Teorema del Muestreo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema del Muestreo"

Transcripción

1 Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso de muestreo 1.4. Teorema del muestreo 1.. Alteració de la tasa de muestreo 1.6. Tarea Dr. Luis Javier Morales Medoza 2 1

2 Itroducció 1.1. Itroducció Las técicas de señales digitales proporcioa u método alterativo para procesar ua señal aalógica de iterés práctico tales como la voz, señales biológicas, sísmicas, del soar y de los distitos tipos de comuicacioes so. Para realizar esto, es ecesario ates que ada de ua iterfaz etre la señal aalógica y el procesador digital y viceversa. Estas iterfaces so el covertidor Aalógico-Digital (ADC) y el covertidor Digital-Aalógico (DAC) como se muestra e la Figura 1.1. Señal Aalógica ADC Procesador Digital DAC Señal Aalógica Figura 1.1: Diagrama a bloques de u sistema digital Dr. Luis Javier Morales Medoza 3 Itroducció El procesador digital de señales puede ser u gra ordeador digital programable (p. e. ua PC) o u pequeño microprocesador embebido (p. e. u DSP, FPGA, PIC) para realizar las operacioes deseadas sobre la señal de etrada. Figura 1.2: DSP de la compañía Altera y uo de la Familia TMS320 de Texas Istrumets Dr. Luis Javier Morales Medoza 4 2

3 Coversió AD y DA 1.2. Coversió Aalógico-Digital y Digital-Aalógico Para procesar señales aalógicas por medios digitales es ecesario covertirlas a formato digital, esto es, trasformarlas e ua secuecia de úmeros de precisió fiita. Este procedimieto se deomia coversió aalógico-digital (ADC). Coceptualmete, se puede ver que la ADC posee u proceso de tres pasos los cuales so: 1. Muestreo. Esta es la coversió de ua señal e tiempo cotiuo a ua señal e tiempo discreto obteida tomado muestras de la señal e tiempo cotiuo e istates de tiempo discreto. Así x a (t) es la etrada al muestreador, la salida es x a (T) x(), dode T se deomia el itervalo de muestreo. Dr. Luis Javier Morales Medoza Coversió AD y DA 2. Cuatificació. Esta es la coversió de ua señal e tiempo discreto co valores cotiuos a ua señal e tiempo discreto co valores discretos (señal digital). El valor de cada muestra de la señal se represeta mediate u valor seleccioado de u cojuto fiito de valores posibles. La diferecia etre la muestra si cuatificar x() y la salida cuatificada x q () se deomia error de cuatificació. 3. Codificació. E el proceso de codificació, cada valor discreto x q () se represeta mediate ua secuecia biaria de b bits. x a (t) x() x q () 1001 Muestreador Cuatificador Codificador Figura 1.3: Diagrama a Bloques de u ADC Dr. Luis Javier Morales Medoza 6 3

4 Coversió AD y DA ADC tipo flash (e paralelo). Cosiste e ua serie de comparadores arreglados e paralelo que compara a la señal co ua referecia para cada ivel. El resultado de las comparacioes igresa a u circuito lógico que cueta los comparadores activados. Figura 1.4: ADC Flash Dr. Luis Javier Morales Medoza 7 Coversió AD y DA ADC de simple rampa. Este tipo de covertidor utiliza u itegrador co u codesador que se carga a pediete costate hasta alcazar la tesió a covertir, istate e el que cesa la itegració. El tiempo requerido es proporcioal a la tesió de etrada, y puede medirse co u cotador digital. Figura 1.: ADC Simple Rampa Dr. Luis Javier Morales Medoza 8 4

5 Coversió AD y DA ADC de doble rampa. Este esquema permite idepedizarse de la precisió de la frecuecia del reloj, la resistecia y el codesador. La coversió se hace e dos etapas, la primera se realiza la itegració de la tesió de etrada durate u tiempo fijo, y e la seguda se produce la descarga co pediete fija, durate u tiempo que depede de la catidad de carga acumulada. Figura 1.6: ADC doble rampa Dr. Luis Javier Morales Medoza 9 Coversió AD y DA DAC de escalera. Esta cofiguració permite u rago amplio de valores de las resistecias. E la actualidad, este tipo de circuito es superado por las redes de escalera del tipo R-2R Figura 1.7: DAC de escalera Dr. Luis Javier Morales Medoza 10

6 Coversió AD y DA DAC de escalera R-2R. La propiedad de esta cofiguració es que cualquiera que sea el úmero de seccioes e la red, la resistecia vista por el operacioal es R. Figura 1.8: DAC escalera R-2R Dr. Luis Javier Morales Medoza 11 Coversió AD y DA Existe otros circuitos covertidores aalógico-digital y digital-aalógico que posee circuitería mucho más compleja para mejorar que las vistas atrás. Por ejemplo, los ADC usa DAC detro de su propia circuiteria. Alguos ejemplos so: de aproximacioes sucesivas, balace cotiuo y de rampa discreta Figura 1.9: aproximacioes sucesivas Dr. Luis Javier Morales Medoza 12 6

7 Coversió AD y DA Alguos parámetros de iterés para los DAC so: La resolució, exactitud, el error de escala, error de offset, mootoía, Tiempo de establecimieto, slew-rate, sobrepico y glith, derivadas co la temperatura y co el evejecimieto etre otros parámetros. Para los ADC so: Rechazo al ruido, resolució, error de cuatizació, error de histéresis, error de offset, error de cero, y error de escala. Dr. Luis Javier Morales Medoza 13 Muestreo de Señales.3. Muestreo de señales aalógicas Existe muchas maeras de muestrear ua señal, la más comú es el muestreo periódico o uiforme. Este proceso se describe mediate la relació x ( ) x ( T ) = a < < + (1.1) dode x() es la señal e tiempo discreto obteida tomado muestras de la señal aalógica x a (t) cada T segudos. Este proceso se ilustra e la Figura El itervalo de tiempo T etre dos muestras sucesivas se deomia periodo de muestreo o itervalo de muestreo, y su reciproco (1/T = F s ) se llama velocidad de muestreo (muestras por segudo) o frecuecia de muestreo (Hertz). Dr. Luis Javier Morales Medoza 14 7

8 Muestreo de Señales x a (t) x() = x a (t) x a (t) F s = 1/T Muestreador x() x a (t) x() = x a (t) t T 2T T 9T t = T Figura 1.10: Muestreo periódico de ua señal aalógica Dr. Luis Javier Morales Medoza 1 Muestreo de Señales El muestreo periódico establece ua relació etre las variables t de tiempo cotiuo y de tiempo discreto. De hecho, estas variables se relacioa liealmete a través del periodo de muestreo T o equivaletemete, a través de la velocidad de muestreo como t T = T = (1.2) Como cosecuecia de (1.2), existe ua relació etre la variable frecuecia F de las señales aalógicas y la variables frecuecia f de las e tiempo discreto. Para establecer dicha relació si se cosidera ua señal aalógica de la forma ( t) = A ( π Ft +θ ) x a 2 cos (1.3) Dr. Luis Javier Morales Medoza 16 8

9 Muestreo de Señales que, cuado se muestrea periódicamete a ua velocidad de F s = 1 /T muestras por segudo, da lugar a ( T ) x( ) = Acos( π FT +θ ) x a 2 x 2πF ( ) = Acos + θ F s Si ua señal e tiempo discreto es expresada como ( ) = A ( π f +θ ) x 2 (1.4) cos (1.) etoces, al comparar la relació (1.4) co la (1.), se observa que las variables de frecuecia F y f está liealmete relacioadas como Dr. Luis Javier Morales Medoza 17 Muestreo de Señales F f = (1.6) F s Si ω = 2πf y Ω = 2πF, etoces, la (1.6) queda como ω = ΩT (1.7) La relació dada e (1.6) justifica el ombre de frecuecia ormalizada o relativa, que se usa a veces para describir a la variable f. Como se ve e (1.6), se puede usar a f para determiar a la frecuecia F solo si la frecuecia de muestreo F s es coocida. El rago de la variable de frecuecia F ó Ω para seoides e tiempo cotiuo es < Ω < + < F < + (1.8) Dr. Luis Javier Morales Medoza 18 9

10 Muestreo de Señales Si embargo, la situació es diferete para seoides e tiempo discreto, las cuales establece que ½ < F < ½ π < ω < π (1.9) Sustituyedo (1.6) y (1.7) e (1.9) se ecuetra que la frecuecia de la seoide e tiempo cotiuo cuado se muestreo a ua velocidad F s = 1/T debe ecotrarse e el rago o equivaletemete 1 Fs = 2T 2 Fs F 2 1 = 2T (1.10) π = πfs Ω πfs T π = T (1.11) Dr. Luis Javier Morales Medoza 19 Muestreo de Señales Ejemplo 1. cosidere la siguiete señal aalógica x a ( t) = 3cos( 100πt ) a) Si la señal se muestrea a ua velocidad de F s = 200Hz cuál es la señal e tiempo discreto obteida tras el muestreo?. b) Si la velocidad de muestreo cambia a F s = 7Hz. Sol. Aplicado la (1.4) se tiee a) b) x x 100π 200 ( ) = 3cos = 100π 7 ( ) = 3cos = π 3cos 2 4π 3cos 3 Dr. Luis Javier Morales Medoza 20 10

11 Muestreo de Señales Figura 1.11: Muestreo de la señal x a (t) Dr. Luis Javier Morales Medoza 21 Teorema del Muestreo.4. Teorema de Muestreo Dada ua señal aalógica cualesquiera, cómo se debe elegir el periodo de muestreo T? ó cual es velocidad de muestres F s? Para cotestar esta preguta es ecesario cierta iformació sobre la característica de la señal que va a ser muestreada. E particular, se debe teer cierta iformació geeral sobre el coteido de frecuecia de la señal. Geeralmete, dicha iformació se ecuetra dispoible, por ejemplo se sabe que la frecuecia mayor e señales de voz roda los 3KHz o e las señales de televisió tiee compoetes de frecuecia importate hasta los MHz. La iformació coteida e dichas señales se ecuetra e la amplitud, frecuecia y fase de las distitas compoetes de frecuecia, pero ates de obteer dichas señales o se cooce sus características co detalle. Dr. Luis Javier Morales Medoza 22 11

12 Teorema del Muestreo De hecho, el propósito del procesado de señal es ormalmete la extracció de dichas características. Si embargo, si se cooce la máxima frecuecia de ua determiada clase de señal, se puede especificar la velocidad de muestreo ecesaria para covertir las señales aalógicas e señales digitales. Si se supoe que cualquier señal aalógica se puede represetar como ua suma de seoides de diferetes amplitudes, frecuecias y fases, es decir x a N () t = A cos( 2 Ft + θ ) i= 1 i π (1.12) dode N idica el úmero de compoetes de frecuecia. Todas las señales, como las de voz ó video se presta a dicha represetació e cualquier itervalo de tiempo pequeño. i i Dr. Luis Javier Morales Medoza 23 Teorema del Muestreo Normalmete, las amplitudes, fases y frecuecias varía letamete de u itervalo de tiempo al siguiete. Si se supoe que la frecuecia de ua determiada señal o excede ua frecuecia máxima coocida F max. Por ejemplo, si F max = 3KHz, para señales de voz y F max = MHz para señales de video, se puede ver que la máxima frecuecia puede variar ligeramete, y para asegurar que F max o sobrepase determiado valor, la señal aalógica es pasada a través de u filtro que ateúe fuertemete las compoetes de frecuecia por ecima de F max. E la práctica, este filtrado se realiza ates del muestreo. Se sabe que la frecuecia más alta de ua señal aalógica que puede recostruirse si ambigüedad cuado la señal se muestrea a ua velocidad de F s = 1/T es F s /2. Cualquier frecuecia por ecima de F s /2 o por debajo de F s /2 produce muestras que so idéticas a las correspodietes a las frecuecias detro del itervalo F s /2 F F s /2. Dr. Luis Javier Morales Medoza 24 12

13 Teorema del Muestreo Para evitar las ambigüedades, que resulta del aliasig, se debe seleccioar ua velocidad de muestreo lo suficietemete alta, esto es, se debe escoger a F s /2 mayor que a F max. Por lo tato para evitar el problema de aliasig, se seleccioa a F s como F s > 2F max (1.13) Teorema: Si la frecuecia más alta coteida e ua señal aalógica x a (t) es F max = B y la señal se muestrea a ua velocidad F s > 2F max, etoces x a (t) se puede recuperar totalmete de sus muestras mediate la siguiete fució de iterpolació: g () t ( 2πBt) si = 2πBt (1.14) Dr. Luis Javier Morales Medoza 2 Teorema del Muestreo Así, x a (t) se puede expresar como a () t = = x a g t Fs Fs x (1.1) dode x a (/F s ) = x a (T) = x(). Cuado el muestreo de x a (t) se realiza a la tasa míima de muestreo F s =2B, la formula de recostrucció (1.1) se trasforma e x a () t = si 2π xa = 2 2πB B B( t 2B) ( t ) 2B (1.16) La tasa de muestreo dada por FN = 2B = 2Fmax, se deomia tasa de Nyquist. La Figura 1.12 ilustra el proceso de u DAC ideal que usa esta fució de iterpolació. Dr. Luis Javier Morales Medoza 26 13

14 Teorema del Muestreo g () t si 2π = 2πB B( t 2B) ( t ) 2B Figura 1.12: Coversió aalógico a digital ideal Dr. Luis Javier Morales Medoza 27 Teorema del Muestreo Como puede observarse tato e la (1.1) como e la (1.16), la recostrucció de x a (t) a partir de la secuecia x() es u proceso complicado que supoe la suma poderada de la fució de iterpolació g(t) y sus versioes correspodietemete desplazadas e el tiempo g(t - T) co < <, dode los coeficietes de poderació so las muestras de x(). Dada la complejidad y el ifiito úmero de muestras que se requiere e (1.1) y (1.16), éstas formulas de recostrucció, so puramete de iterés teórico. Ejemplo 2. Cosidere la siguiete señal aalógica x a () t = 3cos0πt + 10si 300πt cos100πt Cual es la tasa de Nyquist para esta señal? Dr. Luis Javier Morales Medoza 28 14

15 Teorema del Muestreo Sol. Las frecuecias presetes e la señal so: F = 1 2Hz F = 10Hz F 0Hz 2 3 = Por lo tato, la frecuecia máxima coteida e la señal es 10Hz, y de acuerdo a (1.13) la tasa de Nyquist es F N = 2F max F N = 300Hz Dr. Luis Javier Morales Medoza 29 Teorema del Muestreo Ejemplo 3. Cosidere la siguiete señal aalógica x a ( t) = 3 cos 2000πt + si 6000πt + 10cos12000πt a) Cual es la tasa de Nyquist para esta señal? b) supoga ahora que se muestrea esta señal a ua velocidad de F s = 000 muestras por segudo Cuál es la señal e tiempo discreto que se obtiee tras el muestreo? Sol. F = 1 1KHz F = 3KHz F3 = 6KHz 2 Por lo tato F N = 12KHz Dr. Luis Javier Morales Medoza 30 1

16 Teorema del Muestreo b) Dado que se ha elegido a F s = KHz, la máxima frecuecia que puede ser represetada si ambigüedad mediate las muestras es usado la (1.2) se obtiee F s KHz 2 = 2. 3 ( t) = 3cos 2π ( 1 ) ( ) 2 ( + si 2π + 10cos π ) 1 = 3 cos 2π ( 1 ) ( 2 ) ( 1 + si 2π cos 2π + ) 1 = 3cos 2π ( 1 ) ( 2 ) 2 ( + si 2π + 10cos π ) 1 2 = 13cos 2π ( ) si 2π ( ) x a 6 Dr. Luis Javier Morales Medoza 31 Tarea 1. Ivestigue e forma detallada cada uo de los covertidores aalógicodigital que se presetaro e esta lectura, cubriedo el aálisis del circuito, aplicacioes, vetajas y desvetajas que preseta cada uo, etre otros datos de iterés. 2. Realice la programació de u DAC y ADC e Matlab aplicado los métodos de coversió descritos e esta lectura. 3. Ivestigue cual es el estado del arte de los covertidores aalógicosdigitales y digitales-aalógicos e cuestió de diseño electróico, e programació de alguos sistemas embebidos (PIC, FPGA, DSP), velocidad, etc. Dr. Luis Javier Morales Medoza 32 16

17 Tarea 4. Se tiee las siguietes señales aalógicas x a x a x a () t = 3 cos 600πt + 2cos1800πt () t = Re{ exp( j200πt )} + 7 Im{ exp( j400πt )} () t = 3Re{ exp( j200πt )} Im{ exp( j100πt )} Ecuetre: a) La frecuecia máxima b) La tasa de Nyquist c) Si la frecuecia de muestreo cambia a F s = 00 muestras por segudo Cuál es la señal e tiempo discreto que se obtiee tras el muestreo? Dr. Luis Javier Morales Medoza 33 17

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Problemas de Introducción al Procesado digital de Señales. Boletín 1.

Problemas de Introducción al Procesado digital de Señales. Boletín 1. Problemas de Itroducció al Procesado digital de Señales. Boletí. Se tiee la señal aalógica t e segudos t se 5 π t + cos 5 π t se 5 π t se muestrea co ua frecuecia de 5 H. Determia la señal obteida al hacer

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

CAPÍTULO 1 COMPUTADORA DIGITAL. Modelo De Von Neumann

CAPÍTULO 1 COMPUTADORA DIGITAL. Modelo De Von Neumann CAPÍTULO 1 COMPUTADORA DIGITAL Ua computadora digital es ua combiació de dispositivos y circuitos electróicos orgaizados de tal forma, que puede realizar ua secuecia programada de operacioes co u míimo

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden

Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden Uiversidad Carlos III de Madrid Departameto de Igeiería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica Estudio Frecuecial de Sistemas Cotiuos de 1 er y º Orde Estudio frecuecial de sistemas cotiuos

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

Señales de banda base (BB)

Señales de banda base (BB) 1.- INTRODUCCION A LOS SISTEMAS DE COMUNICACIONES a) Modelo de u sistema de comuicacioes Iformació de la fuete Trasmisor Receptor Destio Señales de bada base (BB) Voz aalógica co calidad telefóica Música

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º ITT SISTEMAS ELECTRÓNICOS º ITT SISTEMAS DE TELECOMUNICACIÓN º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 7: SISTEMAS DE SEGUNDO ORDEN. FUNCIÓN DE TRANSFERENCIA La fució

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

2.1. Concepto Monto, capital, tasa de interés y tiempo.

2.1. Concepto Monto, capital, tasa de interés y tiempo. 1 2.1. Cocepto El iterés compuesto tiee lugar cuado el deudor o paga al cocluir cada periodo que sirve como base para su determiació los itereses correspodietes. Así, provoca que los mismos itereses se

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Análisis de Señales en Geofísica. 1 Clase Señales y Sistemas

Análisis de Señales en Geofísica. 1 Clase Señales y Sistemas Aálisis de Señales e Geofísica 1 Clase Señales y Sistemas Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Señales Defiició: Llamaremos señal a cualquier observable

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario?

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario? Técicas de Coteo El Pricipio Básico de Coteo Vamos a ua cafetería que vede hamburguesas. U aucio os dice que co los igredietes lechuga, tomate, salsa de tomate y cebolla, podemos preparar ua hamburguesa

Más detalles

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene: 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes

Más detalles

Simulación de Sistemas Lineales Utilizando Labview

Simulación de Sistemas Lineales Utilizando Labview 14 Simulació de Sistemas Lieales Utilizado Labview Bruo Vargas Tamai Facultad de Igeiería electróica Eléctrica, Uiversidad Nacioal Mayor de Sa Marcos, Lima, Perú RESUMEN: Mostramos la maera e que se puede

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

LAS MUESTRAS ESTADÍSTICAS

LAS MUESTRAS ESTADÍSTICAS 11 LAS MUESTRAS ESTADÍSTICAS Págia 266 1. Ua gaadería tiee 3 000 vacas. Se quiere extraer ua muestra de 120. Explica cómo se obtiee la muestra: a) Mediate muestreo aleatorio simple. b) Mediate muestreo

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

4 El Perceptrón Simple

4 El Perceptrón Simple El Perceptró Simple. Itroducció Ua de las características más sigificativas de las redes euroales es su capacidad para apreder a partir de algua fuete de iformació iteractuado co su etoro. E 958 el psicólogo

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION.

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FERNANDO ESPINOSA FUENTES INTRODUCCION. U sistema productivo

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles