Álgebra Lineal VII: Independencia Lineal.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra Lineal VII: Independencia Lineal."

Transcripción

1 Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato 1 Independencia Lineal Definición de independencia lineal Considere un espacio vectorial V sobre un campo K y sea S = { v 1, v 2,, v n } un conjunto finito de vectores del espacio vectorial El conjunto S se dice que es linealmente dependiente sobre el campo K si existen escalares c 1,c 2,,c n K no todos iguales a 0 tal que c 1 v 1 + c 2 v c n v n = 0 (1) En caso contrario; es decir, si los únicos escalares c 1,c 2,,c n K que satisfacen la ecuación (1) son c 1 = c 2 = = c n = 0, entonces el conjunto S se dice que es linealmente independiente sobre el campo K En otras palabras, el conjunto S es linealmente independiente si la única combinación lineal de los vectores de S que es igual al vector 0 es aquella para la cual todos los escalares son cero Definición Considere un espacio vectorial V sobre un campo K y sea S = { v 1, v 2,, v n } un conjunto finito de vectores del espacio vectorial Un vector v V se dice que es linealmente dependiente sobre S si v es una combinación lineal de los vectores de S En caso contrario, se dice que v es linealmente independiente sobre S Teorema Las siguientes afirmaciones son correctas 1 Cualquier conjunto que contenga al vector 0 es linealmente dependiente 2 Cualquier conjunto que contenga un único vector diferente de cero, v 0, es linealmente independiente 3 Cualquier conjunto formado por dos vectores diferentes de cero, S = { v 1, v 2 }, donde v 1 0, v 2 0, es linealmente dependiente si, y sólo si, uno de los vectores es múltiplo escalar del otro 4 Cualquier conjunto que contenga un subconjunto linealmente dependiente es linealmente dependiente 5 Cualquier subconjunto de un conjunto linealmente independiente es linealmente independiente Prueba: Las pruebas de estos resultados son bastante sencillas 1

2 1 Cualquier conjunto que contenga al vector 0 es linealmente dependiente Sea S = { v 1, v 2,, v n, 0} y considere la combinación lineal, con λ 0 0 v v v n + λ 0 = 0 Este es una combinación lineal donde no todos los escalares son iguales a 0 λ ya se indicó que no es igual a 0 y por lo tanto el conjunto es linealmente dependiente 2 Cualquier conjunto que contenga un único vector diferente de cero, v 0, es linealmente independiente Considere la combinación lineal λ v = 0 Por las propiedades iniciales de los espacios vectoriales, se probó que si en la ecuación anterior v 0, entonces λ = 0, por lo tanto el único escalar que hace que esta ecuación sea cierta es λ = 0; por lo tanto, el sistema es linealmente independiente 3 Cualquier conjunto formado por dos vectores diferentes de cero, S = { v 1, v 2 }, donde v 1 0, v 2 0, es linealmente dependiente si, y sólo si, uno de los vectores es múltiplo escalar del otro Suponga que v 2 = λ v 1, entonces v 2 = λ v 1 o λ v 1 1 v 2 = 0 y la ecuación generada a partir de una combinación lineal de los vectores de S tiene una solución distinta de la trivial y S es linealmente dependiente En la dirección contraria, suponga que S = { v 1, v 2 } es linealmente dependiente, entonces existe una solución distinta de la trivial de la ecuación v 1 + λ 2 v 2 = 0 sin pérdida de generalidad, suponga que 0, entonces existe λ 1 1 = 1, tal que Por lo tanto o, finalmente y v 1 es un múltiplo escalar de v 2 1 ( v 1 + λ 2 v 2 ) = 1 0 = 0 1 v λ 2 v 2 = 0 v 1 = λ 2 v 2 4 Cualquier conjunto que contenga un conjunto linealmente dependiente es linealmente dependiente Sea S = { v 1, v 2,, v n } un vector linealmente dependiente y sea S 1 = { v 1, v 2,, v n, v n+1, v n+2,, v n+k } un conjunto tal que S S 1 Puesto que S es linealmente dependiente existen excalares,i = 1,2,,n R tal que v 1 + λ 2 v λ n v n = 0 entonces, la combinación lineal de S 1 dada por v 1 + λ 2 v λ n v n + 0 v n v n v n+k = 0 es igual a 0 y no todos los escalares son iguales a 0, por lo tanto S 1 es linealmente dependiente 5 Cualquier subconjunto de un conjunto linealmente independiente es linealmente independiente La prueba es por contradicción, suponga S 1 es el conjunto inicial y que S S 1 es un subconjunto linealmente dependiente, entonces por el resultado anterior S es linealmente dependiente, una contradicción 2

3 Teorema Sea R n un espacio vectorial real sobre un campo R y sea S = { v 1, v 2,, v r } un conjunto finito de vectores del espacio vectorial donde v 1 = (a 11,a 21,,a n1 ), v 2 = (a 12,a 22,,a n2 ), v r = (a 1r,a 2r,,a nr ) Entonces, el conjunto S es linealmente dependiente sobre R si, y sólo si, el sistema de n ecuaciones con r incógnitas dado por a 11 x 1 + a 12 x a 1r x r = 0 a 21 x 1 + a 22 x a 2r x r = 0 a n1 x 1 + a n2 x a nr x r = 0 tiene una solución, para x 1,x 2,,x r K, diferente de la trivial, x 1 = x 2 = = x r = 0 2 Ejemplos En esta sección se mostrarán algunos ejemplos de determinación de la independencia o dependencia lineal de un conjunto de vectores de diferentes espacios vectoriales Ejemplo 1 Considere el espacio vectorial R 3 de triadas ordenadas de números reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real 1 Considere el conjunto S 1 = { v 1, v 2, v 3 } del espacio vectorial R 3, donde v 1 = (1, 3,2) v 2 = (0, 1,3) v 3 = (7,1, 3) Entonces el conjunto S 1 es linealmente independiente Prueba: Considere la ecuación dada por v 1 + λ 2 v 1 + λ 3 v 1 = 0 (1, 3,2) + λ 2 (0, 1,3) + λ 3 (7,1, 3) = (0,0,0) Esta ecuación vectorial conduce al sistema de ecuaciones lineales homogéneas 1 + 0λ 2 + 7λ 3 = 0 3 1λ 2 + 1λ 3 = 0 (2) 2 + 3λ 2 3λ 3 = 0 Después de la primera etapa de reducción, el sistema se reduce a 1 + 0λ 2 + 7λ 3 = 0 1λ λ 3 = 0 3λ 2 17λ 3 = 0 3

4 Figura 1: Dos vistas de los planos correspondientes al sistema de ecuaciones dado por la ecuación 2 Figura 2: Dos vistas de los vectores cuya independencia lineal se desea probar Al finalizar, del proceso de reducción, el sistema se reduce a 1 + 0λ 2 + 7λ 3 = 0 1λ λ 3 = 0 49λ 3 = 0 Es pues evidente que la única solución del sistema de ecuaciones es la trivial = λ 2 = λ 3 = 0 y el conjunto S 1 es linealmente independiente La figura 1 muestra los tres planos asociados a las tres ecuaciones lineales y la única solución, la trivial, del sistema de ecuaciones dado por la ecuación (2) La figura 2 muestra dos vistas de los tres vectores cuya independencia lineal se desea probar Las dos vistas verifican que los vectores no son coplanares 4

5 2 Considere el conjunto S 2 = { v 1, v 2, v 3 } del espacio vectorial R 3, donde v 1 = ( 2,3,1) v 2 = (5, 1,2) v 3 = ( 1,8,5) Entonces el conjunto S 2 es linealmente dependiente Prueba: Considere la ecuación dada por v 1 + λ 2 v 1 + λ 3 v 1 = 0 ( 2,3,1) + λ 2 (5, 1,2) + λ 3 ( 1,8,5) = (0,0,0) Esta ecuación vectorial conduce al sistema de ecuaciones lineales homogéneas 2 + 5λ 2 1λ 3 = 0 3 1λ 2 + 8λ 3 = 0 (3) 1 + 2λ 2 + 5λ 3 = 0 Después de la primera etapa de reducción, el sistema se reduce a 1 + 2λ 2 + 5λ 3 = 0 λ 2 + λ 3 = 0 λ 2 + λ 3 = 0 Al finalizar, del proceso de reducción, el sistema se reduce a 1 + 2λ 2 + 5λ 3 = 0 λ 2 + λ 3 = 0 Es pues evidente que el sistema de ecuaciones dado por la ecuación (3) tiene soluciones distintas de la trivial De manera mas específica, el conjunto solución del sistema de ecuaciones, tiene múltiples soluciones, y está dada por C S = {( 3λ 3, λ 3,λ 3 λ 3 R 3 } Si λ 3 = 1, entonces una posible solución es ( 3, 1,1) Por lo tanto, el conjunto S 2 es linealmente dependiente La figura 3 muestra dos vistas de los tres planos asociados a las tres ecuaciones lineales y la solución, no trivial, del sistema de ecuaciones La figura 4 muestra otra interpretación de la dependencia lineal de los tres vectores Es evidente que los tres vectores son coplanares Ejemplo 2 Considere el espacio vectorial P 2 (x) de polinomios de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = {p 1 (x) = 1,p 2 (x) = 1 x,p 3 (x) = (1 x) 2 } Determine si el conjunto es o no linealmente independiente 5

6 Figura 3: Dos vistas de los planos correspondientes al sistema de ecuaciones dado por la ecuación 3 Figura 4: Dos vistas del plano definido por tres vectores cuya dependencia lineal se verifica 6

7 Ejemplo 3 Considere el espacio vectorial P 2 (x) de polinomios de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = {p 1 (x) = 1,p 2 (x) = 1 x,p 3 (x) = (1 x) 2,p 4 (x) = x 2 } Determine si el conjunto es o no linealmente independiente Ejemplo 4 Considere el espacio vectorial M 2 2 de matrices 2 2 de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = { M 1 = [ ] [ 1 0,M 2 = 0 1 ] [ 0 1,M 3 = 1 0 Determine si el conjunto es o no linealmente independiente ] [ 0 1,M 4 = 1 0 Ejemplo 5 Considere el espacio vectorial M 2 2 de matrices 2 2 de coeficientes reales, sobre el campo de los números reales R, con las operaciones usuales de adición y multiplicación por un escalar real Considere el conjunto C S = { [ 1 0 M 1 = 0 1 ] [ 1 0,M 2 = 0 1 Determine si el conjunto es o no linealmente independiente ] [ 3 0,M 3 = 0 2 Ejemplo 6 Considere el espacio vectorial C(, + ) de funciones reales continuas de variable real, en el intervalo (, + ), definidos sobre el campo de los números reales, R Determine si los siguientes conjuntos son linealmente independientes o no 1 El conjunto C = {f 1 (x),f 2 (x)}, donde las funciones están dadas por ]} ]} f 1 (x) = cos x, x (,+ ) f 2 (x) = sin x, x (,+ ) Prueba: Es importante señalar que a diferencia de los anteriores ejemplos, en los que la igualdad de dos vectores conduce a un sistema finito de ecuaciones lineales homogeneas, en el caso de los espacios vectoriales de funciones, la igualdad 1 conduce a f 1 (x) + λ 2 f 2 (x) = z(x) (4) f 1 (x) + λ 2 f 2 (x) = 0 x (,+ ) (5) Es decir, a un número infinito de ecuaciones, una ecuación para cada valor de x comprendido en el intervalo de definición de la función Sin embargo, si la ecuación (2) es cierta, también debe ser cierta cualquier operación que se realize en ambos lados de la ecuación En particular, si se derivan ambos lados de la ecuación (2), se tiene que 1 La función z(x) se define de la siguiente forma z(x) = 0 x (, + ) 7

8 df 1 (x) dx + λ df 2 (x) 2 dx Nuevamente, esta ecuación puede escribirse como = dz(x) dx = z(x) (6) df 1 (x) dx + λ df 2 (x) 2 = 0 x (,+ ) (7) dx Las ecuaciones (3) y (5) conducen a un sistema de ecuaciones que, en forma matricial, está dado por [ ][ ] [ ] f1 (x) f 2 (x) λ1 0 f 2(x) = x (,+ ) 0 λ 2 Una condición suficiente 2 para que la única solución de este sistema de ecuaciones sea la trivial, y por lo tanto para que el conjunto C = {f 1 (x),f 2 (x)} sea linealmente independiente, es que f 2 (x) f 2(x) 0 para algún x (,+ ) En particular, para las funciones de este ejemplo [ ] [ ] f1 (x) f 2 (x) cos(x) sin(x) f 2(x) = = cos 2 (x) + sin 2 (x) = 1 x (,+ ) sin(x) cos(x) Por lo tanto, el conjunto es linealmente independiente, y el determinante, W(x), dado por W(x) = f 2 (x) f 2(x) se denomina el Wronskiano del conjunto C = {f 1 (x),f 2 (x)} 2 El conjunto C = {f 1 (x),f 2 (x)}, donde las funciones están dadas por f 1 (x) = x, x (,+ ) f 2 (x) = x, x (,+ ) es linealmente independiente Las gráficas de las funciones están dadas en la figura 5 Primeramente, es importante explicitar que la función valor absoluto está definida como { x x 0 f 2 (x) = x = x x < 0 Considere, ahora, el Wronskiano del conjunto de funciones, entonces Para x > 0, se tiene que W(x) = f 2 (x) f 2(x) = x x 1 1 = x x = 0 Para x < 0, se tiene que W(x) = f 2 (x) f 2(x) = x x 1 1 = x + x = 0 2 En este caso, la condición es suficiente para asegurar la independencia lineal del conjunto, sin embargo, como la condición no es necesaria, existen conjuntos que no satisfacen esta condición y aún así son linealmente independientes 8

9 Figura 5: Gráficas de las funciones f(x) = x y g(x) = x Puesto que el Wronskiano es igual a 0 para todo x 0, el resultado no es concluyente, además el Wronskiano no está definido para x = 0, pues f 2 (x) = x no es diferenciable para x = 0 Sin embargo, de la definición básica de la independencia lineal, el conjunto C = {f 1 (x),f 2 (x)} es linealmente independiente si y solo si, la única solución del sistema de ecuaciones es la trivial; es decir, = λ 2 = 0 f 1 (x) + λ 2 f 2 (x) = 0 x (,+ ) (8) En particular, si se seleccionan x 1 = 1 y x 2 = 1, se tiene que f 1 (1) + λ 2 f 2 (1) = λ 2 1 = 0 (9) f 1 ( 1) + λ 2 f 2 ( 1) = 0 ( 1) + λ 2 1 = 0 (10) Evidentemente, la única solución es = λ 2 = 0 y el conjunto C = {f 1 (x),f 2 (x)} es linealmente independiente 9

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos.

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. José María Rico Martínez Departamento de Ingeniería Mecánica División de

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Algebra Lineal Xa: Álgebra Vectorial en R3

Algebra Lineal Xa: Álgebra Vectorial en R3 Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Algebra Lineal XIII: Operaciones con Transformaciones Lineales.

Algebra Lineal XIII: Operaciones con Transformaciones Lineales. Algebra Lineal XIII: Operaciones con Transformaciones Lineales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Práctica 1. Espacios vectoriales

Práctica 1. Espacios vectoriales Práctica 1. Espacios vectoriales 1. Demuestre que R n (C n ) es un espacio vectorial sobre R (C) con la suma y el producto por un escalar usuales. Es C n un R-espacio vectorial con la suma y el producto

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

MATRICES. Rango de una matriz. Matriz Inversa. Determinante de una matriz cuadrada. Sistemas de Ecuaciones Lineales. Nociones de espacios vectoriales

MATRICES. Rango de una matriz. Matriz Inversa. Determinante de una matriz cuadrada. Sistemas de Ecuaciones Lineales. Nociones de espacios vectoriales MATRICES Rango de una matriz Matriz Inversa Determinante de una matriz cuadrada Sistemas de Ecuaciones Lineales Nociones de espacios vectoriales MATRICES -DEFINICIÓN DE MATRIZ. -ALGUNOS TIPOS DE MATRICES.

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

2.1. Estructura algebraica de espacio vectorial

2.1. Estructura algebraica de espacio vectorial Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Espacios Vectoriales. Espacio vectorial

Espacios Vectoriales. Espacio vectorial Espacios Vectoriales Espacio vectorial En Matemática, los conjuntos tienen un particular interés debido a la naturaleza o a la aplicación que se les da. Estas dos características están presentes en un

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

SISTEMAS DE ECUACIONES LINEALES ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES ECUACIONES LINEALES Tema 4.- SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES TEOREMA DE ROUCHÉ-FROBENIUS MÉTODO DE GAUSS 1 Muchas preguntas en ingeniería, física, matemáticas, economía y otras ciencias se

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

(L. S. I. P. I.) Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO. Espacios Vectoriales

(L. S. I. P. I.) Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO. Espacios Vectoriales ÁLGEBRA II (L.S.I P.I.) Guía de Trabajos Prácticos Nº ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº Espacios Vectoriales.- Dados los vectores u v w r = s = verifique gráficamente: u v

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ÍNDICE TEMÁTICO. Operadores Lineales en Espacios con Producto Interno

ÍNDICE TEMÁTICO. Operadores Lineales en Espacios con Producto Interno UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Álgebra IDENTIFICACIÓN

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Tema III. Espacios vectoriales

Tema III. Espacios vectoriales Tema III. Espacios vectoriales 1. Espacios vectoriales 2. Dependencia e independencia lineal 3. Sistemas generadores. Bases 4. Cambio de base 5. Subespacios vectoriales. Ecuaciones. 6. Interpretación geométrica

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

Álgebra Lineal Ma843

Álgebra Lineal Ma843 Álgebra Lineal Ma843 Principios de Desarrollo Discursivo/Didáctico Departamento de Matemáticas ITESM Principios de Desarrollo Discursivo/Didáctico Álgebra Lineal - p. 1/12 Problema Fundamental El problema

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Solución de Sistemas de Ecuaciones Diferenciales Lineales

Solución de Sistemas de Ecuaciones Diferenciales Lineales Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles