ESTADÍSTICA DESCRIPTIVA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA DESCRIPTIVA"

Transcripción

1 ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre

2 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el centro de la distribución. El objetivo es encontrar aquel valor único que represente mejor al resto de los individuos en la distribución. Desafortunadamente no existe un único procedimiento para determinar la tendencia central

3 La media aritmética La media de una distribución es la suma de cada valor dividido el número de casos. Es el promedio de la variable µ = Σx x = x 1 + x 2 + x 3 + x n n n Por tanto para una población de n= 4 3, 7, 4, 6 La media es µ = Σx x = 20 = 5 n 4

4 Cálculo de Media para datos agrupados Se define Xi como punto medio del intervalo de clase = (Límite inferior + Límite superior)/2 Media = Media = µ = µ = Σ x i * n * n i n

5 La mediana La mediana es aquel valor que divide a la distribución exactamente a la mitad (50%) El objetivo de la mediana es precisar exactamente el punto medio de la distribución. La mediana es útil cuando el investigador quiere dividir a la muestra en dos grupos, por ejemplo aquellos con alto puntaje y aquellos con bajo puntaje.

6 Si los datos son impares Se deben ordenar los datos de menor a y entonces la mediana será el punto medio de la lista. Ejemplo: 3, 5, 8, 10, 11. El punto medio es 8. Así que para número impar de datos la mediana se calcula como (n+1)/2

7 Si los datos son pares: Se deben ordenar los datos de menor a mayor y encontrar la mediana calculando el promedio de los dos valores medios. Ejemplo: 8, 8, 9, 10, 11, 13 4 y 5 son los puntos medios. (9+10)/ 2 = 9.5 Así que para número par de datos la mediana se calcula como [(n/2) + (n/2)+1]/2

8 Deciles, cuartiles y percentiles Hay otras medidas de posición (no de tendencia central) análogas a la mediana. Cuartiles: : En lugar de buscar la mitad de los datos, puedo querer determinar el valor del primer cuartil,, que posee la propiedad de que ¼ de los datos sean de menor magnitud que la suya. (Q1, Q2, Q3) Deciles: : Divide a la distribución en 10. Percentiles: : Dividen a la distribución en 100 porciones de tamaño igual. Observese que por definición la mediana es equivalente al 2º cuartil,, al quinto decil y al quincuagésimo percentil.

9 El modo Es la categoría o el valor que acumula el mayor número de frecuencias, es decir es el valor más común. Para encontrarlo simplemente busco aquel valor con mayor frecuencia. Gráficamente, el modo es el punto más elevado de la curva.

10 El modo puede no existir y si existe puede no ser único. Una distribución con un solo modo es unimodal y la que tiene dos modos es bimodal. Ejemplo 3 series de números: 1: 71, 75, 83, 75, 61, 68 2: 71, 75, 83, 74, 61, 68 3: 71, 75, 83, 75, 83, 68

11 Seleccionando una medida de tendencia central Recordemos que el objetivo de las medidas de tendencia central es encontrar aquel valor único que mejor represente a toda la distribución. La media es la medida preferida (esta relacionada con la varianza y la desviación estándar lo cual la hace adecuada para la inferencia estadística). Existen situaciones en las que no es posible calcular la media o bien la misma no es particularmente representativa.

12 Estadísticos a utilizar según escala de la variable Tipo de escala de la variable Nominal Ordinal Interval Estadístico Modo Modo Mediana Modo Mediana Media

13 Cuando usar la mediana Valores extremos o distribuciones sesgadas Unos pocos valores extremos tienen un alto impacto provocando que la media se desplace del centro de la distribución. Ejemplo en Spss (base ejemplo 3.sav sav) Encontramos que la media no es muy representativa de los valores de la distribución. El valor extremo infla el promedio Con valor extremo Sin valor extremo Media = 20,3 Media = 11,4 Mediana= 11,5 Mediana =11 Por tanto, conviene usar la mediana si la distribución es sesgada, ya que los valores en la cola de la distribución tienden a correr la media.

14 Cuando usar el modo Como alternativa de la media o en combinación con ella. 1. Escalas nominales: : Dado que las escalas nominales no miden cantidad, el modo es la única opción para describir tedencia central 2. Variables discretas: : Son aquellas que no pueden ser divisibles. Ejemplo: : número de hijos. Es posible calcular la media y decir el promedio de hijos por famila es de 2.4 pero es mejor hablar del caso típico o modal y decir: el valor modal muestra que una familia tiene 2 hijos. 1. Describir la forma: : dado que no tiene cálculos es una forma rápida de encontrar la forma de la distribución. Ejemplo: : si decimos que los puntajes de un examen tienen una media de 72 y un modo de 80, tengo una mejor foto de la distribución que si sólo menciono la media.

15 La forma de la distribución Dado que la media, la mediana y el modo están tratando de medir lo mismo (tendencia central) es esperable que estos 3 valores tengan cierta relación. Distribución simétrica: La media y la mediana coinciden en el centro de la distribución, dividiendo a la misma en dos mitades iguales. Si solamente hay un modo, está exactamente en el centro y por tanto los 3 valores (media, mediana y modo) coinciden.

16

17 Distribuciones sesgadas: La distribución no esta dividida en dos partes iguales. Sesgada a la derecha: : El pico (frecuencia más alta) está en el lado izquierdo. En orden de dividir a la distribución a la mitad (50%), la mediana debe ubicarse a la derecha del modo. La media esta situada a la derecha de la mediana ya que es influenciada por los valores extremos. Sesgada a la izquierda: : El pico se acumula en el lado derecho y la cola de la distribución en el izquierdo.

18

19 2. Dispersión o Variabilidad Variabilidad tiene el mismo significado en estadística que en el lenguaje común. Nuestro objetivo es medir la variabilidad de un conjunto de datos. Si todos los puntajes de la distribución fueran iguales la variabilidad sería 0. Si hay una pequeña diferencia entre valores, la variabilidad es pequeña y si la diferencia entre valores es grande, entonces la variabilidad es grande.

20

21 Una buena medida de variabilidad debe servir para dos propósitos: Describir la distribución. Específicamente decir si los datos están agrupados o dispersos. Cuanta distancia espero encontrar entre los valores o entre un valor y la media. La variabilidad representa el resto de la distribución. Utilidad en estadística inferencial en donde pequeñas muestras son utilizadas para responder preguntas de toda la población.

22 Rango Es el indicador de dispersión más sencillo. Se calcula como la diferencia entre la primera y la última observación en una serie ordenada de mayor a menor. R = X n X 1

23 Desviación cuartil o rango semicuartil Es la mitad de la distancia entre el primer y el tercer cuartil en una distribución de frecuencias Es decir: Q = (Q3 Q1) / 2 Esta medida es poco influenciable a valores extremos pero sigue sin mostrar una buen foto de cómo se dispersan o agrupan los datos.

24 Desviación estándar y varianza Es la medida más usada y la más importante. Utiliza la media de la distribución como punto de referencia y mide variabilidad a través de la distancia de cada valor a la media. Determina si los valores se agrupan cercanos a la media o lejanos.

25 Paso 1: Definimos Desviación como la distancia y dirección respecto a la media. (x - µ) Hay dos partes en la desviación,, el número y el signo (+ o -) El signo indica la dirección n respecto a la media: si esta por encima (+) o por debajo (-) Paso 2: Nuestro objetivo es tener una medida de la distancia promedio a la media, así que debemos calcular la media de las desviaciones. La suma de los (x - µ) es 0. Paso 3: Debo librarme del signo, para lo cual elevo al cuadrado cada diferencia respecto a la media. Utilizando la media de las desviaciones cuadradas definimos la Varianza

26 Por tanto: Varianza s 2 = Σ (x - µ) 2 n-1 * Paso 4: Simplemente incorpora una corrección a los cuadrados calculados anteriormente, para lo cual definimos Desvio estándar s = varianza * Observe que la fórmula utiliza n-1 n 1 en vez de n. Este ajuste es necesario como forma de corregir el sesgo en la varianza de la muestra. El efecto del ajuste permite incrementar el valor que obtenemos de manera que la varianza en la muestra sea más precisa.

27

28 Una analogía para la media y la desviación estándar Supongamos que se debe decidir donde ubicar un nuevo liceo en un pueblo. Se consideró la opción de instalarlo en el lado sur del pueblo, pero fue desechado porque existe un gran número de estudiantes que viven en el norte. La ubicación del liceo es análogo al concepto de media. La media se ubica en el centro de la distribución de frecuencias. Para cada estudiante del pueblo, es posible medir la distancia entre su casa y el nuevo liceo. Algunos estudiantes viven a unas pocas cuadras, otros viven a más de 30 cuadras. La distancia promedio que un estudiante debe recorrer para llegar al liceo es análogo al concepto de desvio estándar, ya que éste mide la distancia de un dato respecto a la media.

29 Coeficiente de variación Es una medida relativa de la dispersión. Es útil cuando queremos comparar la variación entre muestras o entre poblaciones. C.V. = S / µ * 100 Ejemplo: Muestra 1: S=10 Media=50 Muestra 2: S=20 Media=200 CV=20% CV=10% Que sea alto o bajo depende de la variable. Para dar una idea muy bajo <10%. Alto >30%

30 En SPSS 3 procedimientos básicos de análisis univariado: Tablas de frecuencia: : Recomendable sobre todo para variables nominales u ordinales - como sexo o nivel socioeconómico- o cuando contamos con variables intervales con un número limitado de categorías. Analyze Descriptive Statistics Frequencies Estadísticos descriptivos: : Medidas de resumen tales como la media, la suma, el máximo o el mínimo, algunas de las cuales sólo pueden aplicarse a variables intervales. Analyze Descriptive Statistics Descriptives Exploración de datos: : Nos permite realizar análisis más profundos sobre las características de los datos, añadiendo además, la posibilidad de introducir factores (variables de corte), para la exploración de distintas poblaciones. Analyze Descriptive Statistics Explore

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN)

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) Las medidas de tendencia central se llaman promedios. Un promedio es un valor típico en el sentido de que se emplea a veces para representar todos los

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

N. Libros No. Estudiantes

N. Libros No. Estudiantes EJERCICIOS RESUELTOS DE ESTADÍSTICA UNIDIMENSIONAL 1. Se pregunta en un grupo de estudiantes por el numero de libros que han leído en el último mes, obteniendo las siguientes respuestas. N. Libros 0 1

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

Herramientas computacionales para la matemática MATLAB: Análisis de datos.

Herramientas computacionales para la matemática MATLAB: Análisis de datos. Herramientas computacionales para la matemática MATLAB:. Verónica Borja Macías Junio 2012 1 Analizar datos estadísticos en MATLAB es sencillo. Máximo y mínimo max(x) si x es vector encuentra el valor más

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

Temas de Estadística Práctica

Temas de Estadística Práctica Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: Medidas de tipo paramétrico Resumen teórico Medidas de tipo paramétrico Medidas de tendencia central Medidas

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

PROBLEMAS ESTADÍSTICA I

PROBLEMAS ESTADÍSTICA I PROBLEMAS ESTADÍSTICA I INGENIERÍA TÉCNICA EN INFORMÁTICA CURSO 2002/2003 Estadstica Descriptiva Unidimensional 1. Un edificio tiene 45 apartamentos con el siguiente número de inquilinos: 2 1 3 5 2 2 2

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN CONTENIDO: 1. MODA 2. MEDIANA 3. MEDIA ARITMÉTICA 4. CUANTILES 5. DIAGRAMA DE CAJA Lecturas recomendadas: PP. 13-18 de La Estadística en Cómic,

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. 3. MEDIDAS DE TENDENCIA CENTRAL Con estas medidas se persigue reducir en pocas cifras significativas el conjunto de observaciones de una variable y describir con ellas ciertas características de los conjuntos,

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Tablas de frecuencias con datos agrupados

Tablas de frecuencias con datos agrupados Tablas de frecuencias con datos agrupados Cuando los valores de la variable son muchos, conviene agrupar los datos en intervalos o clases para así realizar un mejor análisis e interpretación de ellos.

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

ESTADÍSTICA I Código: 8219

ESTADÍSTICA I Código: 8219 ESTADÍSTICA I Código: 8219 Departamento : Metodología Especialidad : Ciclo Básico Prelación : Sin Prelación Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

UNIDAD IV MEDIDAS DE DISPERSIÓN

UNIDAD IV MEDIDAS DE DISPERSIÓN UNIDAD IV MEDIDAS DE DISPERSIÓN ISC. Claudia García Pérez 1 PRESENTACIÓN Los estudios estadísticos permiten hacer inferencias de una característica de una población a partir de la información contenida

Más detalles

EJERCICIOS ESTADÍSTICA DESCRIPTIVA

EJERCICIOS ESTADÍSTICA DESCRIPTIVA EJERCICIOS ESTADÍSTICA DESCRIPTIVA 1.- Dada la siguiente distribución de frecuencias de variable discreta. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica x i f i 47 1 48 3 49 2 50

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. TEMA 3: ESTADÍSTICA DESCRIPTIVA 3.1 Conceptos fundamentales Es el conjunto de procedimientos y técnicas empleadas para recolectar, organizar y analizar datos, los cuales sirven de base para tomar decisiones

Más detalles

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética En un examen de matemáticas con tiempo, los estudiantes resuelven un problema particular en diferentes

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc.

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. Objetivo: Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. CALC: MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central sirven como puntos de

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

TRATAMIENTO DE PUNTAJES

TRATAMIENTO DE PUNTAJES TRATAMIENTO DE PUNTAJES Andrés Antivilo B. Paola Contreras O. Jorge Hernández M. UNIDAD DE ESTUDIOS E INVESTIGACIÓN Santiago, 2015 [Escriba texto] TABLA DE CONTENIDO TRATAMIENTO DE LOS PUNTAJES... 4 1.1.

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Estadística descriptiva. Representación de datos descriptivos

Estadística descriptiva. Representación de datos descriptivos 6 Estadística descriptiva. Representación de datos descriptivos Alberto Rodríguez Benot Rodolfo Crespo Montero 6.1. Introducción Tal como vimos en la introducción, la estadística descriptiva comprende

Más detalles

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Introducción a la estadística descriptiva La estadística descriptiva ayuda a describir las características de grupos

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto. FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada

Más detalles

Microsoft Project 2013

Microsoft Project 2013 Microsoft Project 2013 SALOMÓN CCANCE Project 2013 Salomón Ccance www.ccance.net CCANCE WEBSITE ANEXO 2. MANEJO DE VISTAS Y TABLAS. 2.1. ELEMENTOS DE VISUALIZACIÓN DE MICROSOFT OFFICE PROJECT PROFESSIONAL

Más detalles

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Matemática UNIDAD 6. Estadística 1 Medio GUÍA N 5 TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Cada día aparecen gráficos o datos, por ejemplo en la prensa o en televisión. Quién

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD UNIDAD II PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD Por: Prof. Gastón A. Pérez U. (2.1) VARIABLES ESTADÍSTICAS (2.1.1) INTRODUCCIÓN (a) LA VARIABILIDAD Cuando se desea mejorar un proceso

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología Capítulo 3 CARACTERÍSTICAS DE LAS DISTRIBUCIOES DE FRECUECIAS 1. CARACTERÍSTICAS DE UA DISTRIBUCIÓ UIVARIATE Hasta ahora hemos utilizado representaciones gráficas para

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES MÁLAGA, 2004 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría.

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Trabajo Jonathan A. Trejos O. 1 Primer problema El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Enunciado 1 Halle y pruebe una bonita fórmula para el producto

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 Es el conjunto sistemático de procedimientos para la observación, registro, organización, síntesis y análisis e interpretación de los fenómenos

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud).

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud). Materia: Matemática de Séptimo Tema: Área de rectángulos Qué pasaría si los padres de Ed le estuvieran comprando una cama nueva y él tuviera que decidir qué tamaño de cama es mejor para él? En un principio

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

Universidad Nacional de Santiago del Estero Facultad de Humanidades, Ciencias Sociales y de la Salud

Universidad Nacional de Santiago del Estero Facultad de Humanidades, Ciencias Sociales y de la Salud IDENTIFICACIÓN: Nombre de la Asignatura: ESTADISTICA Carrera: Lic. Y Porf. En Educación para la Salud Ciclo: Primero. Año: 2010 Correlativas: Anterior: Ninguna Posterior: Salud Pública y Técnicas de Investigación

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

BOLETÍN DE PRENSA Bogotá, D.C., 2 de Enero de 2013 BOGOTÁ: POBREZA MONETARIA Introducción CONTENIDO

BOLETÍN DE PRENSA Bogotá, D.C., 2 de Enero de 2013 BOGOTÁ: POBREZA MONETARIA Introducción CONTENIDO BOLETÍN DE PRENSA Bogotá, D.C., 2 de Enero de 2013 BOGOTÁ: POBREZA MONETARIA 2011 Introducción CONTENIDO Introducción 1. Resultados 1.1 Pobreza y Pobreza Extrema 1.2 Coeficientes de Gini 2. Perfiles de

Más detalles

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Objetivos 2 Identificar los tipos de gráficas. Definir los conceptos tablas y cuadros Reconocer las partes de una gráfica. Construir

Más detalles

PRÁCTICA 3 EJERCICIOS RESUELTOS

PRÁCTICA 3 EJERCICIOS RESUELTOS PRÁCTICA 3 Un estadístico podría meter su cabeza en un horno y sus pies en hielo, y decir que en promedio se encuentra bien. EJERCICIOS RESUELTOS EJERCICIO 1 Los psicólogos que trabajan en un Centro de

Más detalles

Una distribución de frecuencias es una herramienta estadística muy útil para organizar un grupo de observaciones.

Una distribución de frecuencias es una herramienta estadística muy útil para organizar un grupo de observaciones. DISTRIBUCIÓN DE FRECUENCIAS (Tomado de: http://mx.geocities.com/fracosta11/dfrec.html) Una distribución de frecuencias es una herramienta estadística muy útil para organizar un grupo de observaciones.

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof.

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof. UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA Prof. Evy Guerrero Análisis e interpretación de los datos Una vez recolectada la información

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS

MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS UNIVERSIDAD AUTÓNOMA DE CENTRO AMÉRICA SEDE REGIONAL PACÍFICO NORTE NICOYA - GUANACASTE MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS CURSO: PROBABILIDAD Y ESTADÍSTICA PREPARADO POR: ING. ALLAN VILLEGAS

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

MEDIDAS DE DISPERSIÓN

MEDIDAS DE DISPERSIÓN CAPÍTULO 15 MEDIDAS DE DISPERSIÓN En el capítulo anterior se estudiaron las medidas de tendencia central, que son un indicador de cómo los datos se agrupan o concentran en una parte central del conjunto.

Más detalles

Se encuentra en la página del buscador de estudios del Programa de Estudios y Análisis del Ministerio de Ciencia e Innovación

Se encuentra en la página del buscador de estudios del Programa de Estudios y Análisis del Ministerio de Ciencia e Innovación 1. CÓMO ENTRAR? Se encuentra en la página del buscador de estudios del Programa de Estudios y Análisis del Ministerio de Ciencia e Innovación http://www.ea-web.es. Haga clic en el botón Entrar 2. BUSCAR

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles