UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA"

Transcripción

1 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA / 1 UNIDAD DIDÁCTICA / 1 Número de Expediente PE01A14

2 Sistemas Mecánicos. Primera Prueba 1 Prueba Objetiva Problema n.º 1. El mecanismo de la figura es un mando marino de accionamiento del timón de un buque conocido por «Deslizadora de RAPSON». O2B es la caña y AC la barra de mando. Si la velocidad de AC permanece constante e igual a 20 cm/min, hallar la velocidad y aceleración angulares de la caña del timón en función de θ2. Calcular el diagrama de velocidades y aceleraciones. DATO: θ2 = 300º

3 Sistemas Mecánicos. Primera Prueba 2 Problema n.º 2. Se desea equilibrar el rotor de la figura de tres masas agregándole una cuarta masa. Determinar el peso requerido y la posición angular de la masa de balanceo, que se debe localizar a una distancia r4 = 5 cm.

4 Sistemas Mecánicos. Primera Prueba 3 Problema n.º 3. En el mecanismo del cuadrilátero articulado mostrado en la figura 1, las barras 2 y 3 son barras rígidas, de peso despreciable y de igual longitud a. La barra 4 está formada por un muelle lineal de constante K y longitud libre también a. En el punto medio C de la barra 3 se aplica una fuerza P = K a/2 que actúa en dirección normal a AB. Hallar la posición de equilibrio estático y la fuerza del muelle.

5 Sistemas Mecánicos. Primera Prueba 4 Problema n.º 4. El cigüeñal de un motor que lleva dos volantes A y B, el brazo acodado equivale a una masa de m3 =10 kg situada a una distancia r = 20 cm del cigüeñal. Los dos volantes son de igual masa m1 = m2 = 100 kg estando el c.d.g. del volante en B a 1,5 mm de su eje geométrico tal como muestra en la fig. 2. Si la velocidad de giro es de 120 rpm, calcular: a) Reacciones dinámicas en los cojinetes C y D antes de equilibrar. b) Masas correctoras M1 y M2 colocadas en los radios a una distancia ρ1= ρ2 = 30 cm una en cada volante y que sean capaz de equilibrar el sistema.

6 Sistemas Mecánicos. Primera Prueba 5 Problema n.º 5. En el mecanismo mostrado en la figura 3, el eslabón 2 mueve el eslabón 3 por medio de un perno en el punto B. El eslabón 2 gira a velocidad angular uniforme w2 de 50 rad/sg y el radio de curvatura R de la ranura en el eslabón 3 es de 12 cm. Determinar la aceleración AB3 del punto B3 en el eslabón 3 y la aceleración angular α3 para la posición mostrada en la figura.

7 Sistemas Mecánicos. Primera Prueba 6 Problema n.º 6. En el mecanismo de cepillo de manivela mostrado en la figura el eslabón 2 gira a una velocidad regular constante w2 de 10 rad/sg. Determinar la aceleración AA4 en el eslabón 4 y la aceleración angular α4 cuando el mecanismo está en la posición mostrada en la figura.

8 Sistemas Mecánicos. Primera Prueba 7 Problema n.º 7. En el mecanismo representado en la fig. la barra 2 gira con velocidad angular w2 = 50k rad/sg y aceleración angular α2 = 10k rad/sg 2. Las barras 2 y 4 son de sección circular constante de 8 cm 2. La barra 3 es de sección circular constante de 8 cm 2. La densidad de material de todas las barras es de 7 gr/cm 3. Hallar para la posición indicada: 1. Diagrama de velocidades y aceleraciones. 2. Reacciones en los cojinetes O2, O4 y A.

9 Sistemas Mecánicos. Primera Prueba 8 Problema n.º 8. Un disco de 100 kg de peso está montado sobre un eje que se apoya entre dos cojinetes A y B a ambos lados del disco. El cojinete A se encuentra a 80 cm de plano de revolución del disco y el B a 60 cm. Suponiendo que el c.d.g. del disco se encuentra a 0,5 cm de su eje geométrico y que la velocidad angular es constante w = 600 r.p.m. Hallar: 1. Las reacciones dinámicas en los cojinetes RA y RB. antes de equilibrar. 2. La masa M capaz de equilibrar el disco, colocada en el plano de revolución de la rueda a 60 cm de radio.

10 Sistemas Mecánicos. Primera Prueba 9 Problema n.º 9. El tren de la figura n.º 2 es un tren epicicloidal doble de ruedas cónicas. La rueda B está fija en la armadura y no puede girar. El piñón E está acuñado en el árbol. Admitiendo que el número de vueltas de E es 1, hallar las vueltas de la rueda H.

11 Sistemas Mecánicos. Primera Prueba 10 Problema n.º 10. El par motor y el par resistente de una máquina están representados por las funciones siguientes y ambas de período 2π. Par Motor: Mm = θ 2 + π Par resistente: Mr = -c1 θ2 + c2 θ (c1 y c2 son dos constantes > 0) Suponiendo una velocidad angular media wm = 1000 r.p.m., y un grado de irregularidad δ = 0,02, hallar el momento de inercia del volante y trazar las curvas de aceleración y velocidad angulares.

12 Sistemas Mecánicos. Primera Prueba 11 Problema n.º 11. La leva de rotación con seguidor rectilineo de rodillo gira a -50k rad/seg, con aceleración angular de 20k rad/seg 2. Calcular los diagramas de velocidades y aceleraciones y la velocidad y aceleración lineales del seguidor. Las dimensiones están dadas en mm.

13 Sistemas Mecánicos. Primera Prueba 12 Problema n.º 12. En el mecanismo de la figura n.º 3 calcular las fuerzas y los pares de inercias en todas las barras.

14 Sistemas Mecánicos. Primera Prueba 13 Problema n.º 13. En la figura n.º 3 se muestra el par resistente y el par motor de una máquina, con un valor máximo de 100 N.m. Calcular el m.d.i. del volante suponiendo que la velocidad de régimen es wm = 600 r.p.m. y que el grado de irregularidad de la máquina es δ = 0,04.

15 Sistemas Mecánicos. Primera Prueba 14 Problema n.º 14. Si la rueda 1 de la fig. 4 gira con una velocidad angular de 2500 r.p.m., hallar la velocidad de la rueda 6.

16 Sistemas Mecánicos. Primera Prueba 15 Problema n.º 15. La manivela AB de 80 cm de longitud gira con una velocidad angular de w2 = -6k rad/seg y con una aceleración angular de ε2 = 2k rad/seg 2. Sobre el extremo de la manivela se halla articulada una corredera que desliza sobre la ranura circular 4 cuyo radio medio de curvatura es de 100 cm. Hallar: a) Velocidad y aceleración angulares de la barra 4 y de la barra 3.

17 Sistemas Mecánicos. Primera Prueba 16 Problema n. 16. Se desea que el tren epicicloidal de la figura n.º 2 sea un tren sumador, es decir, que se cumpla la igualdad Wc = WA + WB. Determinar = Z3, Z4, Z5, Z6 y Z7 sabiendo que Z1 = 28 y Z2 = 42 dientes respectivamente y que todas las ruedas tienen el mismo módulo.

18 CONSULTAS REFERENTES AL CONTENIDO DE TEMAS Y METODOLOGÍA DE SU ESTUDIO RESPUESTAS DEL PROFESOR EVALUACIÓN PRUEBA OBJETIVA Aciertos Errores Omisiones TOTAL PRUEBA DE ENSAYO TOTAL

19 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA / 2 UNIDAD DIDÁCTICA / 2 Número de Expediente PE01A14

20 Sistemas Mecánicos. Segunda Prueba 1 Prueba Objetiva Problema n.º 1. En el mecanismo de limadora representado en la figura, determinar la velocidad y aceleración del punto B. Calcular el diagrama de velocidades y aceleraciones.

21 Sistemas Mecánicos. Segunda Prueba 2 Problema n. 2. Dado el mecanismo de la figura, la barra 2 gira con una velocidad angular w2 = 1200 r.p.m. y adquiere una aceleración angular E2 = 2 rad/sg. Se conocen los valores de O2C = 4 2 cm, O2A = 3 2 cm, O5M = 22 cm, MN = 10 cm y O2M = 8 cm. Calcular el diagrama de velocidades y aceleraciones y en ellos los valores de V6 y V6.

22 Sistemas Mecánicos. Segunda Prueba 3 Problema n.º 3. Equilibrar el rotor de la figura 3 con dos masas WA y WB situadas en los planos A-A y B-B, respectivamente, cuando gira a una velocidad de w = 500 r.p.m. Determinar las posiciones angulares de los pesos.

23 Sistemas Mecánicos. Segunda Prueba 4 Problema n.º 4. El motor monocilíndrico de gasolina de la figura 1 gira a una velocidad angular constante, w = 230 r.p.m. con las características siguientes:

24 Sistemas Mecánicos. Segunda Prueba 5 Problema n.º5. Para el eslabón mostrado en la figura, se pretende que las dos masas puntuales en A y B sean cinéticamente equivalentes. Determinar si lo son.

25 Sistemas Mecánicos. Segunda Prueba 6 Problema n.º 6. Una barra de longitud L de sección uniforme y de masa m. se encuentra articulada en su extremo A. Si desde una posición horizontal se deja caer la barra, hallar para una posición angular genérica θ del mecanismo: 1. Ecuación del movimiento. 2. Fuerza de inercia, par de inercia y reacción en el cojinete. 3. Fuerza reducida al punto G de la fuerza de inercia y par de inercia.

26 Sistemas Mecánicos. Segunda Prueba 7 Problema n.º 7. Un rotor está constituido por cuatro masas puntuales m1, m2, m3 y M4 tal como se muestra en la fig. Determinar las masas M1 y M2 capaz de equilibrar el sistema si éstas se colocan en los planos I y II a 4 cm del eje de giro. La distancia entre los dos planos de equilibrio es de d = 7 cm.

27 Sistemas Mecánicos. Segunda Prueba 8 Problema n.º 8. Dado el miembro de la máquina de la figura. Se pide: 1. Sustituir la masa continua de este miembro por tres masas puntuales situadas en A, G y B. 2. Si se sustituye el miembro por dos masas situadas en los puntos M y N, que pesan 7,74 kg y 4,26 kg respectivamente. Este sistema de dos masas será equivalente al miembro dado? Razonar las condiciones para que sea equivalente.

28 Sistemas Mecánicos. Segunda Prueba 9 Problema n.º 9. En la figura se muestra el par resistente en un ciclo de una cierta máquina. Admitiendo que el par motor se mantiene constante a lo largo del ciclo y que la velocidad de régimen es Wm, = 1200 r.p.m., hallar: 1. Momento de inercia del volante suponiendo un grado de irregularidad δ = 1/ Gráficas y expresiones analíticas de ε y ω.

29 Sistemas Mecánicos. Segunda Prueba 10 Problema n.º 10. En el tren epicicloidal de la fig., B y E son dos ruedas cónicas del mismo tamaño. Calcular wl cuando J da 40 r.p.m. El sentido de giro es el de las agujas del reloj.

30 Sistemas Mecánicos. Segunda Prueba 11 Problema n.º 11. Suponiendo que el miembro 4 de la figura n.º 1 rueda sin deslizamiento, hallar las velocidades y aceleraciones de los puntos E y C.

31 Sistemas Mecánicos. Segunda Prueba 12 Problema n.º 12. Un cilindro de radio r, masa m y m.d.i. IA, rueda sin deslizar por el interior de otro cilindro fijo de radio R. Los ejes de ambos cilindros son paralelos y el ángulo 19 se define por el ángulo formado entre la línea vertical que pasa por B y la línea que une los centros de los cilindros. Hallar: 1) Masa reducida al punto A.

32 Sistemas Mecánicos. Segunda Prueba 13 Problema n.º 13. Una barra uniforme y delgada de longitud L y masa m, parte inicialmente del reposo y está centrada en el punto más elevado de un cilindro fijo de radio a. Si el eje del cilindro es horizontal y la barra rueda sin deslizamiento sobre el cilindro, encontrar: 1) El momento de inercia generalizado de la barra.

33 Sistemas Mecánicos. Segunda Prueba 14 Problema n.º 14. El par resistente de una máquina de período 2π, crece linealmente hasta un máximo de 360 N.m para un ángulo de θ = π, decayendo a continuación de forma lineal hasta el valor cero para Θ = 2π. Considerando un par motor constante en el intervalo de 0 a π seguido de una caída lineal hasta 0 para Θ = 2 π. Hallar: 1.º) Momento de inercia del volante necesario para conseguir que las velocidades angulares máxima y mínima no sobrepasen los valores de 51 y 49 rad/seg, respectivamente.

34 Sistemas Mecánicos. Segunda Prueba 15 Problema n.º 15. El generador G de la figura n.º 4 se acciona por medio de impulsos intermitentes de la forma indicada en el diagrama. El devanado del generador opone un par resistente M, constante y suficiente para mantener un régimen estacionario con velocidad media Wm = 1500 rp.m. El rotor del generador tiene un momento de inercia IG = 0,05 Kg.m 2. Con el fin de reducir la irregularidad de velocidad y los esfuerzos máximos en la transmisión se intercala un volante de momento de inercia Iv. Calcular Iv para conseguir un grado de irregularidad δ = 0,06.

35 CONSULTAS REFERENTES AL CONTENIDO DE TEMAS Y METODOLOGÍA DE SU ESTUDIO RESPUESTAS DEL PROFESOR EVALUACIÓN PRUEBA OBJETIVA Aciertos Errores Omisiones TOTAL PRUEBA DE ENSAYO TOTAL

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

Examen de MECANISMOS Junio 94 Nombre...

Examen de MECANISMOS Junio 94 Nombre... Examen de MECANISMOS Junio 94 Nombre... Sean dos ruedas talladas a cero con una cremallera de módulo m=4 mm, ángulo de presión 20 o, addendum igual al módulo y dedendum igual también al módulo. Los números

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

QUÉ SON LOS MECANISMOS?

QUÉ SON LOS MECANISMOS? QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial)

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial) DISEÑO MECÁNICO (Ingeniería Industrial) Problemas de correas PROBLEMA 1 Analizar y calcular las tensiones a lo largo de la correa plana de la transmisión de la figura, indicando el valor máximo y su situación.

Más detalles

Departamento de Tecnología MECANISMOS

Departamento de Tecnología MECANISMOS MECANISMOS 1. Mecanismos de transmisión circular 1.1 Ruedas de fricción 1.2 Poleas y correas 1.3 Ruedas dentadas 1.4 Transmisión por cadenas 1.5 Tornillo sin fin 2. Mecanismos de transformación de movimiento

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica.

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica. Calcular en el mecanismo de la figura la aceleración n angular de 1 respecto de 0, la de 2 respecto de 0, así como la fuerza de la clavija A, de dimensión n despreciable, sobre la guía a y las reacciones

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

BLOQUE 2. OPERADORES MECÁNICOS

BLOQUE 2. OPERADORES MECÁNICOS BLOQUE 2. OPERADORES MECÁNICOS 1. INTRODUCCIÓN Hay muchas maneras de definir una máquina. Nosotros vamos a usar la siguiente definición: Máquina: es el conjunto de mecanismos (operadores mecánicos) capaz

Más detalles

MECANISMOS Y MÁQUINAS SIMPLES

MECANISMOS Y MÁQUINAS SIMPLES MECANISMOS Y MÁQUINAS SIMPLES Los mecanismos y máquinas simples son dispositivos que se utilizan para reducir la cantidad de esfuerzo necesario para realizar diversas actividades o para transmitir y /

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR TEMA.- CINEMÁTICA Y DINÁMICA DEL MOTOR 5 ..- Calcular la oblicuidad de la biela en grados, el deslizamiento, la aceleración, la velocidad instantánea y media del pistón para una posición angular de la

Más detalles

TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:...

TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:... TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:... 1º) Tipos de cargas. Explícalas e indica tres ejemplos

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

Máquinas Simples. Sumario

Máquinas Simples. Sumario Máquinas Simples Sumario 1. PALANCA DE PRIMER GÉNERO... 1 2. PALANCA DE SEGUNDO GÉNERO... 3 3. PALANCA DE TERCER GÉNERO... 4 4. POLEA FIJA... 4 5. POLEA MÓVIL... 6 6. APAREJO POTENCIAL... 6 7. APAREJO

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

La Hoja de Cálculo en la resolución de problemas de Física.

La Hoja de Cálculo en la resolución de problemas de Física. a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de Albacete.jesusruiz@sociedadelainformacion.com

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria 6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza RECOPILACIÓN DE PROBLEMAS DE EXÁMENES MECANISMOS PÁGINA 1 RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS Fuerza 1.1.- La piedra del dibujo pesa 160 kg. Calcular la fuerza que hay que aplicar en el extremo

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución:

ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución: 1. Una bola de béisbol se lanza a 88 mi/h y con una velocidad de giro de 1.500 rev/min. Si la distancia entre el punto de lanzamiento y el receptor es de 61 pies, estimar las revoluciones completadas por

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

Actividad de Aula 2.0. Engranajes

Actividad de Aula 2.0. Engranajes Apellidos, Nombre: Curso: Nota: Fecha: Realiza los montajes que se indican a continuación y contesta a las siguientes preguntas: 1.1. Engranaje recto sin cambio de velocidad Cuál es la relación de transmisión?

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

TEORÍA DE MECANISMOS ANÁLISIS DE MECANISMOS POR ORDENADOR

TEORÍA DE MECANISMOS ANÁLISIS DE MECANISMOS POR ORDENADOR 1/5 ANÁLISIS DE MECANISMOS POR ORDENADOR INTRODUCCIÓN En esta práctica se analizará cinemáticamente un determinado mecanismo plano empleando el método del cinema y se compararán los resultados obtenidos

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Examen de MECANISMOS Junio 97 Nombre...

Examen de MECANISMOS Junio 97 Nombre... Examen de MECANISMOS Junio 97 Nombre... Se pretende conectar dos ejes paralelos que distan 505 mm mediante dos engranajes, de manera que la relación de velocidades sea 0.0625. El número máximo de dientes

Más detalles

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011 Instituto de Profesores rtigas Segundo parcial Física 1 1º 1º 7 de octubre 0 1. Dos meteoritos y chocan en el espacio. El meteorito tiene masa 1,5 10 1 Kg y el meteorito tiene masa, 10 1 Kg. ntes del impacto,

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 Para realizar estos ejercicios consulta antes tus apuntes, el libro y vuestra Web: www.tecnologia.maestrojuandeavila.es (Temas Mecánica) 1. Qué es la Mecánica?

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas

Más detalles

Mecánica para Robótica

Mecánica para Robótica Mecánica para Robótica Material de clase: http://www.robotica-up.org/ Education Mechanics for Robotics Conceptos básicos de mecanismos y ensambles Cuerpo rígido (o sólido indeformable): Cuerpo o materia

Más detalles

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15 Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II Título TRANSMISIONES MECANICAS Curso 2 AÑO Año: 2006 Pag.1/15 INTRODUCCION Desde tiempos inmemorables el hombre realizó grandes esfuerzos para las

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

Parámetros cinéticos de un sistema pistón-biela-cigüeñal

Parámetros cinéticos de un sistema pistón-biela-cigüeñal Parámetros cinéticos de un sistema pistón-biela-cigüeñal 3-1-1 Revisado 04-07-13 En el esquema anexo vemos los componentes característicos de un compresor, que es semejante a un motor alternativo de combustión

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Tecnología Eléctrica ( Ingeniería Aeronáutica )

Tecnología Eléctrica ( Ingeniería Aeronáutica ) Problema 2 Es necesario seleccionar un motor trifásico de inducción para accionar un compresor de aire. Para dicha selección se han prefijado los parámetros siguientes: El compresor debe girar a una velocidad

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

VANESA PEÑA PAOLA PUCHIGAY 901

VANESA PEÑA PAOLA PUCHIGAY 901 VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero

Más detalles

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles