedades

Transformadas de Laplace y Z de funciones causales: tablas y propiedades Transformadas de Laplace y Z de funciones causales: tablas y propiedades Félix Monasterio-Huelin 8 de febrero de 206 Índice Índice Índice de Figuras Índice de Tablas. Introducción a las transformadas de

Más detalles

Nombre.: Carné.: Correo Electrónico.:

Nombre.: Carné.: Correo Electrónico.: UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA MATEMATICA INTERMEDIA 3 N TERCER EXAMEN PARCIAL Nombre.: Carné.: Correo Electrónico.: Tema 1.: Un cuerpo de masa

Más detalles

Aplicaciones de Ecuaciones Diferenciales Lineales de orden dos no homogéneas con coeficientes constantes

Aplicaciones de Ecuaciones Diferenciales Lineales de orden dos no homogéneas con coeficientes constantes . a) Un cuerpo con masa m kilógramo kg se sujeta al extremo de un resorte que está 2 estirando 2 metros m por medio de una fuerza de 00 newtons N. En el instante t 0 el cuerpo se pone en movimiento, desplazándose

Más detalles

Tema 2c Cálculo de Antitransformadas y Modos Transitorios Análisis Dinámico de Sistemas 2º Ing. Telecomunicación

Tema 2c Cálculo de Antitransformadas y Modos Transitorios Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Tema 2c Cálculo de Antitransformadas y Modos Transitorios Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 27 Cálculo de Antitransformadas

Más detalles

Hoja de Problemas Ecuaciones Diferenciales Ordinarias

Hoja de Problemas Ecuaciones Diferenciales Ordinarias Unidad docente de Matemáticas Matemáticas (CC. Químicas) Hoja de Problemas Ecuaciones Diferenciales Ordinarias 1. Comprobar si la función indicada en cada caso es una solución de la ecuación diferencial

Más detalles

Ingeniería de Control I Tema 2. Transformadas

Ingeniería de Control I Tema 2. Transformadas Ingeniería de Control I Tema 2 Transformadas 1 1. Transformadas. Transformación de dominios: 1. Objetivo de la transformación de dominios 2. Representación de señales 3. Series de Fourier 4. Transformada

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Unidad Regional Centro División de Ingeniería Departamento de Ingeniería Química y Metalurgia Asignatura: Ecuaciones Diferenciales Clave: 6895 Antecedente: Cálculo Diferencial e Integral

Más detalles

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Objetivo Exponer las relaciones de la transformada de Laplace con las ecuaciones diferenciales y lineales de orden n junto con

Más detalles

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL Transformada Z Diego Milone Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL 26 de abril de 2012 Organización de la clase Introducción Revisión: transformada de Laplace Motivación de la

Más detalles

1. Muestreo de Sistemas Continuos. 1. Muestreo de Sistemas Continuos 1

1. Muestreo de Sistemas Continuos. 1. Muestreo de Sistemas Continuos 1 . Muestreo de Sistemas Continuos. Muestreo de Sistemas Continuos.. Secuencias 4.2. Sistema Discreto 5.3. Ecuaciones en Diferencias 6.4. Secuencia de Ponderación de un Sistema. 7.5. Estabilidad 9.6. Respuesta

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

Respuesta forzada sinusoidal (solución EDO no homogénea)

Respuesta forzada sinusoidal (solución EDO no homogénea) Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

Ecuaciones diferenciales I

Ecuaciones diferenciales I Universidad de Sonora División de Ciencia Exactas y Naturales Departamento de Física Licenciatura en Física Ecuaciones diferenciales I Eje formativo: Básico Requisitos: Carácter: Horas: Cálculo diferencial

Más detalles

Vibración de Torres a partir de eventos sísmicos

Vibración de Torres a partir de eventos sísmicos No podemos aplicar un verdadero procedimiento de vibración para recipientes horizontales Vibración de Torres a partir de eventos sísmicos Presenta: Luis Sanjuan Veamos la teoría básica de vibración No

Más detalles

Transformada de Laplace: Una herramienta en las finanzas

Transformada de Laplace: Una herramienta en las finanzas Transformada de Laplace: Una herramienta en las finanzas Oscar A. Uremovich Estudiante de Ingeniería electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina Oscar.uremovich@hotmail.com

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Índice. 1. Introducción. 2. Movimiento Oscilatorio Armónico Simple. 3. Oscilaciones amortiguadas. 4. Oscilaciones

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizabeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

Diferencia entre análisis y síntesis

Diferencia entre análisis y síntesis Diferencia entre análisis y síntesis ANÁLISIS Excitación conocida Respuesta? Circuito conocido xt () y()? t SÍNTESIS Y DISEÑO Excitación conocida Circuito? Respuesta deseada valores elementos? xt () yt

Más detalles

Acústica y vibraciones mecánicas

Acústica y vibraciones mecánicas Sistemas de un grado de libertar libre Ecuación de movimiento de un sistema masa-resorte Considerando el sistema de la figura y por la aplicación dela segunda ley de Newton o principio de conservación

Más detalles

Algunas Aplicaciones de la Transformada de Laplace

Algunas Aplicaciones de la Transformada de Laplace Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido

Más detalles

Sistemas Newtonianos - Preparación Control 2

Sistemas Newtonianos - Preparación Control 2 Sistemas Newtonianos - Preparación Control 2 Profesor: Roberto Rondanelli Auxiliares: Álvaro Aravena, Cristián Jáuregui, Felipe Toledo November 11, 2013 1 Resumen teórico 1.1 Movimiento Circular Uniforme

Más detalles

Vibraciones Mecánicas MC-571. Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Vibraciones Mecánicas MC-571. Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Matriz de amortiguamiento Considerando el sistema mostrado. Las ecuaciones de movimiento pueden ser derivadas

Más detalles

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Pedro Manuel Díaz Varela Estudiante de Ingeniería en Computación Universidad Nacional del Sur Avda. Alem 153

Más detalles

Control Moderno: El espacio de estados

Control Moderno: El espacio de estados Lección 3 Control Moderno: El espacio de estados 1 Estados: Definición y ejemplo Estados: variables internas que describen la evolución del sistema. El conocimiento de estas variables en t = t 0 junto

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Tema 6: Movimiento vibratorio.

Tema 6: Movimiento vibratorio. Física. 2º Bachillerato. Tema 6: Movimiento vibratorio. 6.1. Introducción. Cinemática de MAS. Un cuerpo describe un movimiento periódico cuando su posición, velocidad y aceleración se repiten al cabo de

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles