PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E"

Transcripción

1 PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo debe responder (como máximo) a cuatro de las cinco preguntas. - Cada una de las preguntas tiene una puntuación máxima de.5 PRUEBA A 1. En una piscifactoría, se inició un cultivo con 90 ejemplares, de los cuales 64 llegaron a la edad adulta. De los que llegaron a la edad adulta, el peso medio fue de 3,1 kilos con una desviación típica de medio kilo. a) Obtener un intervalo de confianza para la proporción de ejemplares que llegan a la edad adulta, con un nivel de confianza del 90%. El intervalo de confianza para una proporción es ˆ( 1 ˆ) ˆ( 1 ˆ) ˆ p p z p /, pˆ z p p α + α / n n 64 n = 90; pˆ = = 0, 71; α = 0,1; zα / = z0,05 = 1, (1 0.71) 0.71(1 0.71) , = ( , ) b) Obtener un intervalo de confianza para el peso medio que alcanzan los ejemplares que llegan a la edad adulta, con un nivel de confianza del 95%. El intervalo de confianza para una media muestral es: σ x z, x + z n α / α / n = 64; x = 3,1; σ = 0,1; α = 0, 05; α/ = 0, 05; z = 1,96 0,05 σ n σ σ 0,5 0,5 x zα /, x + zα / = 3,1 1,96, 3,1 + 1,96 = ( 3,1 ± 0.15 ) = (.975,3.5) n n Un fabricante de bombillas garantiza que el tiempo de duración de las bombillas sigue una normal de media 500 horas y desviación típica de 40 horas. a) Calcular la probabilidad de que una bombilla elegida al azar dure más de 450 horas. X = Duración de una bombilla ; X N 500, 40 ( )

2 La probabilidad de que una bombilla dure más de 450 horas es: X P( X > 450) = P > = P( Z > 1.5) = 1 P( Z > 1.5) = = b) Calcular la probabilidad de que si se eligen 5 bombillas al azar la duración media sea mayor que 510 horas. La media, X, de la duración de 5 bombillas sigue una normal de media 500 y desviación típica 40 = 8, es decir, ( ) 5 X N 500, 8 X P( X > 514) = P > = P( Z > 1.75) = c) Para verificar lo que nos dice el fabricante en cuanto a la media de la duración, se hizo una prueba con 49 bombillas obteniéndose una media muestral de 49 horas. Podemos aceptar que la media de duración es de 500 horas, con un nivel de confianza del 90%? Se nos plantea un contraste de hipótesis: H0 : µ = µ 0 H0 : µ = 500 H1 : µ µ 0 H1 : µ 500 σ σ Para este contraste, la región de aceptación es R.A.= µ 0 zα /, µ 0 + zα / n n Si x R. A. aceptamos la hipótesis nula y en caso contrario la rechazamos. x = 49; n = 49; µ = 500; σ = 40; α = 0,1; α/ = 0, 05; z = ,05 RA = , = ( 49.6, ) Como 49 ( 49.6, ) aceptamos la hipótesis nula, es decir, aceptamos que µ = 500 La resolución de este contraste se podía haber hecho de forma equivalente utilizando el estadístico x µ 0 de prueba, z = y ver si cae en la región de aceptación que para este test bilateral es: σ n R.A.=( zα /, zα /) = ( 1.64, 1.64) ; z = = 1.4; 40 49, aceptamos la hipótesis nula, es decir, aceptamos que µ = 500. como 1.4 ( 1.64, 1.64) 3. Una empresa tiene dos fábricas, los gastos, en cientos de euros, de cada fabrica en función del número de trabajadores se obtienen según las funciones: f( x) = x + 1x 14; x

3 gx ( ) = x + 18x+ ; x a) Si los ingresos, en cientos de euros, en función del número de trabajadores son hx ( ) = 48x. Con que número de trabajadores maximiza el beneficio la primera fábrica? Beneficios = Ingresos - Gastos bx hx f x x x x x x b'( x) = 4x+ 36 ( ) = ( ) ( ) = 48 ( ) = b'( x) = 0 x = 9 b) Si lo que se quiere es tener el mismo gasto en las dos fábricas, con que número de trabajadores se consigue? x = f( x) = g( x) x + 1x 14 = x + 18x+ x 6x 16= 0 x = 8

4 4. Se quiere pintar la parte frontal de una pista de patinar, que tiene la forma: La curva interior está descrita por la parábola f( x ) = x 9 a) Cuántos metros cuadrados hay que pintar en esta parte frontal? b) Si se pinta también la parte trasera que es igual a la frontal, y cada metro cuadrado lleva 0,5 litros de pintura, que cuesta a 5 euros el litro cuanto cuesta la pintura? 3m 1.5m 1m a) La superficie a pintar es el área bajo la parábola entre los puntos 3 y 3 junto con los dos rectángulos laterales de 1,5 x x (1,5 1) x dx 3 3 ( 1 1) S = + = + = + + = b) Precio = = Se tienen que empaquetar 1500 unidades de un artículo en cajas de 5, 10 y 5 unidades, de manera que haya el triple de cajas de 5 unidades que de 10 unidades y que en total haya 90 cajas. cuántas cajas tiene que haber de cada tipo? 5A+ 10B+ 5C = 1500 A+ B+ C = 90 A+ B+ C = 90 A= 3B A 3B = 0 4B C = 90 A+ B+ C = 90 5A+ 10B+ 5C = B+ 0C = 1050 A+ B+ C = 90 A+ B+ C = 90 A= 10 0B 5C = 450 0B 15C = 1350 B = 30 0B+ 80C = C = 3750 C = 50

5 PRUEBA B 1.-Una de las pruebas de acceso a la universidad para personas mayores de 5 años consiste en un test con 100 preguntas, cada una de las cuales dos posibles respuestas, siendo sólo una de ellas correcta. Para superar esta prueba debe obtenerse, al menos, 60 respuestas correctas. Si una persona contesta al azar, es decir, elige de forma aleatoria una de los dos respuestas posibles de cada una de las 100 preguntas: a) Cuál será el numero esperado de respuestas correctas? Sea la variable, X= nº de respuestas correctas en las 100 preguntas, como la probabilidad de responder correctamente una pregunta si se contesta al azar es p=0.5, se tiene que: X B(100, 0.5) Para una variable binomial, B(n,p), su valor medio esperado es n p, en este caso = 50. b) Qué probabilidad tendrá de superar la prueba? Nos piden calcular, P( X 60), hacerlo directamente supondría los 41 casos del 60 hasta 100, o bien por el complementario supondría los 60 casos del 0 hasta 59. En ambos casos el cálculo a realizar es muy grande. Vamos a comprobar si se dan las condiciones para aproximar una binomial por una X ' N n p, n p (1 p) normal ( ) np > = 50 > 5 en este caso por tanto se puede utilizar la aproximación. n(1 p) > 5 100(1 0.5) = 50 > 5 X ' N 50,5. X se distribuye aproximadamente igual que ( ) X ' P( X 60 ) P( X ' 59.5) = P > = P( z > 1.9) = Si no se hace corrección por continuidad X ' P( X 60 ) P( X ' 60) = P > = P( z > ) = En una gran ciudad española la altura de sus habitantes tiene una desviación típica de 8 cm. Se pide: a) Si la altura media de dichos habitantes fuera 175 cm., cuál sería la probabilidad de que la altura media de una muestra de 100 individuos tomada al azar fuera superior a 176 cm? La media, X, de la altura de 100 individuos sigue una normal de media 175 y desviación típica 8 = 0.8, es decir, ( ) 100 X N 175,0.8 X P( X > 176) = P > = P( Z > 1.5) = b) Si se considera una muestra aleatoria de 100 individuos de esta ciudad se obtiene una altura media de 178 cm. Determina un intervalo de confianza del 95% para la altura media de los habitantes de esta ciudad. El intervalo de confianza para una media muestral es: σ σ x zα /, x + zα / n n

6 n = 100; x = 178; σ = 8; α = 0, 05; α/ = 0,05; z = 1,96 0,05 σ σ 8 8 x zα /, x + zα / = 178 1,96, ,96 = 178 ± 1.56 = , n n ( ) ( ) 3.Según la ley electoral de cierto país, para obtener representación parlamentaria un partido político ha de conseguir, en las elecciones correspondientes, al menos el 5% de los votos. Próximas a celebrarse tales elecciones, una encuesta realizada sobre 1000 ciudadanos elegidos al azar revela que 36 de ellos votarán al partido A. a) Puede aceptarse, con un nivel de significación del 5% que A tendrá representación parlamentaria? H0 : p p0 H0 : p 0,05 H1 : p < p0 H1 : p < 0,05 ( ) p0 1 p 0 Para este contraste la región de rechazo es R.R.= 0, p0 z α n Si pˆ RR.. rechazamos la hipótesis nula y en caso contrario la aceptamos. 36 n = 1000; pˆ = = 0, 036; p0 = 0, 05; α = 0, 05; z0,05 = 1, ,05( 1 0,05) RR.. = 0, = ( 0, ) 1000 Como 0,036 ( 0, ) rechazamos la hipótesis nula, es decir, rechazamos que p 0,05. La resolución de este contraste se podía haber hecho de forma equivalente utilizando el estadístico p p0 de prueba, z = y ver si cae en la región de rechazo para este estadístico en este p0(1 p0) n, =, contraste, que a un nivel de significación α =0.05, es, R.R.=( ) ( ) z = 0,036 0,05 0, 05(1 0,05) =.031; 1000 Como.031 (, 1.64), rechazamos la hipótesis nula, es decir, rechazamos que p 0,05. b) y con un nivel de significación del 1%? El estadístico sigue siendo z = 0,036 0,05 0, 05(1 0,05) = La región de rechazo para este estadístico en este contraste, con α =0.01, es,, =,.33. R.R.=( z α ) ( ) Como.031 (,.33), aceptamos la hipótesis nula, es decir, aceptamos que p 0,05. z α

7

8 4.- Un almacén de frutas para atender a sus clientes, debe tener almacenados un mínimo de 10 toneladas de naranjas y 0 toneladas de manzanas. El numero de toneladas de manzanas no debe ser inferior a la mitad del numero de toneladas de naranjas. Si la capacidad total del almacén es de 80 toneladas, el gastos de almacenaje de una tonelada de naranjas es de 30 euros y el de una tonelada de manzanas es de 9 euros, a) Cuántas toneladas habrá que almacenar para que el gasto sea mínimo? b) Y máximo? x+ y 90 Min f ( x, y) = 30x + 9y sa..: x+ y 90 x y 0 y 0 x y 0 y 0 La función objetivo es f( x, y) = 30x+ 9y Los puntos extremos de la región factible son 0, 0 f 0, 0 = 9*0 = 180 ( ) ( ) ( 0, 90) f ( 0, 90) = 9*90 = 810 ( 40, 0) f ( 40, 0) = 30* * 0 = 1380 ( 60, 30) f ( 60, 30) = 30*60 + 9*30 = 070 Por tanto el máximo se alcanza en el punto ( xy, ) = ( 60,30) con un gasto de 070. El mínimo se alcanza en el punto ( xy, ) = ( 0,0) con un gasto de 180.

9 1 5.-El coste de producción de x unidades diarias de un determinado producto es x + x + y el precio x de venta de una de ellas está en función de la producción total es 50 - euros por cada unidad. 4 a) Haya el precio de venta si se producen 1 unidades. b) Haya los ingresos de producir 1 unidades. c) Haya los beneficios de producir 1 unidades. d) Haya el número de unidades que deben venderse diariamente para el beneficio sea máximo. 1 a) 50 - = 47 4 b) 47*1=564 c) x 1 1 bx ( ) = 50 - x x + 5x+ 5 = x + 45x b(1) = *1x 5 = 443 d) 1 bx ( ) = x + 45x 5 b'( x) = x+ 45 b'( x) = 0 x = 45 b(45) = 987.5

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 011-01 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2. Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2012-2013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 = www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas

Más detalles

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses EJERCICIOS Curso: Estadística Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses 1. Un fabricante de detergente sostiene que los contenidos de las cajas

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Propuesta A B = M = (

Propuesta A B = M = ( Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se

Más detalles

Inferencia estadística Selectividad CCSS Murcia. MasMates.com Colecciones de ejercicios

Inferencia estadística Selectividad CCSS Murcia. MasMates.com Colecciones de ejercicios 1. [2014] [EXT-A] Según un informe de una universidad, la edad media de finalización de un determinado grado no supera los 23 años. Sabiendo que la edad de finalización sigue una normal con desviación

Más detalles

Estadística. 3) (Sept-99) Una variable aleatoria tiene una distribución normal de media y desviación típica. Si se extraen

Estadística. 3) (Sept-99) Una variable aleatoria tiene una distribución normal de media y desviación típica. Si se extraen Estadística 1) (Junio-95) La duración de unas bombillas sigue una distribución normal de media desconocida y desviación típica de 50 horas. Para estimar la media, se experimenta con una muestra de tamaño

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

EJERCICIOS DE ESTADÍSTICA:

EJERCICIOS DE ESTADÍSTICA: EJERCICIOS DE ESTADÍSTICA: 1º/ Una biblioteca desea estimar el porcentaje de libros infantiles que posee. La biblioteca está compuesta de 4 salas (orte, Sur, Este y Oeste) con 2500, 2740, 4000 y 6900 libros,

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2013-2014 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media.

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media. R PRÁCTICA IV Intervalos de confianza y contrastes de hipótesis Sección IV.1 Intervalo de confianza de la media. 44. Cargar (abrir) el conjunto de Datos Pulso.rda. Se pide: a) Calcular el de confianza

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Edad (en años) Más de 57 Nº de personas

Edad (en años) Más de 57 Nº de personas 1. Una productora de cine quiere pasar una encuesta por el método de muestreo estratificado entre las 918 personas asistentes a la proyección de una de sus películas. La muestra de tamaño 54 ha de ser

Más detalles

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A Prueba de Acceso a la Universidad. JUNIO 00. Bachillerato de iencias Sociales. El ejercicio presenta dos opciones A y B. El alumno deberá elegir y desarrollar una de ellas sin mezclar contenidos. OPIÓN

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano) I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas.

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas. BALEARES JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Contesta de manera clara y razonada una de las dos opciones propuestas. OPCIÓN A ) Tres familias van a una pizzería. La primera familia

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10 1. El Indice Climático Turístico (ICT), definido por Mieczkowski en 1985 es un índice que toma valores en una escala de 0 a 100 y tiene como objetivo valorar la calidad que ofrece el clima de una región

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

RECOMENDACIONES Y ORIENTACIONES PARA LA MATERIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II (CURSO )

RECOMENDACIONES Y ORIENTACIONES PARA LA MATERIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II (CURSO ) RECOMENDACIONES Y ORIENTACIONES PARA LA MATERIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II (CURSO 01-013) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE 1. Contenidos. Criterios de evaluación.1.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 01-013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2009

PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

c. Calcule la varianza de las medias muestrales

c. Calcule la varianza de las medias muestrales MUESTRAS. DISTRIBUCIÓN DE MEDIAS MUESTRALES. 1. Una ciudad de 2000 habitantes está poblada por personas de pelo negro, rubio o castaño. Se ha seleccionado, mediante muestreo aleatorio estratificado con

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta cinco de los seis ejercicios propuestos.

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E CURSO 010-011 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICA APLICADA A LA CIENCIA OCIALE EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ECOGER UNA DE LA DO OPCIONE Y DEARROLLAR LA

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

APLICADAS A LAS CIENCIAS SOCIALES

APLICADAS A LAS CIENCIAS SOCIALES IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Enunciado Germán-Jesús Rubio Luna e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8.

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8. ROBLEMAS SOLUCIONADOS SOBRE VARIABLES ALEATORIAS CONTINUAS DIST NORMAL AROX DE LA DIST BINOMIAL ROFESOR ANTONIO IZARRO 1º (Castilla y León, Junio, 99 Sea X una variable aleatoria cuya función de distribución

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles