Álgebra Lineal VII: Independencia Lineal.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra Lineal VII: Independencia Lineal."

Transcripción

1 Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato 1 Independencia Lineal Definición de independencia lineal Considere un espacio vectorial V sobre un campo K y sea S = { v 1, v 2,, v n } un conjunto finito de vectores del espacio vectorial El conjunto S se dice que es linealmente dependiente sobre el campo K si existen escalares c 1,c 2,,c n K no todos iguales a 0 tal que c 1 v 1 + c 2 v c n v n = 0 (1) En caso contrario; es decir, si los únicos escalares c 1,c 2,,c n K que satisfacen la ecuación (1) son c 1 = c 2 = = c n = 0, entonces el conjunto S se dice que es linealmente independiente sobre el campo K En otras palabras, el conjunto S es linealmente independiente si la única combinación lineal de los vectores de S que es igual al vector 0 es aquella para la cual todos los escalares son cero Definición Considere un espacio vectorial V sobre un campo K y sea S = { v 1, v 2,, v n } un conjunto finito de vectores del espacio vectorial Un vector v V se dice que es linealmente dependiente sobre S si v es una combinación lineal de los vectores de S En caso contrario, se dice que v es linealmente independiente sobre S Teorema Las siguientes afirmaciones son correctas 1 Cualquier conjunto que contenga al vector 0 es linealmente dependiente 2 Cualquier conjunto que contenga un único vector diferente de cero, v 0, es linealmente independiente 3 Cualquier conjunto formado por dos vectores diferentes de cero, S = { v 1, v 2 }, donde v 1 0, v 2 0, es linealmente dependiente si, y sólo si, uno de los vectores es múltiplo escalar del otro 4 Cualquier conjunto que contenga un subconjunto linealmente dependiente es linealmente dependiente 5 Cualquier subconjunto de un conjunto linealmente independiente es linealmente independiente Prueba: Las pruebas de estos resultados son bastante sencillas 1

2 1 Cualquier conjunto que contenga al vector 0 es linealmente dependiente Sea S = { v 1, v 2,, v n, 0} y considere la combinación lineal, con λ 0 0 v v v n + λ 0 = 0 Este es una combinación lineal donde no todos los escalares son iguales a 0 λ ya se indicó que no es igual a 0 y por lo tanto el conjunto es linealmente dependiente 2 Cualquier conjunto que contenga un único vector diferente de cero, v 0, es linealmente independiente Considere la combinación lineal λ v = 0 Por las propiedades iniciales de los espacios vectoriales, se probó que si en la ecuación anterior v 0, entonces λ = 0, por lo tanto el único escalar que hace que esta ecuación sea cierta es λ = 0; por lo tanto, el sistema es linealmente independiente 3 Cualquier conjunto formado por dos vectores diferentes de cero, S = { v 1, v 2 }, donde v 1 0, v 2 0, es linealmente dependiente si, y sólo si, uno de los vectores es múltiplo escalar del otro Suponga que v 2 = λ v 1, entonces v 2 = λ v 1 o λ v 1 1 v 2 = 0 y la ecuación generada a partir de una combinación lineal de los vectores de S tiene una solución distinta de la trivial y S es linealmente dependiente En la dirección contraria, suponga que S = { v 1, v 2 } es linealmente dependiente, entonces existe una solución distinta de la trivial de la ecuación v 1 + λ 2 v 2 = 0 sin pérdida de generalidad, suponga que 0, entonces existe λ 1 1 = 1, tal que Por lo tanto o, finalmente y v 1 es un múltiplo escalar de v 2 1 ( v 1 + λ 2 v 2 ) = 1 0 = 0 1 v λ 2 v 2 = 0 v 1 = λ 2 v 2 4 Cualquier conjunto que contenga un conjunto linealmente dependiente es linealmente dependiente Sea S = { v 1, v 2,, v n } un vector linealmente dependiente y sea S 1 = { v 1, v 2,, v n, v n+1, v n+2,, v n+k } un conjunto tal que S S 1 Puesto que S es linealmente dependiente existen excalares,i = 1,2,,n R tal que v 1 + λ 2 v λ n v n = 0 entonces, la combinación lineal de S 1 dada por v 1 + λ 2 v λ n v n + 0 v n v n v n+k = 0 es igual a 0 y no todos los escalares son iguales a 0, por lo tanto S 1 es linealmente dependiente 5 Cualquier subconjunto de un conjunto linealmente independiente es linealmente independiente La prueba es por contradicción, suponga S 1 es el conjunto inicial y que S S 1 es un subconjunto linealmente dependiente, entonces por el resultado anterior S es linealmente dependiente, una contradicción 2

3 Teorema Sea R n un espacio vectorial real sobre un campo R y sea S = { v 1, v 2,, v r } un conjunto finito de vectores del espacio vectorial donde v 1 = (a 11,a 21,,a n1 ), v 2 = (a 12,a 22,,a n2 ), v r = (a 1r,a 2r,,a nr ) Entonces, el conjunto S es linealmente dependiente sobre R si, y sólo si, el sistema de n ecuaciones con r incógnitas dado por a 11 x 1 + a 12 x a 1r x r = 0 a 21 x 1 + a 22 x a 2r x r = 0 a n1 x 1 + a n2 x a nr x r = 0 tiene una solución, para x 1,x 2,,x r K, diferente de la trivial, x 1 = x 2 = = x r = 0 2 Ejemplos En esta sección se mostrarán algunos ejemplos de determinación de la independencia o dependencia lineal de un conjunto de vectores de diferentes espacios vectoriales Ejemplo 1 Considere el espacio vectorial R 3 de triadas ordenadas de números reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real 1 Considere el conjunto S 1 = { v 1, v 2, v 3 } del espacio vectorial R 3, donde v 1 = (1, 3,2) v 2 = (0, 1,3) v 3 = (7,1, 3) Entonces el conjunto S 1 es linealmente independiente Prueba: Considere la ecuación dada por v 1 + λ 2 v 1 + λ 3 v 1 = 0 (1, 3,2) + λ 2 (0, 1,3) + λ 3 (7,1, 3) = (0,0,0) Esta ecuación vectorial conduce al sistema de ecuaciones lineales homogéneas 1 + 0λ 2 + 7λ 3 = 0 3 1λ 2 + 1λ 3 = 0 (2) 2 + 3λ 2 3λ 3 = 0 Después de la primera etapa de reducción, el sistema se reduce a 1 + 0λ 2 + 7λ 3 = 0 1λ λ 3 = 0 3λ 2 17λ 3 = 0 3

4 Figura 1: Dos vistas de los planos correspondientes al sistema de ecuaciones dado por la ecuación 2 Figura 2: Dos vistas de los vectores cuya independencia lineal se desea probar Al finalizar, del proceso de reducción, el sistema se reduce a 1 + 0λ 2 + 7λ 3 = 0 1λ λ 3 = 0 49λ 3 = 0 Es pues evidente que la única solución del sistema de ecuaciones es la trivial = λ 2 = λ 3 = 0 y el conjunto S 1 es linealmente independiente La figura 1 muestra los tres planos asociados a las tres ecuaciones lineales y la única solución, la trivial, del sistema de ecuaciones dado por la ecuación (2) La figura 2 muestra dos vistas de los tres vectores cuya independencia lineal se desea probar Las dos vistas verifican que los vectores no son coplanares 4

5 2 Considere el conjunto S 2 = { v 1, v 2, v 3 } del espacio vectorial R 3, donde v 1 = ( 2,3,1) v 2 = (5, 1,2) v 3 = ( 1,8,5) Entonces el conjunto S 2 es linealmente dependiente Prueba: Considere la ecuación dada por v 1 + λ 2 v 1 + λ 3 v 1 = 0 ( 2,3,1) + λ 2 (5, 1,2) + λ 3 ( 1,8,5) = (0,0,0) Esta ecuación vectorial conduce al sistema de ecuaciones lineales homogéneas 2 + 5λ 2 1λ 3 = 0 3 1λ 2 + 8λ 3 = 0 (3) 1 + 2λ 2 + 5λ 3 = 0 Después de la primera etapa de reducción, el sistema se reduce a 1 + 2λ 2 + 5λ 3 = 0 λ 2 + λ 3 = 0 λ 2 + λ 3 = 0 Al finalizar, del proceso de reducción, el sistema se reduce a 1 + 2λ 2 + 5λ 3 = 0 λ 2 + λ 3 = 0 Es pues evidente que el sistema de ecuaciones dado por la ecuación (3) tiene soluciones distintas de la trivial De manera mas específica, el conjunto solución del sistema de ecuaciones, tiene múltiples soluciones, y está dada por C S = {( 3λ 3, λ 3,λ 3 λ 3 R 3 } Si λ 3 = 1, entonces una posible solución es ( 3, 1,1) Por lo tanto, el conjunto S 2 es linealmente dependiente La figura 3 muestra dos vistas de los tres planos asociados a las tres ecuaciones lineales y la solución, no trivial, del sistema de ecuaciones La figura 4 muestra otra interpretación de la dependencia lineal de los tres vectores Es evidente que los tres vectores son coplanares Ejemplo 2 Considere el espacio vectorial P 2 (x) de polinomios de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = {p 1 (x) = 1,p 2 (x) = 1 x,p 3 (x) = (1 x) 2 } Determine si el conjunto es o no linealmente independiente 5

6 Figura 3: Dos vistas de los planos correspondientes al sistema de ecuaciones dado por la ecuación 3 Figura 4: Dos vistas del plano definido por tres vectores cuya dependencia lineal se verifica 6

7 Ejemplo 3 Considere el espacio vectorial P 2 (x) de polinomios de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = {p 1 (x) = 1,p 2 (x) = 1 x,p 3 (x) = (1 x) 2,p 4 (x) = x 2 } Determine si el conjunto es o no linealmente independiente Ejemplo 4 Considere el espacio vectorial M 2 2 de matrices 2 2 de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = { M 1 = [ ] [ 1 0,M 2 = 0 1 ] [ 0 1,M 3 = 1 0 Determine si el conjunto es o no linealmente independiente ] [ 0 1,M 4 = 1 0 Ejemplo 5 Considere el espacio vectorial M 2 2 de matrices 2 2 de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = { [ 1 0 M 1 = 0 1 ] [ 1 0,M 2 = 0 1 Determine si el conjunto es o no linealmente independiente ] [ 3 0,M 3 = 0 2 Ejemplo 6 Considere el espacio vectorial C(, + ) de funciones reales continuas de variable real, en el intervalo (, + ), definidos sobre el campo de los números reales, R Determine si los siguientes conjuntos son linealmente independientes o no 1 El conjunto C = {f 1 (x),f 2 (x)}, donde las funciones están dadas por ]} ]} f 1 (x) = cos x, x (,+ ) f 2 (x) = sin x, x (,+ ) Prueba: Es importante señalar que a diferencia de los anteriores ejemplos, en los que la igualdad de dos vectores conduce a un sistema finito de ecuaciones lineales homogeneas, en el caso de los espacios vectoriales de funciones, la igualdad 1 conduce a f 1 (x) + λ 2 f 2 (x) = z(x) (4) f 1 (x) + λ 2 f 2 (x) = 0 x (,+ ) (5) Es decir, a un número infinito de ecuaciones, una ecuación para cada valor de x comprendido en el intervalo de definición de la función Sin embargo, si la ecuación (2) es cierta, también debe ser cierta cualquier operación que se realize en ambos lados de la ecuación En particular, si se derivan ambos lados de la ecuación (2), se tiene que 1 La función z(x) se define de la siguiente forma z(x) = 0 x (, + ) 7

8 df 1 (x) dx + λ df 2 (x) 2 dx Nuevamente, esta ecuación puede escribirse como = dz(x) dx = z(x) (6) df 1 (x) dx + λ df 2 (x) 2 = 0 x (,+ ) (7) dx Las ecuaciones (3) y (5) conducen a un sistema de ecuaciones que, en forma matricial, está dado por [ ][ ] [ ] f1 (x) f 2 (x) λ1 0 f 2(x) = x (,+ ) 0 λ 2 Una condición suficiente 2 para que la única solución de este sistema de ecuaciones sea la trivial, y por lo tanto para que el conjunto C = {f 1 (x),f 2 (x)} sea linealmente independiente, es que f 2 (x) f 2(x) 0 para algún x (,+ ) En particular, para las funciones de este ejemplo [ ] [ ] f1 (x) f 2 (x) cos(x) sin(x) f 2(x) = = cos 2 (x) + sin 2 (x) = 1 x (,+ ) sin(x) cos(x) Por lo tanto, el conjunto es linealmente independiente, y el determinante, W(x), dado por W(x) = f 2 (x) f 2(x) se denomina el Wronskiano del conjunto C = {f 1 (x),f 2 (x)} 2 El conjunto C = {f 1 (x),f 2 (x)}, donde las funciones están dadas por f 1 (x) = x, x (,+ ) f 2 (x) = x, x (,+ ) es linealmente independiente Las gráficas de las funciones están dadas en la figura 5 Primeramente, es importante explicitar que la función valor absoluto está definida como { x x 0 f 2 (x) = x = x x < 0 Considere, ahora, el Wronskiano del conjunto de funciones, entonces Para x > 0, se tiene que W(x) = f 2 (x) f 2(x) = x x 1 1 = x x = 0 Para x < 0, se tiene que W(x) = f 2 (x) f 2(x) = x x 1 1 = x + x = 0 2 En este caso, la condición es suficiente para asegurar la independencia lineal del conjunto, sin embargo, como la condición no es necesaria, existen conjuntos que no satisfacen esta condición y aún así son linealmente independientes 8

9 Figura 5: Gráficas de las funciones f(x) = x y g(x) = x Puesto que el Wronskiano es igual a 0 para todo x 0, el resultado no es concluyente, además el Wronskiano no está definido para x = 0, pues f 2 (x) = x no es diferenciable para x = 0 Sin embargo, de la definición básica de la independencia lineal, el conjunto C = {f 1 (x),f 2 (x)} es linealmente independiente si y solo si, la única solución del sistema de ecuaciones es la trivial; es decir, = λ 2 = 0 f 1 (x) + λ 2 f 2 (x) = 0 x (,+ ) (8) En particular, si se seleccionan x 1 = 1 y x 2 = 1, se tiene que f 1 (1) + λ 2 f 2 (1) = λ 2 1 = 0 (9) f 1 ( 1) + λ 2 f 2 ( 1) = 0 ( 1) + λ 2 1 = 0 (10) Evidentemente, la única solución es = λ 2 = 0 y el conjunto C = {f 1 (x),f 2 (x)} es linealmente independiente 9

Algebra Lineal X:Sumas y Sumas Directas

Algebra Lineal X:Sumas y Sumas Directas Algebra Lineal X:Sumas y Sumas Directas José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@ugto.mx

Más detalles

Álgebra Lineal VIII: Bases y Dimensión

Álgebra Lineal VIII: Bases y Dimensión Álgebra Lineal VIII: Bases y Dimensión José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@ugto.mx En

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Algebra Lineal XXII: Determinantes y Singularidad.

Algebra Lineal XXII: Determinantes y Singularidad. Algebra Lineal XXII: Determinantes y Singularidad. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Primer Examen, Invierno 2017.

Primer Examen, Invierno 2017. Primer Examen, Invierno 2017. Problema 1. Encuentre la ecuación del plano que pasa por 3 puntos cuyas coordenadas son A = (3, 1,2), B = (2,4,3), C = (4,7,1). (1 punto) Problema 2. Encuentre el valor de

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal.

Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal. Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de

Más detalles

Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal.

Algebra Lineal XIV: Espacio Nulo y Rango de una. transformación lineal. Algebra Lineal XIV: Espacio Nulo y Rango de una Transformación Lineal. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de

Más detalles

Aproximación Polinomial de Funciones.

Aproximación Polinomial de Funciones. Aproximación Polinomial de Funciones José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E 1 Introducción En estas notas se presentan los fundamentos de los

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Álgebra Lineal XXVIII: Eigenvalores y Eigenvectores.

Álgebra Lineal XXVIII: Eigenvalores y Eigenvectores. Álgebra Lineal XXVIII: Eigenvalores y Eigenvectores. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Primer Examen, Primavera 2014.

Primer Examen, Primavera 2014. Primer Examen, Primavera 2014. Problema 1. Encuentre el valor de c para que el siguiente sistema de ecuaciones lineales tiene: solución única, soluciones múltiples o sea inconsistente (2.5 puntos). Note

Más detalles

Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Espacio Nulo y Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Algebra Lineal XV: Transformación Lineal Inversa.

Algebra Lineal XV: Transformación Lineal Inversa. Algebra Lineal XV: Transformación Lineal Inversa. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Universidad de Guanajuato email: jrico@ugto.mx Transformación

Más detalles

4.3 Ecuaciones diferenciales lineales de orden n

4.3 Ecuaciones diferenciales lineales de orden n 4.3 Ecuaciones diferenciales lineales de orden n 195 4.3 Ecuaciones diferenciales lineales de orden n En esta sección presentaremos un método general para resolver ED lineales de orden n cuya forma es

Más detalles

Ecuaciones diferenciales lineales

Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales de orden n Una ecuación diferencial lineal de orden n es una expresión del tipo a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Determinación Numérica de Eigenvalores y Eigenvectores.

Determinación Numérica de Eigenvalores y Eigenvectores. Determinación Numérica de Eigenvalores y Eigenvectores José María Rico Martínez Departamento de Ingeniería Mecánica Universidad de Guanajuato, F I M E E Calle Tampico No 912, Col Bellavista CP 3673, Salamanca,

Más detalles

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales 1. (a) Compruebe que el conjunto de matrices de orden p q a coeficientes reales R p q es un espacio vectorial real con

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

ESPACIOS Y SUBESPACIOS VECTORIALES

ESPACIOS Y SUBESPACIOS VECTORIALES ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

Tema 4: Espacios vectoriales

Tema 4: Espacios vectoriales Tema 4: Espacios vectoriales Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Referencias Lay D. Linear algebra and its applications (4th ed). Chapter 4,6. 2 Índice de contenidos Espacio

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Pedro Díaz Navarro * Abril de 26. Vectores en R 2 y R 3 2. Espacios Vectoriales Definición (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

1. Espacios Vectoriales Reales.

1. Espacios Vectoriales Reales. . Espacios Vectoriales Reales. El Álgebra Lineal es una rama de la Matemática que trata las propiedades comunes de todos los sistemas algebráicos donde tiene sentido las combinaciones lineales y sus consecuencias.

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 1 Espacio Vectorial Un espacio vectorial sobre K es una conjunto V que cumple:

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Departamento de Matemáticas, CCIR/ITESM 4 de enero de 20 Índice 8.. Definición de valor y vector propio.................................. 8.2. Determinación de los valores propios.................................

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás.

En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás. Depto. de Álgebra curso 7-8 4. Espacio vectorial Estructura Ejercicio 4.. Demuestre que el conjunto M ( R) con la suma de matrices y el producto de matrices por números reales es un R espacio vectorial.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA, ESIME ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN POSGRADO EN INGENIERÍA ELÉCTRICA CURSO DE PROPÓSITO ESPECIFICO

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

,v 2 = ,v 3 = En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás.

,v 2 = ,v 3 = En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás. Depto. de Álgebra curso 8-9 4. Espacio vectorial Estructura Ejercicio 4.. Demuestre que el conjunto M ( R) con la suma de matrices y el producto de matrices por números reales es un R espacio vectorial.

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Algebra lineal y conjuntos convexos 1

Algebra lineal y conjuntos convexos 1 Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada

Más detalles

c) con las operaciones usuales

c) con las operaciones usuales Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Departamento De Ciencias Naturales y Exactas Universidad De La Costa 09 de Marzo del 2018 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 09 de Marzo del 2018 1 /

Más detalles

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 Ejercicio 1. Sea V un espacio vectorial. Probar que: (a) Si a es un escalar y v es un vector tales que a.v = 0, entonces a = 0 ó v = 0. (b) Para

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

1. Teoría de Conjuntos y Funciones

1. Teoría de Conjuntos y Funciones Universidad Central de Venezuela Facultad de Ciencias Escuela de Matemática Álgebra I 1. Teoría de Conjuntos y Funciones 1.1. Teoría de Conjuntos 1. Dados los conjuntos A, B y C, demuestre que: a) (A B)

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 26 de Abril de 2011 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase 05) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Álgebra Lineal y Geometría

Más detalles

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos.

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

Álgebra lineal. Noviembre 2018

Álgebra lineal. Noviembre 2018 Álgebra lineal. Noviembre 08 Opción A Ejercicio. (Puntuación máxima:,5 puntos) Sea el siguiente sistema de ecuaciones lineales: 4ax + 4ay + z = a ax + y az = a, se pide: 4ax + 4ay + az = 4 (,5 puntos)

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 140 Fundamentos de Matemáticas : Álgebra Lineal 9.1 Espacios vectoriales Capítulo 9 Espacios vectoriales reales Los conjuntos de vectores del plano, R 2, y del espacio, R 3, son conocidos y estamos acostumbrados

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

12/05/14. Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES 4.3 CONJUNTOS LINEALMENTE INDEPENDIENTES CONJUNTOS LINEALMENTE INDEPENDIENTES

12/05/14. Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES 4.3 CONJUNTOS LINEALMENTE INDEPENDIENTES CONJUNTOS LINEALMENTE INDEPENDIENTES /5/.3 Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES; BASES Se dice que un conjunto indexado de vectores {v,, v p } en V es linealmente independiente si la ecuación vectorial cv + c v +... +

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles