Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad."

Transcripción

1 Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,, ) coniene a la eca ( ) / ( ) /. Las ecuaciones paaméicas de la eca son: : Un puno P de la eca es P(,, ) El plano iene deeminado po la eca po el eco PA (,, ) (,, ) (,, ). Sus ecuaciones son: h : h : La disancia pedida, d(o, ), es: d(o, ) ( ) a) Halla la ecuación del plano que coniene a la eca b) Calcula la disancia desde el plano obenido al puno Q(,, ). al puno P(,, ). a) El plano pedido iene deeminado po el puno P, los ecoes (,, ) AP, siendo A (,, ) un puno de la eca; eso es, AP (,, ) (,, ) (, 4, ). El plano seá: h 4h 4 h 4 b) d(q(,, ), ) José Maía Maíne Mediano

2 Geomeía del espacio. a) Qué condición deben cumpli los coeficienes de las ecuaciones geneales de dos planos paa que sean pependiculaes? b) Halle el ángulo que foman los planos : 7 σ:. a) Dos planos son pependiculaes cuando sus ecoes caaceísicos (nomales) son pependiculaes. Po ano, si esos ecoes son σ su poduco escala debe se : σ. b) Los ecoes caaceísicos son: (,, ) σ (,, ). El coseno del ángulo que foman es σ cos(, σ ) el ángulo 6º. 4 σ 4. Encuena los dos punos de la eca plano 5. que esán a disancia del La disancia de un puno a un plano iene dada po la epesión: a b c d d( P (,, ), : a b c d ) a b c Como la eca iene po ecuaciones: :, un puno genéico de es P (,, ). Se desea que d(p, ). Eso es: ( ) ( ) ( ) 5 d( P, ) ± 4 4 de donde,. ± Paa : P (,, ) Paa : P (,, 4) José Maía Maíne Mediano

3 Geomeía del espacio 5. Dado el puno P(,, ): a) Deemina la ecuación que deben eifica los punos X(,, ) cua disancia a P sea igual a. λ b) Calcula los punos de la eca λ, cua disancia a P es igual a. 4λ a) La disancia ene los punos P X iene dada po la epesión: d ( P, X ) ( ) ( ) ( ) Si esa disancia ale se endá: ( ) ( ) ( ) Se aa de una esfea con ceno en P(,, ) adio. ( ) ( ) ( ) b) Un puno genéico de la eca es X(λ, λ, 4λ). Si se desea que d(x, P), se endá: ( λ ) ( λ ) ( 4λ ) 9λ 6λ λ 4λ 4 4 6λ 6λ 9 6λ 6λ λ, λ. Los punos seán: Q(,, ) R(,, ). 6. a) Ángulo que foman dos ecas. Condición de pependiculaidad. a) Deemina el ángulo que foma la eca que pasa po los punos A (,, ) B (,, ) la eca de ecuación: : a) El ángulo que foman dos ecas es el deeminado po sus especios ecoes de diección. Si los ecoes de diección de las ecas s son s, especiamene, enonces el coseno del ángulo (, s) es: s cos (, s) cos(, s ) s Las ecas seán pependiculaes cuando lo sean sus especios ecoes de diección; en consecuencia, cuando s. b) El eco de diección de la eca que pasa po los punos A B es: (,, ) (,, ) (,, ) s mienas (,, ). Po ano, (,, ) (,, ) cos(, s). 6 8 En consecuencia, el ángulo (, s) accos 6,87º. José Maía Maíne Mediano

4 Geomeía del espacio José Maía Maíne Mediano 4 7. Halla el ángulo que foma la eca inesección de los planos con el plano 4. El ángulo que foman es el complemenaio del ángulo deeminado po el eco de diección de la eca,, el caaceísico del plano,. Po ano, el seno del ángulo (, ), sen (, ) ), cos( Epesamos la ecuación de la eca en foma paaméica: : : 9 : Como (,, ) (,, ), se endá: sen (, ) 4 4 El ángulo (, ) acsen(/) 5º º. 8. Sea el pisma iangula (iángulos iguales paalelos) de la figua, con A(,, ), B(,, ), C(,, ) A (,, α). Calcula: a) La ecuación del plano que pasa po los punos A, B C. b) El alo de α paa que el plano, que coniene a los punos A, B C, dise una unidad del plano. c) Paa α, el plano el olumen del pisma. a) El plano esá deeminado po el puno A po los ecoes AB AC. AB (,, ) (,, ) (,, ); AC (,, ) (,, ) (,, ) Po ano: : : b) Debe cumplise que d(a, ), luego: 6 ) ( α c) Paa α, el puno A (,, ) : ( ) ( ) ( ), de donde: :. El olumen del pisma es un medio del poduco mio de los es ecoes que lo deeminan. En ese caso, los ecoes: AB, AC AA : V.

5 Geomeía del espacio 5 9. Considea la eca el plano siguienes. 5 : : a) Jusifica po qué la eca el plano son paalelos. b) Calcula la disancia ene el plano la eca. c) Calcula la ecuación implícia del plano que es pependicula a coniene a. a) El eco de diección de la eca es: (, 5, 4); El eco caaceísico del plano: (, 4, 4). Ambos ecoes son pependiculaes, pues (, 5, 4) (, 4, 4). Además, el puno P (, 5, ), de la eca, no peenece al plano, pues: 4 (5) 4 () 5. En consecuencia, la eca es paalela al plano. b) La disancia de a es igual a la disancia del puno P de al plano. 5 5 d( P, ). d( P (, 5, ), : ) c) El plano pedido iene deeminado po el puno P los ecoes Su ecuación seá: λ µ 5 5λ 4µ λ 4µ 4 4. José Maía Maíne Mediano

6 Geomeía del espacio 6. a) Obene el plano que pasa po el puno P(, 4, ) es pependicula a la eca : (,. ) (,,) (,,) b) Calcula la disancia ene el puno P la eca. a) El eco caaceísico del plano seá el de diección de la eca, (,, ). Po ano, el plano pedido es: ( ) ( 4) ( ) b) Calculamos el puno de coe de la eca dada el plano hallado. Las ecuaciones paaméicas de son: Susiuendo en la ecuación del plano: ( ) 6 5/. La eca coa al plano cuando 5/, eso es en Q (/, 6/, 5/). La disancia ene el puno P del plano la eca es la misma que la disancia ene P Q, luego: d(p, ) d(p, Q) Halla la disancia del plano 4 al plano λ µ λ µ λ µ Veamos que los planos son paalelos. Paa ello sus ecoes caaceísicos deben se popocionales. El eco caaceísico de es (4,, ). El eco caaceísico de iene deeminado po el poduco ecoial de los ecoes (,, ) w (,, ), que son los que deeminan. u u u w (, 5, ) Como los planos son paalelos. Po ano, la disancia ene ellos es igual a la disancia de un puno cualquiea de, po ejemplo P (,, ), al plano : Eso es: d(, ) d(p(,, ), 4 ) 4 ( ) José Maía Maíne Mediano

7 Geomeía del espacio 7. Se considea la eca el plano. Se pide: 4 5 a) Compueba que son paalelos. b) Calcula la disancia ene. c) Deemina dos ecas disinas que esén conenidas en sean paalelas a. a) despejando e en función de, haciendo, se obienen las 4 5 ecuaciones paaméicas de : 5 4 Paa que la eca sea paalela al plano es necesaio que los ecoes nomal al plano el de diección de la eca sean pependiculaes, además, cualquie puno de la eca no peeneca al plano. Como (,, ) ( 4, ), su poduco escala es: (,, ) ( 4, ) 6 4. Po ano, los ecoes son pependiculaes. Como el puno (, 5, ) de no es del plano, pues 5 4, la eca el plano son paalelos. b) d(, ) d(p (, 5, ), ) 5 ( ) c) Tomamos dos punos de, po ejemplo A (,, ) B (,, ). Paa que sean paalelas, las ecas pedidas deben ene la misma diección. Po ano son: 4 4 José Maía Maíne Mediano

8 Geomeía del espacio 8. Halla la disancia del puno P(,, ) al plano que coniene a la eca pasa po el puno (,, ). l : El plano iene deeminado po el puno B (,, ) po los ecoes (,, ) AB (,, ) (,, ) (,, ). Su ecuación seá, ( ) ( ) La disancia de un puno a un plano iene dada po la epesión: a b c d d( P (,, ), : a b c d ) a b c Luego, d((,,); : ) 4. Sea el puno A(,, ) el plano :. Halla: a) La ecuación de la eca que pasa po A es pependicula a. b) La ecuación del plano que pasa po A no coa a. c) La disancia ene los dos planos. a) El eco de diección de la eca seá el nomal al plano: (,, ). Po ano, su ecuación es: : b) El eco nomal del plano es el mismo que el del plano : (,, ). Luego su ecuación seá: : ( ) : c) La disancia ene ambos planos, d(, ) d(a, ) ( ) 6 Noa: Ha que ene la pecaución de epesa en la foma :. José Maía Maíne Mediano

9 Geomeía del espacio 9 5. a) Encona las ecuaciones paaméicas de la eca l dada po la inesección de los planos: : : b) Encona la disancia del puno (,, ) a dicha eca. a) Resolemos el sisema: Sumando ambas ecuaciones se iene: Susiuendo en la pimea ecuación: Llamando, se ienen las ecuaciones paaméicas de la eca: b) La ecuación de la disancia de un puno P a una eca es: AP d( P, ), siendo A. En ese caso: A (/, /, ), P (,, ), AP (/, /, ), (,, ) El poduco ecoial, AP u u u / / ( 5 /, /, /) Luego, 5 / 9 4 / 9 4 / 9 d ( P, ) 8 José Maía Maíne Mediano

10 Geomeía del espacio 6. Se considean la eca los planos siguienes: λ λ ; ;. 4 λ Se pide: a) Deemina la posición elaia de la eca con especo a cada uno de los planos. b) Deemina la posición elaia de los dos planos. c) Calcula la disancia de a. a) El eco de diección de la eca los caaceísicos de los planos son, especiamene, (,, ), (,, ), (,, ). Como, la eca es pependicula al plano. Paa deemina el puno de coe, aunque no se pide en el ejecicio, susiuimos las ecuaciones de la eca en la del plano; se obiene: ( λ) ( λ) (4 λ) 4λ 6 λ /7. El puno de coe es: P (5/7, /7, 5/7) Como (,, ) (,, ), la eca es paalela al plano o esá conenida en él. Paa deemina la posición pecisa susiuimos las ecuaciones de la eca en la del plano; se obiene: ( λ) ( λ) (4 λ) λ que es absudo (no ha solución). Luego la eca el plano son paalelos. b) Como (,, ) (,, ), los planos son pependiculaes. Se coan en una eca, cuas ecuaciones ienen dadas po la solución del sisema c) Al se paalela a, la disancia de a es la de cualquiea de los punos de, po ejemplo A (,, 4), al plano. Po ano: d(, ) d(a (,, 4), ) 4 8 ( ) 6 José Maía Maíne Mediano

11 Geomeía del espacio 7. Sean los punos A(,, ), B(,, ). Deemina: a) Las ecuaciones paaméicas de la eca que une los punos. b) La ecuación del plano que pasa po A es pependicula a la eca. c) La disancia del puno B al plano. a) La eca iene deeminada po el puno A po el eco AB: AB (,, ) (,, ) (,, ) Sus ecuaciones paaméicas son: : b) El eco nomal al plano es el mismo AB, luego : ( ()) ( ) ( ) : c) La disancia de un puno P al plano iene dada po: a b c d d( P (,, ), : a b c d ) a b c En nueso caso: d(b (,, ), : ) 8. Calcula la disancia ene las ecas de ecuaciones: 4 : s : 7 4, s, PQ La disancia ene las ecas s iene dada po: d(, s), siendo s los ecoes de diección especios, PQ un eco que a de a s, donde P Q s. En ese caso: (,, 7), s (,, 4); P (,, 4), Q (,, ), luego PQ (,, ). Con eso: 7, s, PQ 4 5 ; u u u 7 ( 9,, ) ( 9) 9 s 5 Luego: d (, s). 4 s s José Maía Maíne Mediano

12 Geomeía del espacio 9. Halla la disancia del puno P (,, ) a la eca L La ecuación de la disancia de un puno P a una eca es: AP d( P, ), siendo A. En ese caso: A (,, ), P (,, ), AP (,, ), (,, ) El poduco ecoial, AP u u u (,, ) Luego d ( P, ). Calcula los punos de la eca 4. que equidisen de los planos 4 La disancia de un puno a un plano iene dada po la epesión: a b c d d( P (,, ), : a b c d ) a b c Como la eca iene po ecuaciones, :, el puno genéico P(,, ) de debe cumpli que d(p, ) d(p, ), siendo : 4 : 4. Po ano, ( ) 4( ) 4( ) () d( P, ) d( P, ) 9 6 ± de donde,. 5 ± 5 Paa 5: /6 P,, Paa 5: /4 P,, José Maía Maíne Mediano

13 Geomeía del espacio. Encuena la ecuación coninua de la eca que es pependicula a las ecas: (,, ) (,,) (,, ) Tomamos un puno genéico de cada una de las ecas: P : P ( h, h, ); Q : Q (,, ) Esos punos definen el eco PQ ( h, h, ). Si PQ es el eco de diección de la eca buscada debe se pependicula a los ecoes de diección de cada una de las ecas, (,, ) (,, ). En consecuencia: PQ PQ PQ 4h h 5h PQ h h h Las igualdades aneioes se cumplen cuando h /. Po ano: P (,, ); Q (/, /, 5/); PQ (/, /, /) (,, ). Luego, la eca pedida seá:. Encona la ecuación de la eca que coa pependiculamene a las ecas. Las ecuaciones caesianas de esas ecas son: p : s : p p Tomamos un puno genéico de cada una de las ecas: R (,, ), S (p, p, p) Luego, RS (p, p, p ). Si ese eco es de la eca buscada debe se pependicula a los ecoes de diección de s, (,, ) s (,, ). Paa ello: RS, RS s. RS (p, p, p ) (,, ) 5p RS s (p, p, p ) (,, ) 9p 5 5 p 5 Eso es, :, p 9 p Con eso: R,,, S,, PQ,, 5 / h La eca pependicula común es: 5 / h 5 / (,, ) José Maía Maíne Mediano

14 Geomeía del espacio 4. Dadas las ecas: λ µ λ s µ λ a) Esudia la posición elaia de las ecas s. b) Halla la ecuación de una eca que se pependicula simuláneamene a s. a) Ha que esudia la dependencia lineal de los ecoes: (,, ), s (,, ) RS (,, ) (,, ) (,, ) siendo R un puno de S un puno de s. Como 4, los ecoes son linealmene independienes. En consecuencia, las ecas s se cuan. b) La diección de odas las eas pependiculaes a las dadas es la del eco s u u u s (,,) Una eca puede se: Noa: Del enunciado no se de deduce que se pida la pependicula común. José Maía Maíne Mediano

Geometría del espacio: ángulos, distancias, simetrías 1

Geometría del espacio: ángulos, distancias, simetrías 1 Geomeía del espacio: ángulos, disancias, simeías MATEMÁTICAS II TEMA 6 Ángulos, disancias, simeías Poblemas Popuesos Ángulos ene ecas planos Dadas las ecas s de ecuaciones: a) Compueba que se coan alla

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

Puntos, rectas y planos en el espacio. Posiciones relativas

Puntos, rectas y planos en el espacio. Posiciones relativas Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio. Posiciones elaivas Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad. Punos, ecas

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63 Maemáicas II (Bacilleao de Ciencias) Soluciones de los poblemas popuesos Tema 6 TMA cuaciones de ecas planos en el espacio Posiciones elaivas Poblemas Resuelos cuaciones de ecas planos Halla, en sus difeenes

Más detalles

1.1 introducción conceptos generales 1.2 nociones de trigonometría

1.1 introducción conceptos generales 1.2 nociones de trigonometría 1 Concepos geneales 1.1 inoducción 1.1.1 concepos geneales 1. nociones de igonomeía Ejemplo Exposición de los concepos básicos sobe geomeía. Caaceísicas de puno, eca y plano. Resumen de igonomeía básica.

Más detalles

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB.

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB. 7 GEOMETRÍ. Dado el iángulo de véice () B(-) C(-) halla la ecuacione de la eca mediana mediaiz coepondiene al lado B. B C Paa calcula la mediana (eca que une el véice opueo al lado B (véice C) con el puno

Más detalles

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB.

1. Dado el triángulo de vértices A(5,2), B(-1,6) y C(3,-2), hallar las ecuaciones de las rectas mediana y mediatriz correspondientes al lado AB. CURSO / FICH BLOQUE. GEOMETRÍ. Dado el iángulo de véice () B(-) C(-) halla la ecuacione de la eca mediana mediaiz coepondiene al lado B. B C Paa calcula la mediana (eca que une el véice opueo al lado B

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL Las funciones con las que se ha abajado hasa el momeno son funciones eales de una vaiable eal (su ango es un subconjuno de los eales. Se esudiaán en ese capíulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0 Geomeí CTSL Vecoes. Bses. Ddos los vecoes u (, ) v (, ): ) Compueb que u v fomn un bse del espcio vecoil de los vecoes del plno. b) Encuen ls componenes del veco w (, 5) en l bse {u, v }. ) Los vecoes

Más detalles

Examen de Selectividad Matemáticas II - JUNIO Andalucía OPCIÓ A

Examen de Selectividad Matemáticas II - JUNIO Andalucía OPCIÓ A Eámenes de Maemáicas de Selecividad esuelos hp://qui-mi.com/ Eamen de Selecividad Maemáicas II - JUNIO - ndalucía OPIÓ.- Sea la función f: definida po f e. a [ puno] alcula las asínoas de f. b [ puno]

Más detalles

Geometría en el espacio

Geometría en el espacio Maemáica II Geomeía en el epacio.- Pueba que i do vecoe u v ienen el mimo módulo, enonce lo vecoe v u v u on oogonale..- Compueba que la eca 7 e coan halla el puno de ineección..- Dado lo puno A(, -, ),

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

**********************************************************************

********************************************************************** 6..- Con efeencia al ejecicio 6. a) Dimensiona el eje con el cieio de Tesca, adm 85 N/mm. b) Id. con el cieio de Von isses, adm 70 N/mm. (a sección es cicula, da el diámeo en mm. Considea sólo D-A-B-E.)

Más detalles

PROBLEMAS MÉTRICOS. Dos rectas son perpendiculares si sus vectores directores son ortogonales, es decir, si el producto escalar es nulo:

PROBLEMAS MÉTRICOS. Dos rectas son perpendiculares si sus vectores directores son ortogonales, es decir, si el producto escalar es nulo: CRISTIN ROND HERNÁNDEZ oblema méico ROBLEMS MÉTRICOS ÁNGULO ENTRE RECTS Y LNOS. Ánglo ene o eca. Ánglo ene o plano. Ánglo ene eca plano B DISTNCI ENTRE RECTS Y LNOS B. Diancia e n pno a n plano B. Diancia

Más detalles

DIBUJO DIBUJO TÉCNICO I I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN EDITORIAL DONOSTIARRA Ø100 N N O S 1/2 D 1' 7

DIBUJO DIBUJO TÉCNICO I I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN EDITORIAL DONOSTIARRA Ø100 N N O S 1/2 D 1' 7 DIUJ DIUJ ÉI I I EDIRIL DSIRR RMLIZIÓ DESRIIV GEMÉRI º bachilleao SLUIRI M S S 7' 6' 5' LH 4' / D 3' ' 6 6 7 4 ' 7 6 7 6 8 7 60 o esfe 60 Ø00 a 5 9 8 9 F. JVIER RDRÍGUEZ DE J VÍR ÁLVREZ EG JQUÍ GZL GZL

Más detalles

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO EMA 4. ANGENCIAS Depaameno de Aes lásicas y Dibujo EMA 4. ANGENCIAS. Los OBJEIVOS geneales que se peende logen los alumnos al acaba el ema son: Conoce las popiedades en las que

Más detalles

RECTAS EN EL ESPACIO

RECTAS EN EL ESPACIO IES Pade Poeda (Guadi UNIDAD 9 GEOMETRÍA AFÍN RETAS EN EL ESPAIO. EUAIONES DE LA RETA Una ecta queda deteminada po Un punto A ( a a a Un ecto de diección ( A ( A; se le llama deteminación lineal de la

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Geometría euclídea MATEMÁTICAS II 1

Geometría euclídea MATEMÁTICAS II 1 Geometía euclídea MATEMÁTICAS II EL ESPACIO EUCLÍDEO TRIDIMENSIONAL En lo do anteioe tema, e han etudiado poblema que e efeían a incidencia, inteección y paalelimo de punto, ecta o plano, peo no poblema

Más detalles

Tema 7 Problemas métricos

Tema 7 Problemas métricos Tema 7 Poblemas méticos. Plano pependicula. Halla la ecuación del plano que contiene a los puntos A (- -) B ( -) es pependicula al plano. Los vectoes AB n (vecto nomal del plano ) uno de los puntos A o

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

GUÍA Nº 3 VOLUMENES. CIENCIAS BÁSICAS INACAP Renca

GUÍA Nº 3 VOLUMENES. CIENCIAS BÁSICAS INACAP Renca GUÍ Nº VOLUMENES CIENCIS BÁSICS INCP Renca UNIDD II: VOLÚMENES DE CUERPOS GEOMÉTRICOS. ÁRES Y VOLÚMENES DE CUERPOS PRINCIPLES d a CUBO a = aisa, d = diagonal Áea() = 6a Volúmen(V) = a d= a PIRÁMIDE RECTNGULR

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

2 Por contener al eje OY el plano pasa por ( 0, 0, 0 ). Sus posibles vectores característicos son:

2 Por contener al eje OY el plano pasa por ( 0, 0, 0 ). Sus posibles vectores característicos son: Halla la epeión del ha de plano que paa po la eca - 6 (- - ) con un paáeo eal. Haía que añadi adeá el plano - -. 6 Halla la epeión del ha de plano que paa po la eca - (- - ) con un paáeo eal. Haía que

Más detalles

SOLUCIONES rectas-planos

SOLUCIONES rectas-planos SOLUCIONES ectas-planos x + y z. Ecuación de la ecta que pasa po A(,, ) y se apoya en las ectas x y + z x z + s y 4 y. Ecuación de la ecta que pasa po (,, ) es paalela al plano π x + y 4z + y está en x

Más detalles

Unidad 12: Posiciones y Métrica en el espacio.

Unidad 12: Posiciones y Métrica en el espacio. Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que

Más detalles

TANGENCIAS Rectificaciones TEMA8. Objetivos y orientaciones metodológicas

TANGENCIAS Rectificaciones TEMA8. Objetivos y orientaciones metodológicas NGENCIS ecificacione EM8 DIUJ GEMÉIC bjeivo y oienacione meodológica Fundándoe en lo do cao único de angencia, ene eca y cicunfeencia y ene do cicunfeencia, el alumno eolveá lo poblema má encillo que e

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

Tema 6 Puntos, rectas y planos en el espacio

Tema 6 Puntos, rectas y planos en el espacio Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

TEMA12: ESPACIO MÉTRICO

TEMA12: ESPACIO MÉTRICO TEMA1: ESPACIO MÉTRICO 1. PERPEDICULARIDAD A) RECTA-RECTA: Do ecta on pependiculae i u vectoe diectoe on otogonale: V. W = 0. ota que eta condición no implica que la ecta e coten, pueden tene dieccione

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = =

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = = Geometía analítica del epacio. Matemática II Mazo 04 Opción A Ejecicio. (untuación máxima: punto) z Calcula la ecuación de una efea que tiene u cento en la ecta x 3 y, y e tangente al plano x y z 4 0,,.

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

ÁNGULOS. Tema 7 Rectas y planos en el espacio- Matemáticas II 2º Bachillerato 1. ANGULO ENTRE DOS RECTAS Cos (r 1,r 2 ) = cos ( v 1, v 2 ) =

ÁNGULOS. Tema 7 Rectas y planos en el espacio- Matemáticas II 2º Bachillerato 1. ANGULO ENTRE DOS RECTAS Cos (r 1,r 2 ) = cos ( v 1, v 2 ) = Tema 7 Recta y plano en el epacio- Matemática II º Bachilleato ÁNGULOS ANGULO ENTRE DOS RECTAS Co (, ) co (, ).. ANGULO ENTRE DOS PLANOS Co (Π, Π ) co( n, n ) n n.n. n ÁNGULO ENTRE RECTA Y PLANO Sen (,

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

LA RECTA EN EL ESPACIO

LA RECTA EN EL ESPACIO GUIA DE ESTUDIO Nº : LA RECTA EN EL ESPACIO Ea guía iene la inención de audae en el apendiaje de lo conenido deaollado en el maeial de eudio La eca en el epacio. Poblema de eca plano (auo: Ing. Ricado

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Cinemática de una partícula

Cinemática de una partícula Cinemáica de una paícula. Inoducción.. El moimieno. a. Ecuación del moimieno. b. Tayecoia. c. La ecuación inínseca del moimieno. 3. El eco Velocidad. 4. El eco Aceleación. a. Componenes inínsecas del eco

Más detalles

FÍSICA 100 CERTAMEN # 2 28 de junio de 2008 FORMA S. 1. Considere el vector V = 6 i + 8 j. 2. La rapidez instantánea de cambio, v

FÍSICA 100 CERTAMEN # 2 28 de junio de 2008 FORMA S. 1. Considere el vector V = 6 i + 8 j. 2. La rapidez instantánea de cambio, v FÍSICA CERTAMEN # e junio e A. ATERNO A. MATERNO NOMBRE ROL USM - FORMA S EL CERTAMEN CONSTA DE ÁGINAS CON REGUNTAS EN TOTAL. TIEMO: 5 MINUTOS SIN CALCULADORA. SIN TELÉFONO CELULAR. Consiee el eco V =

Más detalles

Resumen Unidad Figuras planas 1. Polígonos

Resumen Unidad Figuras planas 1. Polígonos 12 Figua plana 1. Polígono l uni uceivamene vaio egmeno e foma una línea a la que e llama poligonal y que puede e abiea o ceada. La zona ineio que delimia una línea poligonal ceada e llama polígono. Según

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0 CINEMÁTICA. ESTUDI DEL MVIMIENT Tipos de moimieno El moimieno es el cambio que expeimena la posición de un cuepo especo a oo, que se oma como efeencia. Un cuepo se muee cuando cambia la posición que ocupa

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del

Más detalles

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS EMA 5 - ANGENCIAS, ENLACES Y CURVAS ÉCNICAS RAZADS ELEMENALES DE RECAS ANGENES A CIRCUNFERENCIAS 1. aza la eca angene a la cicunfeencia de ceno po el puno de ella, así como las ecas angenes paalelas a

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 2017

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 2017 GEOMETRÍA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 Ejecicio 4B Sean lo vectoe u = (1,

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

EXAMEN DE SELECTIVIDAD DE MATEMÁTICAS II JUNIO 2007

EXAMEN DE SELECTIVIDAD DE MATEMÁTICAS II JUNIO 2007 Depatament de Matemàtiques http://www.ieslaasuncion.og EXAMEN DE SELECTIVIDAD DE MATEMÁTICAS II JUNIO Baemo: Se elegián TRES bloques se haá un poblema de cada uno de ellos. Cada poblema se puntuaá de a,

Más detalles

RECONOCER FUNCIONES EXPONENCIALES

RECONOCER FUNCIONES EXPONENCIALES RECONOCER FUNCIONES EPONENCIALES REPASO APOO OBJETIVO Una función eponencial es una función de la foma f ( ) = a o y = a, donde a es un númeo eal posiivo (a > ) y disino de (a! ). La función eponencial

Más detalles

Corrección examen PAU. Junio OPCIÓN A. Realizando la multiplicación e igualando a B, obtenemos el sistema:

Corrección examen PAU. Junio OPCIÓN A. Realizando la multiplicación e igualando a B, obtenemos el sistema: Coección eamen PU. Junio 4. OPCIÓN a) Debemos enconta los valoes de, y que veifiquen: 3, Realizando la multiplicación e igualando a B, obtenemos el sistema: 3 Debemos esolve dicho sistema y paa ello antes

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Tema 51. Sistemas de referencia en el plano y en el espacio. Ecuación del plano y de la recta. Relaciones afines.

Tema 51. Sistemas de referencia en el plano y en el espacio. Ecuación del plano y de la recta. Relaciones afines. TEMA 5. Sistemas de efeencia en el plano en el espacio. Ecuaciones del plano la ecta. Relaciones afines Tema 5. Sistemas de efeencia en el plano en el espacio. Ecuación del plano de la ecta. Relaciones

Más detalles

EXAMEN A1. FORESTALES. CURSO 2010/2011

EXAMEN A1. FORESTALES. CURSO 2010/2011 EXMEN 1. FRESTLES. URS 010/011 PELLIDS Y NMRE Insucciones paa la ealización del ejecicio. El iempo oal es de h. omience po las pegunas, que deben conesase en la hoja coloeada que se enega con el examen

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

Fundamentos Físicos de la Ingeniería Primer Examen Parcial / 15 enero 2004

Fundamentos Físicos de la Ingeniería Primer Examen Parcial / 15 enero 2004 undamenos ísicos de la ngenieía ime Examen acial / 5 eneo 4. Un ansbodado navega en línea eca con una velocidad consane v = 8 m/s duane 6 s. A coninuación, deiene sus mooes; enonces, su velocidad viene

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Repaso de Trigonometría

Repaso de Trigonometría Repaso de Tigonomeía Raones igonoméicas en un iángulo: REPASO DE TRIGONOMETRÍA Las funciones igonoméicas se oiginaon hisóicamene como elaciones ene las longiudes de los lados de un iángulo ecángulo. Denoemos

Más detalles

Electrostática: Definición.

Electrostática: Definición. lecicidad Magneismo 9/ lecosáica: Inoducción Gauss upeposición M -a lecosáica efinición os conducoes en elecosáica. Campo de una caga punual. Aplicaciones de la e de Gauss Inegales de supeposición. Poencial

Más detalles

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0 Puebas de Aptitud paa el Acceso a la Univesidad SEPTIEMBRE 9 Matemáticas II ÁLGEBRA a [,5 puntos] Sean las matices A = b c, I = de oden Halla la elación ente los paámetos a, b y c paa que se veifique que

Más detalles

SELECTIVIDAD SEPTIEMBRE 2003 MATEMÁTICAS II

SELECTIVIDAD SEPTIEMBRE 2003 MATEMÁTICAS II Depatament de Matemàtiques Ieslaasuncion.og/matematicas SELECTIVIDAD SEPTIEMBRE 00 MATEMÁTICAS II EJERCICIO A 0 m 0 1 0 PROBLEMA 1. Considea las matices: A = 1 0 1 y B = 1 0 0. 5 1 (m + 1) 0 0 1 a) Paa

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS EMA 5 - ANGENCIAS, ENLACES Y CURVAS ÉCNICAS RAZADS ELEMENALES DE RECAS ANGENES A CIRCUNFERENCIAS 1. aza la eca angene a la cicunfeencia de ceno po el puno de ella, así como las ecas angenes paalelas a

Más detalles