Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica. Multiplexación por división de frecuencias ortogonales OFDM

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica. Multiplexación por división de frecuencias ortogonales OFDM"

Transcripción

1 Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0502 Proyecto Eléctrico Multiplexación por división de frecuencias ortogonales OFDM Por: Danny Garro Díaz-A72719 Ciudad Universitaria Rodrigo Facio Julio del 2012

2 Multiplexación por división de frecuencias ortogonales OFDM Danny Garro Díaz Sometido a la Escuela de Ingeniería Eléctrica de la Facultad de Ingeniería de la Universidad de Costa Rica como requisito parcial para optar por el grado de: BACHILLER EN INGENIERÍA ELÉCTRICA Aprobado Por el Tribunal: Ing. Jhonny Cascante Ramírez, Msc. Profesor Guía Ing. Martin Espinoza González Profesor Lector Ing. Pablo Acuña Quirós Profesor Lector II

3 DEDICATORIA A mis padres, y familia por todo el apoyo que me han brindado. III

4 RECONOCIMIENTOS Para muchos buenos profesores conocidos a lo largo de mi carrera y buenas personas con deseos de ayudar. Al profesor tutor de este proyecto y a los profesores lectores, por el apoyo, tiempo y dedicación para el desarrollo del mismo. IV

5 ÍNDICE GENERAL ÍNDICE DE FIGURAS... VIII ÍNDICE DE TABLAS... XI RESUMEN... XII CAPÍTULO 1: Introducción Justificación Objetivos Objetivo general: Objetivos específicos: Metodología... 5 CAPÍTULO 2: Fundamentos teóricos Antecedentes e historia de las telecomunicaciones Concepto y generalidades de las telecomunicaciones Generalidades sobre la digitalización de señales Elementos de un sistema de procesamiento digital de señales Etapas de la conversión A/D y D/A Muestreo Aliasing Cuantificación Codificación Sistemas de multiplexación/modulación Multiplexación Multiplexión por División de Frecuencia (FDM) Multiplexión por División de tiempo (TDM) Multiplexión por división en código (CDM) Multiplexión por división de onda (WDM) Modulación Señales analógicas Modulación de amplitud (AM) Modulación de frecuencia (FM) Modulación de Fase (PM) Señales Digitales Amplitude Shift Keying (ASK) Frequency Shift Keying (FSK) Phase Shift Keying (PSK) Quadrature Phase Shift Keying (QPSK) Quadrature Amplitude Modulation (QAM)...42 CAPÍTULO 3: Multiplexación por división de frecuencias ortogonales OFDM V

6 3.1 OFDM tecnología actual necesaria Evolución de OFDM Principio de la técnica de modulación OFDM Generación y recepción de señales OFDM Uso de la FFT en OFDM Transmisor/Receptor OFDM Transmisor OFDM Receptor OFDM Tiempo de Guarda y Prefijo Cíclico Estructura del símbolo OFDM Codificación para la corrección de errores...64 CAPÍTULO 4: Aplicaciones, ventajas y desventajas del uso de OFDM en diversos sistemas de comunicación Aplicaciones Digital Video Broadcasting (DVB-T) Fundamentos de la DVB-T Digital Audio Broadcasting (DAB) Historia del DAB La técnica OFDM en DAB Servicios adicionales Protocolos de red local, Wireless LAN El grupo IEEE : una visión global IEEE g Cuatro capas físicas diferentes Uso obligatorio del preámbulo corto Nuevos mecanismos de protección para satisfacer los aspectos de la interoperabilidad Línea de Suscriptor Digital Asimétrica (ADSL) Estándar ITU G Coded orthogonal frequency-division multiplexing (COFDM) OFDM en telefonía móvil, LTE-4G OFDMA como técnica de acceso múltiple para el enlace descendente Parámetros de OFDMA empleados por LTE SC-FDMA como técnica de acceso múltiple para el enlace ascendente Justificación Esquemas de transmisión y recepción SC-FDMA Ventajas y desventajas de el uso de OFDM Ventajas Desventajas Variantes en la implementación de OFDM COFDM DMT-OFDM OFDMA ERP-OFDM DSSS-OFDM Técnicas para reducción de PAPR (peak-to-average power radio) Clipping...92 VI

7 Tone injectión (TI) Selected Mapping (SLM)...94 CAPÍTULO 5: Conclusiones y Recomendaciones Bibliografía Apéndices Apéndice A1.1 Transformada rápida de Fourier FFT/iFFT A1.1.1 Transformada Discreta de Fourier A1.1.2 Algoritmos Rápidos de Fourier VII

8 ÍNDICE DE FIGURAS Figura 2.1 Representación gráfica de una onda senoidal con frecuencia de 3 Hz [17]... 9 Figura 2.2 Señal analógica [17]... 9 Figura 2.3 Señal digital [17] Figura 2.4 Diagrama de bloques de un sistema de procesamiento digital de señales [1] Figura 2.5 Formas de onda de las señales en cada etapa del procesamiento digital [1] Figura 2.6 Partes básicas de un convertidor A/D [10] Figura 2.7 Muestreo de una señal analógica [10] Figura 2.8 Muestreo de una señal analógica de banda limitada y aliasing con sus componentes espectrales. [3] Figura 2.9 Proceso de Cuantización [3] Figura 2.10 Multiplexión por división de frecuencia. (a) Los anchos de banda originales. (b) Incremento de frecuencia de los anchos de banda (c) El canal multiplexado. [5] Figura 2.11 Multiplexión por División de tiempo [21] Figura 2.12 Multiplexión por división en código [21] Figura 2.13 Multiplexión por división de longitud de onda. [5] Figura 2.14 Esquema de modulación [19] Figura 2.15 Esquema de métodos de modulación Figura 2.16 Señal portadora [18] VIII

9 Figura 2.17 Moduladora (datos) [18] Figura 2.18 Señal modulada en amplitud [18] Figura 2.19 Componentes frecuencia de DSB-SC AM [18] Figura 2.20 Componentes frecuencia de DSB AM [18] Figura 2.21 Señal Portadora en FM [18] Figura 2.22 Señal Moduladora en FM [18] Figura 2.23 Señal modulada en frecuencia [18] Figura 2.24 Espectro en frecuencia: Señal modulada en frecuencia [18] Figura 2.25Señal modulada en fase [18] Figura 2.26 Señales presentes en modulación ASK [18] Figura 2.27 Señales presentes en modulación ASK Figura 2.28 Señales presentes en modulación FSK [20] Figura 2.29 Señal FSK en el dominio de la frecuencia [20] Figura 2.30 Esquema modulación para 2PSK. [20] Figura 2.31 Secuencia de bits de fase portadora [20] Figura 2.32 Representación gráfica de bits de fase portadora [20] Figura 2.33 Distintos desplazamientos de fase de la señal modulada [20] Figura 2.34 Señal modulada en 8QAM [20] Figura 3.1: Capacidad de transmisión y movilidad de las tecnologías inalámbricas.[12] Figura 3.2 Modulación OFDM realizada en RF con 8 subportadoras Figura 3.3 Transceptor según Estándar a usando OFDM Figura 3.4: Espectro de una señal OFDM con 6 sub-portadoras. [6] IX

10 Figura 3.5: Diagrama en bloques de un transmisor OFDM. [6] Figura 3.6: Diagrama en bloques de un receptor OFDM. [6] Figura 3.7 Esquema de Modulación/Demodulación OFDM Figura 3.8 Disposición de los datos en los canales de frecuencia ortogonales contiguos en OFDM Figura 3.9 Constelación para 16-QAM que usa código Gray Figura 3.10 El Prefijo Cíclico Figura 3.11: Efecto del prefijo cíclico en el símbolo OFDM recibido. [12] Figura 3.12: Estructura del símbolo OFDM. [12] Figura 4.1 Multiplexación de usuarios en OFDMA Figura 4.2 Ejemplo de la evolución temporal de un símbolo OFDM compuesto por 3, 6 y 12 subportadoras, moduladas por una secuencia de símbolos alternados +1, Figura 4.3 Ejemplo del PAPR para un símbolo OFDM compuesto por 3, 6 y 12 subportadoras, moduladas por una secuencia de símbolos alternados +1, Figura 4.4 CCDF del PAPR para una transmisión OFDMA Figura 4.5 Esquema de transmisión de la señal SC-FDMA Figura 4.6 Comparación entre Hard Clipping y Soft Clipping Figura 4.7 Desplazamiento en la constelación en la técnica TI Figura 4.8 Diagrama de bloques de SLM Figura A1.1 Gráfico comparativo entre algoritmos para DFT Figura A1.2 Dígrafo correspondiente al algoritmo Radix-2 FFT para N= Figura A1.3 Estructura Radix-2 Butterfly X

11 ÍNDICE DE TABLAS Tabla 2.1 Asignación de niveles para una señal binaria [24] 40 Tabla 3.1 Historia de la Técnica OFDM y sus Aplicaciones Inalámbricas [11] 48 Tabla 4.1: Tabla que muestra las características de la modulación OFDM empleada por el estándar DVB-T. [16] 67 Tabla 4.2: Tabla que resume las 4 capas físicas que describe el estándar g [16] 73 Tabla 4.3 Comparación de OFDM con otros tipos de multiplexación 89 Tabla 4.4 Comparativa entre técnicas de reducción de PAPR. [30] 95 XI

12 RESUMEN Este documento consta de principalmente del uso de la multiplexación por división de frecuencia ortogonales OFDM en los sistemas de telecomunicaciones actuales. En el segundo capítulo se hace un recorrido por los conceptos básicos y fundamentos teóricos del proceso de digitalización de señales, los procesos de modulación/multiplexación que son necesarios para la transmisión efectiva de las señales en el proceso de telecomunicación. Para el tercer capítulo se aborda el tema principal OFDM, conociendo un poco de historia de este tipo de multiplexación y como ha llegado a ser lo que hoy es, se abordan temas de estructuras y métodos utilizados por esta técnica, además de el desarrollo matemático por medio de la transformada de Fourier que hace posible que esta técnica sea la preferida para la mayoría de sistemas de telecomunicaciones, principalmente aquella que son transportadas por medios inalámbricos. Para el capítulo cuatro, se desarrollan las principales aplicaciones en el mundo de las comunicaciones en las cuales OFDM ha encontrado su lugar de aplicación, se explican con detalle cada una, las técnicas utilizadas, y algunos tipos de variantes implementadas en OFDM para adecuarla a requerimientos específicos de cada una de ellas. En este mismo capítulo se describen con detalle cada una de las ventajas y desventajas que trae consigo el uso de OFDM en los sistemas de comunicación, además de una tabla comparativa de este tipo de multiplexación respecto a otras existentes. Por último en el capitulo final, se presentan las conclusiones realizadas luego de la elaboración de este documento, así como algunas posibles recomendaciones para posibles investigaciones futuras. La conclusión principal fue que la técnica OFDM es la técnica que sin lugar a duda es la más utilizada hoy en día en los sistemas de comunicaciones modernos, es la técnica de multiplexación que ha logrado en el sistema de telecomunicación un desarrollo elevado en los últimos años, y con esto a logrado el beneficio de miles de usuarios alrededor del mundo y la efectividad en el proceso de telecomunicación. XII

13 2 CAPÍTULO 1: Introducción 1.1 Justificación Con el exponencial desarrollo de la tecnología específicamente la microelectrónica a nivel mundial en las últimas décadas, muchos procesos y aplicaciones se han visto beneficiadas, debido a un alto crecimiento y demandas de sus productos, con la popularización y abaratamiento de la tecnología el sector de comunicaciones ha sido uno de los mercados que ha crecido mayormente en los últimos años, el mundo se ha vuelto una gigantesca red que prácticamente interconecta a cualquier parte de él, hoy en día es posible tener una conversación con una persona que este en el otro lado del mundo completamente en cuestión de segundos, esta disminución de la brecha de tiempo y espacio ha llevada a que cada vez más se tenga que mejorar la forma y la manera en las que se llevan a cabo las comunicaciones. A como se ha avanzando en años atrás en el paso de comunicaciones de tipo analógicas a comunicaciones de tipo digital como avance y mejoramiento para estas, hoy en día quizá el mayor objetivo no es la rapidez con que se lleva a cabo una llamada telefónica, sino mas bien se vela por una mejor y mayor eficiencia en las comunicaciones, esto es que mayores comunicaciones se lleven a cabo en el mismo instante y procurando que los costes de las mismas se mantengan accesibles para la gran mayoría de personas. Nuestro país ha experimentado una serie cambios radicalmente importantes en el último año principalmente, con la apertura de las telecomunicaciones al mercado ha ocurrido un despliegue y popularización masiva en la parte de las telecomunicaciones, esto ha llevado a empresas existentes y empresas venideras a poner en marcha proyectos de mejoramiento y refuerzo en la parte de tecnología, para lograr una mayor eficiencia y prestar un mejor servicio, para febrero de presente año el gobierno reveló que existen en el país alrededor de 4.4 millones de líneas celulares, de las cuales 4 millones pertenecen al ICE y a las empresas privadas recientemente instaladas, estas cifras superan la cantidad de habitantes en el país según el reciente censo, lo que implica que al menos cada costarricense posee una línea telefónica. Es por ello que se practican técnicas mejoradas en la forma de transmisión de señales, sea de voz, de video, o imagen, una técnica que particularmente se desarrollara en este documento es la de multiplexación de señales por división de frecuencias ortogonales OFDM, que a como se habló anteriormente lo que busca es una mayor eficiencia en la transmisión de señales digitales, logrando transmitir miles de señales juntas en una sola señal portadora diferenciándose unas de otras por diferencias en las frecuencias de transmisión de cada señal y por medio de desfasar en noventa grados las ondas de fase

14 3 respecto a las de magnitud, con ello, se logran identificar perfectamente y posteriormente reconstruir cada onda correctamente, esta técnica además de proporcionar la ventaja de poder transmitir mas señales por unidad de tiempo, permite también un mejoramiento en la calidad de la transmisión, esto es, conversaciones más limpias y claras, videos más nítidos, etc., además también esta técnica tiene la particularidad de que es más inmune a fluctuaciones o interferencia del medio (ruido), además de que se aprovecha mayormente el espectro de frecuencias destinado para la transmisión por telecomunicaciones. Con este trabajo se pretende conocer un poco acerca del proceso de transmisión de señales digitales, el proceso de modulación y multiplexación de las mismas, conocer las implicaciones, las ventajas y las desventajas de la multiplexación por OFDM, ya que este tipo de multiplexación aunque aún no es mayoritaria en el mercado se perfila para ser una de las tecnologías que se van a adoptar, es por ello que se importante conocer detalles técnicos y prácticos, así como sus múltiples y variadas aplicaciones en los sistemas de telecomunicaciones.

15 4 1.2 Objetivos Objetivo general: Analizar las técnicas de multiplexación de señales digitales específicamente la técnica de multiplexación por división de frecuencias ortogonales OFDM y conocer su aplicación en los sistemas de telecomunicaciones Objetivos específicos: Estudiar qué es un sistema de multiplexación/modulación y para qué se utiliza dentro de un sistema de telecomunicaciones. Hacer una revisión general a los sistemas de multiplexación/modulación más importantes que se utilizan. Analizar el caso de OFDM y explicar en qué consiste y cómo funciona. Además, ventajas y desventajas. Hacer una tabla comparativa con respecto a otras técnicas. Estudiar y conocer el uso de los algoritmos de Fourier (ifft/fft) en la manipulación matemática de las señales OFDM Estudiar el uso del OFDM en diversos sistemas de comunicación, particularmente en LTE 4 generaciones móviles. Investigar lo último en OFDM, esto es, si ya hay algo que lo supere o si hay algún tipo de variante.

16 5 1.3 Metodología La metodología de investigación y recopilación de información y datos estadísticos será la siguiente: Recopilación bibliográfica y breve explicación sobre como se lleva a cabo la transmisión de información, sea datos, voz o imagen, a través de el receptor a un emisor, implicaciones y principales problemas que se presentan. Recopilación bibliográfica por medio de internet, libros, publicaciones y material universitario sobre que es un sistema de multiplexación/modulación de una señal analógica para su conversión en una señal digital para su proceso de transmisión. Breve recopilación bibliográfica por medio de internet, libros, publicaciones sobre las principales técnicas de multiplexación de señales digitales, ventajas y desventajas. Recopilación bibliográfica por medio de internet, libros, publicaciones sobre en que consiste la técnica de Multiplexación de señales por división de frecuencias ortogonales, ventajas y desventajas, realización de un cuadro comparativo sobre este método respecto a los anteriores investigados.

17 6 Investigación por medio de libros, revistas, publicaciones oficiales e internet, acerca de las principales aplicaciones y utilidades que se le da a la técnica de las OFDM, principalmente en las tecnologías móviles, analizar el funcionamiento de la técnica. Investigación por medio de libros, revistas, publicaciones oficiales e internet acerca de las últimas mejoras agregadas o en proceso de incorporación a la tecnología de multiplexación OFDM. Investigación por medio de libros, revistas, publicaciones oficiales e internet de los posibles avances que se pueden lograr con este tipo de tecnología. Realizar un estudio comparativo de OFDM con respecto a otras técnicas de multiplexación para determinar sus ventajas y desventajas en su aplicación en sistemas de telecomunicaciones. Elaborar una redacción del trabajo escrito final con todos estos detalles y toda la información pertinente a este tema, además de elaborar una presentación para ser mostrada frente al jurado pertinente.

18 7 CAPÍTULO 2: Fundamentos teóricos 2.1 Antecedentes e historia de las telecomunicaciones Antes de que las telecomunicaciones fueran a como las conocemos hoy, o tan siquiera se lograra transmitir la mas mínima información, se tuvo que pasar por un largo proceso de investigación y descubrimientos que fundamentaran y lograran construir las teorías que hoy conocemos como un todo, sin embargo en el pasado esto se veía como algo posible, el problema radicaba en que no se tenían las bases necesarias para elaborar y construir lo que hoy conocemos como un sistema de telecomunicaciones. Por ello físicos, matemáticos y científicos trabajaban en como poder explicarse situaciones cotidianas de la vida, trataban de poder describir y analizar fenómenos naturales que tras su estudio pudiesen ser utilizados para su beneficio. El sector de las telecomunicaciones tiene a un personaje fundamental en la historia y la creación de los cimientos de lo que hoy conocemos, fue el físico escocés James Clerk Maxwell quien construyó la base matemática sobre la cual se desarrollan las telecomunicaciones, en 1873 Maxwell en su obra Treatise on Electricity and Magnetism [20], declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos y descritos hasta el momento de manera cualitativa, un ejemplo de estas fueron las leyes de la inducción electromagnética y de los campos de fuerza enunciados por Michael Faraday. Con estas leyes y su respectiva formulación matemática Maxwell se pudo adentrar más y definió el concepto de onda electromagnética, la cual consiste en una interacción matemática entre electricidad y magnetismo mediante sus propias ecuaciones que describen y cuantifican los campos de fuerzas.[20] Maxwell predijo que era posible propagar ondas por el espacio libre utilizando descargas eléctricas, hecho que corroboró Heinrich Hertz en 1887, ocho años después de la muerte de Maxwell, y que, posteriormente, supuso el inicio de la era de la comunicación rápida a distancia. A la construcción teórica erigida por James Clerk Maxwell, Heinrich Hertz ( ) brindó la base de la comprobación experimental. [20] En 1888 logró producir ondas por medios exclusivamente eléctricos y demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que sus longitudes de onda son enormemente mayores. Hertz pone en evidencia que las ondas eléctricas se dejan refractar, reflexionar, polarizar, y que su velocidad de propagación es igual a la luz. Con esto la predicción de Maxwell tiempo atrás se había realizado. Con el tiempo Hertz logró desarrollar el primer transmisor de radio generando radiofrecuencias entre 31 MHz y 1.25 GHz. [20]

19 8 2.2 Concepto y generalidades de las telecomunicaciones. La palabra Telecomunicación proviene del prefijo griego tele, distancia, y del latín communicare,[21] lo cual nos da un significado de comunicación a distancia, se puede dar entonces una primera definición de este concepto, como una técnica que consiste en transmitir un mensaje desde un punto a otro, normalmente relacionado a ser bidireccional, osea puede fluir información de un punto A a un punto B y viceversa, esta se puede propagar y transferir de diferentes maneras, unas de ellas lo son la radio, la telegrafía, televisión, telefonía, transmisión de datos a través de redes de computadores a nivel de enlace [21]. El proceso de telecomunicación es toda transmisión, emisión o recepción de signos, señales, datos, imágenes, voz, sonidos o información de cualquier naturaleza que se efectúa a través de cables, medios ópticos, físicos u otros sistemas electromagnéticos. Las partes principales que conforman un sistema de telecomunicaciones son, primeramente un transmisor, segundo una línea o medio de transmisión de información o canal y por último un receptor. El transmisor es el elemento encargado de transformar o codificar los mensajes en un fenómeno físico llamado señal, esto es, que el mensaje que deseamos transmitir ya sea un texto, la voz, una imagen, un video, etc, se codifican por medio de una serie de métodos que discutiremos mas adelante, al codificarse los datos de estas señales se convierten en arreglos o paquetes de códigos ya sea en formato binario o de otro tipo, los cuales en un todo y en la correcta secuencia conforman la señal física que se transmitirá y que representa su información a transferir. El medio de transmisión es de naturaleza física, es el medio por el cual la información fluye, son por decirlo de alguna manera las carreteras de los paquetes o arreglos de datos que se realizaron de la señal por medio del transmisor, es posible que el medio modifique o degrade la señal en su trayecto desde el transmisor al receptor debido a ruido, interferencias o la propia distorsión del canal. El receptor es el elemento que se encarga de recibir los paquetes o arreglos de datos que provienen del transmisor mediante el canal, este debe conocer los parámetros o la forma en la cual el transmisor codificó la información original en paquetes o arreglo de datos, esto para que al momento de recibir estos datos sepa como devolverlos a su forma original y se reconstruya nuevamente la información que se deseaba transmitir. El receptor debe de tener un mecanismo de decodificación capaz de recuperar el mensaje dentro de ciertos límites de degradación de la señal, esto porque al transmitir los paquetes de datos en largas distancias pueden que pierdan un poco sus características y por ende se distorsiona la información, por ende el receptor debe ser capaz de reconocer en un cierto

20 9 límite estas degradaciones para así al reconstruir nuevamente la información ésta esté libre de estos errores y sea lo más parecida a la señal original, en algunos casos, el receptor final es el oído o el ojo humano. [21] 2.3 Generalidades sobre la digitalización de señales Hoy en día cuando se habla de señales debemos abordar el tema sabiendo que existen dos grandes conjuntos de ella, uno de ellos es las señales analógicas y el otro es la de señales digitales. Una señal se define como, una cantidad física que varía con el tiempo, el espacio o cualquier otra variable independiente; matemáticamente, una señal es una función de una o más variables independientes. [21] Ahora podemos definir a una señal analógica como una función definida en un rango continuo de tiempo en el cual la amplitud puede toma valores continuos, de igual manera podemos definir una sseñal eléctrica analógica como aquella en la que los valores de la tensión o voltaje varían constantemente en forma de corriente alterna,[21] incrementando su valor con signo eléctrico positivo (+) durante medio ciclo y disminuyéndolo a continuación con signo eléctrico negativo ( ) en el medio ciclo siguiente. El cambio constante de polaridad de positivo a negativo provoca que se cree un trazado en forma de onda senoidal. Por tanto, una onda eléctrica de sonido puede tomar infinidad de valores positivos y negativos (superiores e inferiores), dentro de cierto límite de volt también positivos o negativos, representados siempre dentro de una unidad determinada de tiempo, generalmente medida en segundos [21]. Figura 2.1 Representación gráfica de una onda senoidal con frecuencia de 3 Hz [21] La siguiente figura muestra un ejemplo de una señal analógica y sus partes para su procesamiento: Figura 2.2 Señal analógica [21]

21 10 Las partes que componen un sistema para captura de una señal analógica son: 1. Onda sonora con intensidad, tono, timbre y frecuencia determinada. 2. Micrófono. 3. Onda eléctrica analógica después de convertida en impulsos por el micrófono. 4. Salida de la señal eléctrica de audio frecuencia para ser grabada o amplificada localmente. Ahora entonces una señal digital es aquella en la cual el tiempo y la amplitud son discretas, (definidas únicamente para determinados valores de tiempo o amplitud), la siguiente figura muestra una señal digital: Figura 2.3 Señal digital [21] La importancia de esto recae en que al hacer uso de las señales ya sea para almacenar o para transmitir se necesita el uso de computadoras y estas han sido diseñadas para trabajar en forma discreta, osea sus programas y componentes pueden procesar mucho mas eficientemente señales de tipo digitales, es por ello que toda señal que se desee transmitir tiene que pasar por un proceso que mas adelante se abordará, el cual se encarga de convertir las señales analógicas en señales digitales con las cuales se pueden realizar prácticamente todo tipo de operaciones. Un sistema de procesamiento digital de señales se puede implementar mediante el uso de algún tipo de software, el cual en su algoritmo se incluyen las ecuaciones matemáticas para este proceso, o la otra manera es por medio de un hardware digital, osea por medio de circuitos lógicos, los cuales representan y hacen la función de las diferentes ecuaciones matemáticas necesarias para la conversión, o también puede ser el caso en el cual se puede tener una mezcla de ambos procesos el cual cada uno ejecutará una función especifica. El procesamiento digital de señales ha permitido un significativo logro en aplicaciones como las telecomunicaciones, imágenes médicas, reproducción de música de alta fidelidad entre otros. Además ha facilitado el diseño y la construcción de equipos altamente sofisticados que realizan complejas funciones y tareas específicas en cuanto al tratamiento en tiempo real de señales en forma digital.

22 Elementos de un sistema de procesamiento digital de señales El procesamiento digital de señales consiste básicamente en tres pasos: la conversión de la señal analógica en digital, el procesamiento de la señal digital y finalmente la conversión de la señal procesada en una forma analógica. Esto ejemplifica claramente un sistema de comunicación, primeramente la señal de voz, audio, etc, que se quiere transmitir se convierte en una señal digital en la cual interviene todo un proceso para la transmisión al receptor deseado, y seguidamente la señal digital se vuelve a convertir nuevamente en la señal analógica que es la señal que el usuario final va ver o escuchar. En la Figura 2.4 se muestra el diagrama de bloques de un sistema de procesamiento digital de señales. [1] Figura 2.4 Diagrama de bloques de un sistema de procesamiento digital de señales [1] Dado que la amplitud de la señal analógica de entrada varía con el tiempo se usa un circuito Sample-and-Hold (S/H) que muestrea la señal analógica de entrada en intervalos periódicos de tiempo y mantiene el valor constante muestreado en la entrada del convertidos-digital para llevar a cabo la conversión digital. [1] La salida del convertidor A/D es una cadena de datos binarios que posteriormente son procesados por el procesador digital que implementa el algoritmo deseado. La salida del procesador digital es convertida en señal analógica por el convertidos digital-análogo (D/A) [4]. El filtro pasabajas a la salida del convertidor D/A elimina los componentes de frecuencia indeseables para que a la salida se tenga procesada la señal analógica [1]. En la Figura 2.5 se muestran las señales resultantes de cada etapa en el procesamiento digital de señales [1].

23 12 Figura 2.5 Formas de onda de las señales en cada etapa del procesamiento digital [1] (a) Señal analógica de entrada, (b) Salida del circuito S/H, (c) Salida del convertidor A/D (d) Salida del procesador digital, (e) Salida del convertidor D/A y (f) Señal analógica de salida

24 Etapas de la conversión A/D y D/A En el proceso de conversión de señales analógicas a señales digitales, (A/D), intervienen varias etapas, las cuales son las siguientes: Muestreo Cuantización Codificación En la Figura 2.6 se presentan las partes básicas de un convertidor A/D [8]. Figura 2.6 Partes básicas de un convertidor A/D [10] En la práctica la conversión A/D se efectúa en un solo dispositivo que toma la entrada Xa(t) y produce un numero codificado binario Muestreo El proceso a través del cual una señal continua Xa(t) es transformada en una señal discreta equivalente x(n) consiste simplemente en la toma de muestras de la señal continua en instantes discretos de tiempo n denominados instantes de muestreo, n= {..., -1,0,1,2,3,...} En la figura 2.7 se presenta un tipo de muestreo uniforme, para realizar este tipo de muestreo es necesaria una señal de reloj que marque el ritmo de la toma de muestras, la frecuencia F s de dicha señal se denomina frecuencia de muestreo en Hz, y su periodo será: T=1/Fs Ecuación 1 Dado que la frecuencia de muestreo es Fs=1/T, se establece una relación entre t (tiempo continuo) y n (tiempo discreto) que es: T=nT=n/Fs Ecuación 2

25 14 El proceso de muestreo se presenta en la Figura 2.7 [8] Figura 2.7 Muestreo de una señal analógica [8] Un sistema muestreador consiste simplemente en un switch que se cierra en el momento marcado por la señal de reloj y en todos los demás instantes permanece abierto (switch analógico). En una computadora digital este proceso tiene lugar en un modulo de adquisición de datos o en un convertidor analógico-digital. Si se conoce la frecuencia máxima de una señal, se puede especificar la velocidad de muestreo necesaria para convertir las señales analógicas en digitales, esto se logra con el teorema de muestreo que fue introducido por Nyquist (1920) y posteriormente popularizado en el clásico artículo de Shannon (1949) [3]. El teorema de muestreo establece que una señal de banda limitada, en tiempo continuo, cuya mayor frecuencia es F max, puede recuperarse de forma única a partir de sus muestras siempre y cuando se cumpla la relación siguiente [3]: F s =2F max Ecuación 3 Si se cumple con la relación anterior se evitara el fenómeno de aliasing que se explica en la siguiente sección Aliasing El fenómeno de aliasing ocurre cuando se muestrea una señal que se desea digitalizar a una frecuencia menor que el doble del ancho de banda de dicha señal, lo que ocurre es que la señal se traslapa, osea los espectro de magnitud en frecuencia quedan interferidos uno por el otro, lo que ocasiona que al querer recuperar la señal original por medio de filtros pasabandas la señal quedara distorsionada y no será una copia correcta de la señal que se quería digitalizar.

26 15 En la Figura 2.8 (a) se muestra una señal con un ancho de banda limitado, además se muestra su espectro en frecuencia, en la Figura 2.8 (b) se presenta la señal luego del proceso de muestreo a una frecuencia de muestreo mayor o igual al doble del ancho de banda de la señal y su respectivo espectro en frecuencia igualmente, y por último en la Figura 2.8 (c) y Figura 2.8 (d) se muestra el espectro de la señal muestreada a menos del doble del ancho de banda dela señal, lo que ocasiona el fenómeno de aliasing [3]. Figura 2.8 Muestreo de una señal analógica de banda limitada y aliasing con sus componentes espectrales. [3]

27 16 Luego del proceso de digitalización de la señal, si esta se quisiera recuperar en la señal original se debe recuperar por medio de un filtro pasabandas, que recupera solo la porción dela señal deseada, sin embargo como se presenta en la Figura 2.8 (e), al filtrar la señal con el fenómeno de aliasing esta no será igual a la de la entrada sino que estará distorsionada, osea si la señal que se quería digitalizar era una señal de voz, y al pasar por el proceso de digitalización y posteriormente recuperar la señal análoga si ocurre aliasing la voz se cortará, se escuchará demasiado ruido, la voz no será igual o simplemente no se escuchará nada. La distorsión puede ser eliminada con un filtro previo al muestreo para limitar el ancho de banda (B) dela señal a procesar [6] Cuantificación La cuantificación consiste en convertir una señal de tiempo discreto con valores continuos a una señal en tiempo discreto con valores discretos (señal digital). El valor de cada muestra de la señal se representa mediante un valor seleccionado de un conjunto finito de valores posibles [3]. La diferencia entre la muestra sin cuantizar X(n) y la salida cuantizada x q (n) se denomina error de cuantificación. En la figura 2.9 se muestra el proceso y el error de cuantificación [3]. Figura 2.9 Proceso de Cuantización [3]

28 17 Como puede observarse en la figura 2.9 (a), la señal ya ha sido muestreada, representada por los puntos en negro, ahora estos puntos hay que asignarlos a un nivel predeterminado que ya antes se debió de haber tomado la decisión de cuantos niveles tendrá este proceso, esto se muestra en la figura 2.9 (b), dependiendo que valor tenga el valor discreto medido se asignará al valor de cuantización mas cercano para que la señal sea lo mas fiel posible a la señal de entrada. Entre más niveles de cuantización se tenga se tendrá un nivel de precisión mas grande a la hora de representar a la señal analógica de entrada Codificación En el proceso de codificación, cada valor discreto Xq(n) se representa mediante una secuencia binaria de b bits, es decir, se asigna un número binario único a cada nivel de cuantificación diferente. Si se dispone de L niveles de requerirán al menos L diferentes valores distintos de códigos binarios. Con una longitud de palabra de b bits se pueden crear 2 b números binarios diferentes, por lo tanto, el numero de bits necesarios para el codificador es b=log 2 L (ya que 2 b =L). Los convertidores A/D disponibles comercialmente tienen una precisión de b=16 o inferior. Generalmente, cuanto mayor sea la velocidad de muestreo y mas fina la cuantificación, mas caro y complejo será el dispositivo. [3]. 2.5 Sistemas de multiplexación/modulación Si hablamos del proceso de las telecomunicaciones, directamente se tiene que abordar muchos temas básicos sobre el como se lleva a cabo todo este proceso, porque quizá el usuario final lo que desea es que al marcar un numero telefónico, o mandar un mensaje este sea atendido inmediatamente, sin importar si este lejos o cerca, o si hay miles de otros usuarios que estén deseando lo mismo en el mismo instante de tiempo, debido a esto es que se deben de implementar procesos y técnicas para lograr este tipo de objetivos. Es por ello que el tema de la Multiplexación y Modulación de las señales es un tema importante de ser atendido para tener una perspectiva mas clara sobre como es que se llevan a cabo las telecomunicaciones Multiplexación Un aspecto muy importante hoy en día en la transmisión de información es la eficiencia con la cual se lleva a cabo el proceso, en una perspectiva básica se pensaría que para transmitir información simplemente se digitaliza una señal analógica y se envía por un medio físico exclusivo para esa transmisión del emisor al receptor. Pero volviendo al punto anterior, esto hoy en día no es eficiente, porque lo explicado anteriormente desperdicia todo el ancho de banda que no es usado del medio de transporte; es por ello que se implementa el método de

29 18 multiplexación, que consiste en la combinación de dos, tres o más canales de información en un solo medio de transmisión usando un dispositivo llamado multiplexor. Múltiplex es la transmisión simultánea de varios canales de información separados en el mismo circuito de comunicación sin interferirse entre sí. Para la comunicación de voz, esto significa dos o más canales de voz en una sola portadora. Para los sistemas telefónicos significa muchos canales en un sólo par de cables o en una sola línea de transmisión coaxial. Es compartir la capacidad de transmisión de datos sobre un mismo enlace para aumentar la eficiencia, es minimizar la cantidad de líneas físicas requeridas y maximizar el uso del ancho de banda de los medios. Para realizar lo anterior, existen diferentes técnicas de multiplexación las principales de ellas son las siguientes: [5] FDM, Multiplexión por División de Frecuencia TDM, Multiplexión por División de Tiempo CDM, la multiplexación por división en código WDM, la multiplexación por división de onda

30 Multiplexión por División de Frecuencia (FDM) La figura 2.10 muestra cómo utilizar FDM para multiplexar tres canales telefónicos de calidad de voz. Los filtros limitan el ancho de banda utilizable a cerca de 3000 Hz por canal de calidad de voz. Cuando se multiplexan muchos canales juntos, se asignan 4000 Hz a cada canal para mantenerlos bien separados. Primero se eleva la frecuencia de los canales de voz, cada uno en una cantidad diferente, después de lo cual se pueden combinar, porque en ese momento no hay dos canales que ocupen la misma porción del espectro. Observe que aunque existen separaciones entre los canales (bandas de protección), hay cierta superposición entre canales adyacentes porque los filtros no tienen bordes bien definidos. Esta superposición significa que un pico fuerte en el borde de un canal se detectará en el adyacente como ruido no térmico. [5] Figura 2.10 Multiplexión por división de frecuencia. (a) Los anchos de banda originales. (b) Incremento de frecuencia de los anchos de banda. (c) El canal multiplexado. [5]

31 20 Los esquemas de FDM que se emplean en el mundo están normalizados hasta cierto punto. Un estándar muy difundido es el de 12 canales de voz a 4000 Hz multiplexados dentro de la banda de 60 a 108 khz. Esta unidad se llama grupo. La banda de 12 a 60 khz a veces se usa para otro grupo. Muchas empresas portadoras ofrecen un servicio de líneas alquiladas de 48 a 56 kbps que se basan en este grupo. Se pueden multiplexar cinco grupos (60 canales de voz) para formar un supergrupo. La siguiente unidad es el grupo maestro, que se compone de cinco supergrupos (en el estándar del CCITT) o de 10 supergrupos (en el sistema Bell). También existen otros estándares que llegan hasta 230,000 canales de voz. [5] Multiplexión por División de tiempo (TDM) Aunque FDM aún se utiliza sobre cables de cobre o canales de microondas, requiere circuitos analógicos y no es fácil hacerla con una computadora. En contraste, TDM puede manejarse por completo mediante dispositivos digitales y a ello se debe su popularidad en los últimos años. Desgraciadamente, sólo se puede utilizar para datos digitales. Puesto que los circuitos locales producen señales analógicas, se necesita una conversión de analógico a digital en la oficina central, en donde todos los circuitos locales individuales se juntan para combinarse en troncales. La tecnología TDM consiste en tener múltiples canales detrás de un multiplexor de señales, el trabajo de este será poner a la salida de él (entrada del medio de transmisión) por un intervalo de tiempo corto y definido cada señal, así entonces se transmitirá una parte de esta señal, luego viene otra y así sucesivamente, al ser tan rápido el cambio y la transmisión de cada señal dará la impresión que todas las señales se están transmitiendo a mismo tiempo, actualmente es una de las más utilizadas y de las tecnologías mas maduras para una transmisión de voz de alta calidad en una red telefónica y para los datos críticos o un ordenador. [5] Figura 2.11 Multiplexión por División de tiempo [25]

32 Multiplexión por división en código (CDM) Se basa en el uso de distintas codificaciones para cada canal, compartiendo tiempo y frecuencia simultáneamente. Es una multiplexación que usa la tecnología de espectro extendido. Espectro extendido se basa en el empleo de códigos de secuencia directa, estos códigos matemáticos transmiten y distinguen entre conversaciones inalámbricas múltiples, los códigos tienen valores pequeños de correlación y son únicos para cada usuario. Es la razón por la que el receptor de un determinado transmisor, es capaz de seleccionar la señal deseada. La multiplexación por división de código, acceso múltiple por división de código o CDMA es un término genérico para varios métodos de multiplexación o control de acceso al medio basado en la tecnología de espectro expandido. CDMA emplea una tecnología de espectro expandido y un esquema especial de codificación, por el que a cada transmisor se le asigna un código único, escogido de forma que sea ortogonal respecto al del resto, como el de la figura En CDMA, la señal se emite con un ancho de banda mucho mayor que el precisado por los datos a transmitir; por este motivo, la división por código es una técnica de acceso múltiple de espectro expandido. [25] Figura 2.12 Multiplexión por división en código [25]

33 Multiplexión por división de onda (WDM) Este tipo de multiplexión se utiliza para los canales con fibra óptica, es una variante de la multiplexión por división de frecuencia. En la figura 2.13 se muestran los principios básicos de la WDM en fibra. Aquí, cuatro fibras se juntan en un combinador óptico, cada una con su energía presente a diferentes longitudes de onda. Los cuatro haces se combinan en una sola fibra compartida para transmisión a un destino distante. En el extremo distante, el haz se divide en tantas fibras como hayan entrado. Cada fibra saliente contiene un núcleo corto especialmente construido que filtra todas las longitudes de onda, excepto una. Las señales resultantes pueden enrutarse a su destino o recombinarse en diferentes formas para transporte adicional multiplexado. [5]. Figura 2.13 Multiplexión por división de longitud de onda. [5] En realidad, aquí nada es nuevo. Se trata simplemente de multiplexión por división de frecuencia a frecuencias muy altas. Siempre y cuando cada canal tenga su propio rango de frecuencia (es decir, longitud de onda), y todos los intervalos estén separados, se pueden multiplexar juntos en la fibra de largo alcance. La única diferencia con respecto a la FDM eléctrica es que un sistema óptico que usa una rejilla de difracción es totalmente pasivo y, por ello, muy confiable. La tecnología WDM ha progresado de tal manera que ha dejado en vergüenza a la tecnología de computadoras. La WDM fue inventada en Los primeros sistemas comerciales tenían ocho canales, cada uno de los cuales era de 2.5 Gbps. En 1998, los sistemas con 40 canales de 2.5 Gbps ya estaban en el mercado. En 2001 había productos con 96 canales de 10 Gbps, con un total de 960 Gbps. Éste es suficiente ancho de banda como para transmitir 30 películas completas por segundo (en MPEG-2). Los sistemas con 200 canales ya están trabajando en el laboratorio. [5]

34 Modulación En telecomunicación el término modulación engloba el conjunto de técnicas para transportar información sobre una onda portadora, típicamente una onda senoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que permitirá transmitir más información simultánea y/o proteger la información de posibles interferencias y ruidos. Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir. La modulación nace de la necesidad de transportar una información a través de un canal de comunicación a la mayor distancia y menor costo posible. Este es un proceso mediante el cual dicha información (onda moduladora) se inserta a un soporte de transmisión [9]. La figura 2.14 muestra el proceso genérico de la modulación [23]. Figura 2.14 Esquema de modulación [23] El proceso inverso, que consiste en separar de la señal modulada, la onda que contiene solamente la información, se llama demodulación. La modificación debe hacerse de tal forma, que la información no se altere en ninguna parte del proceso. Según la portadora sea una señal del tipo analógico o del tipo digital, las diferentes formas de modulación pueden clasificarse en dos grandes grupos: Modulación por onda continua ( Señal analógica) Modulación por pulsos (Señal digital) La razón por la cual casi siempre existe un proceso de modulación es que todas las señales que contienen información, deben ser transmitidas a través de un medio físico (cable multipar, fibra óptica, el espectro electromagnético, etc), que une al transmisor con el receptor [23].

35 24 A excepción de que dicha transmisión sea efectuada en la modalidad de banda base (en cuyo caso no es necesario el proceso de modulación), para llevarla a cabo, es necesario, en la mayoría de los casos, que la información sea modificada o procesada de alguna manera antes de ser transmitida por el medio físico elegido. Es decir, debe existir una adaptación entre la señal moduladora a ser transmitida con la información y el canal. A su vez la señal moduladora puede tener características analógicas o digitales. La figura 2.15 muestra un esquema general de los diferentes tipos de modulación que se explicarán cada uno por separado: Figura 2.15 Esquema de métodos de modulación

36 Señales analógicas Modulación de amplitud (AM) Este es un caso de modulación donde tanto las señales de transmisión como las señales de datos son analógicas. Un modulador AM es un dispositivo con dos señales de entrada, una señal portadora de amplitud y frecuencia constante, y la señal de información o moduladora. El parámetro de la señal portadora que es modificado por la señal moduladora es la amplitud. En otras palabras, la modulación de amplitud (AM) es un tipo de modulación lineal que consiste en hacer variar la amplitud de la onda portadora de forma que esta cambie de acuerdo con las variaciones de nivel de la señal moduladora, que es la información que se va a transmitir. La figura 2.16 muestra una señal periódica, la cual llamaremos señal portadora, que será la señal que se modificara con relación a la señal de la figura 2.17, que es la señal moduladora, o la señal cuyos datos son los que deseamos transmitir, y por último en la figura 2.18 se presenta el resultado del proceso de modulación por amplitud, la cual se llamará Señal modulada en amplitud. Figura 2.16 Señal portadora [22]

37 26 Figura 2.17 Moduladora (datos) [22] Figura 2.18 Señal modulada en amplitud [22] Si definimos ahora la ecuación 4 como la ecuación matemática que modela la señal modulada en amplitud, la cual obtenemos por métodos matemáticos de la suposición mas básica la cual es que la amplitud de la señal modulada v es directamente proporcional a la señal moduladora, como lo demuestra la siguiente ecuación: v( t) = f ( t) V Cos(2 π f t) p p Ecuación 4 [9] Y suponiendo que la señal moduladora una señal periódica de la forma: f ( t) = V Sen(2 π f t) m m Ecuación 5 [9]

38 27 Al realizar el tratamiento matemático obtenemos la siguiente ecuación que nos muestra las diferentes frecuencias presentes en ella: mv p mv p v( t) = VpSen (2 π fpt) + Cos 2 π( fp fm) t Cos 2 π( fp fm) t Ecuación 6 [22] En ella se observan claramente tres términos los cuales trasladándolos al dominio de la frecuencia serian, el primero una componente en frecuencia situado en f p (frecuencia portadora), el segundo es un componente de frecuencia situado en f p -f m, y el tercero en f p +f m, osea la frecuencia de la señal portadora desfasada para adelante y para atrás en una cantidad f m. Entonces con base en la ecuación 6 podemos explicar las dos variantes de la modulación por amplitud las cuales son: Modulación de amplitud de doble banda lateral con portadora suprimida (DSB-SC AM: Double Side Band Suppressed Carrier Amplitud Modulation): La cual consiste en eliminar el primer término de la ecuación 6, por medio de filtros, con lo que se obtendría una representación en frecuencia así [9]: Figura 2.19 Componentes frecuencia de DSB-SC AM [22] Modulación de amplitud de doble banda lateral (DSB AM: Double Side Band Amplitud Modulation): En este tipo de modulación están presentes las tres componentes en frecuencia de la señal modulada, como se muestra [9]:

39 28 Figura 2.20 Componentes frecuencia de DSB AM [22] Modulación de frecuencia (FM) Este es un caso de modulación donde tanto las señales de transmisión como las señales de datos son analógicas y es un tipo de modulación exponencial. En este caso la señal modulada mantendrá fija su amplitud y el parámetro de la señal portadora que variará es la frecuencia, y lo hace de acuerdo a como varíe la amplitud de la señal moduladora. En otras palabras, la modulación por frecuencia (FM) es el proceso de codificar información, la cual puede estar tanto en forma digital como analógica, en una onda portadora mediante la variación de su frecuencia instantánea de acuerdo con la señal de entrada. En la figura 2.21 se presenta la señal portadora, la cual transportara la información de la señal moduladora que se muestra en la figura 2.22, y en la figura 2.23 se presenta la señal modulada en frecuencia [9].

40 29 Figura 2.21 Señal Portadora en FM [22] Figura 2.22 Señal Moduladora en FM [22]

41 30 Figura 2.23 Señal modulada en frecuencia [22] Como se observa en la figura 2.23, se tienen dos diferentes frecuencias respecto al valor en que este la señal moduladora, de la figura 2.22 vemos que cuando está en el semi ciclo positivo se tiene una frecuencia en la señal modulada, y cuando se esta en el semi ciclo negativo de la señal moduladora, la señal modulada presenta otra frecuencia. Si seguimos el mismo procedimiento de la parte de modulación de amplitud se tendrá una señal portadora de la forma: v( t) = V cos(2 π f t) p p Ecuación 7 [9] Como esta será la señal modulada en frecuencia solo que con cambios variables en la parte de la frecuencia, entonces se debe de agregar un término extra en el argumento de la función, resultaría una ecuación como la siguiente: v( t) = V cos(2 π f t + θ ( t)) p p Ecuación 8 [9] Tras métodos matemáticos se llegó a la conclusión de que la ecuación matemática que define una señal de frecuencia modulada es de la forma: t v( t) = Vp cos 2 π f pt + Dfreq f ( σ ) dσ Ecuación 9 [9]

42 31 Donde D freq es una constante llamada sensibilidad de fase, y la integral es de la señal moduladora la cual es de la forma: f ( t) = V sen(2 π f t) m m Ecuación 10 [9] Entonces luego de trabajos algebraicos sobre la ecuación 9 se obtiene la ecuación que representa la señal de una onda en frecuencia modulada: f v( t) = VpCos 2π f pt + cos(2 π fmt) fm Ecuación 11 [9] Se define m f f = como el índice de modulación, donde f m frecuencia de la portadora, y f m la frecuencia de la moduladora. f es la variación de la Al analizar el espectro de frecuencias de una señal modulada en frecuencia ecuación 9, observamos que se tienen infinitas frecuencias laterales, espaciadas en f m, alrededor de la frecuencia de la señal portadora f p ; sin embargo la mayor parte de las frecuencias laterales tienen poca amplitud, lo que indica que no contienen cantidades significativas de potencia, la cual se representan gráficamente como la figura 2.24: Figura 2.24 Espectro en frecuencia: Señal modulada en frecuencia [22]

43 Modulación de Fase (PM) Este también es un caso de modulación donde las señales de transmisión como las señales de datos son analógicas y es un tipo de modulación exponencial al igual que la modulación de frecuencia. En este caso el parámetro de la señal portadora que variará de acuerdo a señal moduladora es la fase. La modulación de fase (PM) no es muy utilizada principalmente por que se requiere de equipos de recepción más complejos que en FM y puede presentar problemas de ambigüedad para determinar por ejemplo si una señal tiene una fase de 0º o 180º. La fase de la señal portadora modulada v es directamente proporcional a la señal moduladora [9]. v( t) = Vp cos 2 π f pt + Dphase f ( t) Ecuación 12 [9] La señal portadora es igual a la figura 2.21, la señal moduladora a la figura 2.22, y la señal modulada en fase se presenta a continuación: Figura 2.25Señal modulada en fase [22]

44 Señales Digitales Amplitude Shift Keying (ASK) Cuando la señal moduladora es de origen digital, la modulación de la portadora está representada por corrientes de amplitudes distintas y se denomina modulación por desplazamiento de amplitud (ASK) [9]. Este tipo de modulación es solo un caso diferente de la modulación AM. Supongamos que se tiene una señal binaria f(t) que representara la señal moduladora, osea la señal que contiene la información a transmitir, con niveles de tensión de 0 a A Volts y anchura de bit Tb, como lo muestra la figura Se supondrá una señal portadora de la forma cos(2 π f t) de alta frecuencia. p Por lo tanto la función de la señal modulada resulta: f = f ( t)cos(2 π f t) ASK p Ecuación 13 [9] En el dominio de la frecuencia sería: 1 Fc ( ω) = F ( ω ωc ) F ( ω + ωc ) 2 Ecuación 14 [9] Es decir: Si f ( t ) = 0 f ( t ) = 0 Si f ( t) ASK = A f ( t) = Acos(2 π f t) ASK p Ecuación 15 [9]

45 34 Este tipo de modulación se representa en la siguiente figura: Figura 2.26 Señales presentes en modulación ASK [22] Debido a que la señal moduladora es una secuencia periódica de pulsos, su espectro de frecuencias obtenido por medio del desarrollo en serie compleja de Fourier tiene la característica de la función sen x/x, La figura 2.27 muestra la señal modulada FSK en distintos dominios: a)

46 35 b) c) Figura 2.27 Señales presentes en modulación ASK. a) Señal FSK en el dominio del tiempo. b) Señal FSK en el dominio de la frecuencia c) Señal FSK espectro de amplitud. [22] Frequency Shift Keying (FSK) Se denomina modulación por desplazamiento de frecuencia a aquella en que el parámetro de la señal senoidal de la portadora que se hace variar en la frecuencia. Cuando la señal moduladora es de origen digital, la señal modulada tomará un número discreto de valores de la frecuencia, iguales al número de valores que correspondan a la señal moduladora. La figura 2.28 muestra este proceso. Esta es la primera técnica que se implemento en términos prácticos, para modular señales digitales de datos mediante normas internacionales. En la actualidad si bien no es usada con exclusividad en los sistemas de transmisión de datos, se continúa empleando en radiocomunicaciones (en estaciones de radiodifusión pública). [23]

47 36 Figura 2.28 Señales presentes en modulación FSK [24] Los dos valores binarios se representan con dos frecuencias diferentes (f 1 y f 2 ) próximas a la frecuencia de la señal portadora f p. VpSen(2 π f1t) Para un "1" binario v( t) = V psen(2 π f2t) Para un "0" binario Ecuación 16 [9] El índice de modulación tiene gran incidencia en la señal modulada y determina los dos tipos fundamentales de FSK los cuales son: FSK de banda reducida o banda angosta: Si el índice de modulación es pequeño, m f π 2 < (esto significa que la variación de frecuencia de la señal modulada produce una diferencia de fase menor que 2 π ), se tiene modulación de frecuencia en banda angosta y su espectro de frecuencias es similar al de ASK. La única diferencia es que en este caso, la amplitud de las armónicas se ve afectada por la frecuencia, o sea, se tiene una pequeña modulación de amplitud, superpuesta a la FSK, esto se muestra en la figura 2.29, la cual su banda lateral izquierda se ve alterada producto de estas interferencias de estas armónicas.

48 37 Figura 2.29 Señal FSK en el dominio de la frecuencia [24] El ancho de banda necesario para FSK de banda angosta es igual al necesario para ASK. FSK de banda ancha Las ventajas de FSK sobre ASK se hacen notables cuando el índice de modulación es π grande es decir m f >. Con esta condición se aumenta la protección contra el ruido y 2 las interferencias, obteniendo un comportamiento más eficiente respecto a ASK, puesto que en este caso la pequeña modulación de amplitud mencionada en el caso de FSK de banda angosta, se hace despreciable. La desventaja es que es necesario un mayor ancho de banda, debido a la mayor cantidad de bandas laterales (un par por cada armónica). [24] Phase Shift Keying (PSK) Se denomina modulación de fase, a aquella en que el parámetro de la señal senoidal de la portadora que se va a variar, es la fase. La amplitud de la portadora permanece constante. Este tipo de modulación es la más usada para modular señales digitales mediante el uso de módems de datos. En PSK el valor de la señal moduladora está dado por vm 1 para un "1" binario ( t) = 1 para un "0" binario

49 38 Mientras que la señal portadora vale: V ( t) = V Cos(2 π f t) p p p Ecuación 17 [9] En donde V p es el valor pico de la señal portadora y f p es la frecuencia de la señal portadora. La ecuación de la señal modulada estará dada entonces por: v( t) = V ( t) V ( t) p m Ecuación 18 [9] Sustituyendo la ecuación 16 se tiene: Ecuación 19 [9] v( t) = V V Cos(2 π f t) m p p Entonces luego para V m = 1 v( t) = V Cos(2 π f t) p p Ecuación 20 [9] Y para V m = -1 v( t) = V Cos(2 π f t) = V Cos(2 π f t + π ) p p p p Ecuación 21 [9]

50 39 Entre las dos últimas expresiones de v(t), existe una diferencia de fase de 180º, y la señal varia entre dos fases, es por ello que se denomina 2PSK. Al sistema modulador de 2PSK se lo suele comparar con una llave electrónica controlada por la señal moduladora, la cual conmuta entre la señal portadora y su versión desfasada 180º. Figura 2.30 Esquema modulación para 2PSK. [24] El El radio de la circunferencia es igual a 1 y representa la amplitud normalizada de la portadora. En el sistema PSK convencional es necesario tener una portadora en el receptor para sincronización, o usar un código auto sincronizante, por esta razón surge la necesidad de un sistema PSK diferencial. Es diferencial puesto que la información no esta contenida en la fase absoluta, sino en las transiciones. La referencia de fase se toma del intervalo inmediato anterior, con lo que el detector decodifica la información digital basándose en diferencias relativas de fase Quadrature Phase Shift Keying (QPSK) Este tipo de modulación en un caso específico del caso general de la codificación multinaria o modulación multifase, el cual se define como MPSK donde M representa el número de codificaciones. En las modulaciones anteriores (FSK, PSK) son sistemas binarios donde solo hay 2 condiciones de salida 1 o 0, es decir M=2. Entonces para este caso especifico, se tiene una codificación Q que se refiere a Quaternaria, osea de 4 niveles, M=4, entonces seria semejante poner 4PSK a QPSK.

51 40 En este sistema la fase de la señal portadora puede tomar secuencialmente 4 valores posibles separados entre sí por un ángulo definido por 2π 2π π θ = = = N 4 2 Ecuación 22 [9] Tengamos la siguiente secuencia de bits: Figura 2.31 Secuencia de bits de fase portadora [24] Si a los bits de la cadena de información los tomamos de a dos, tendremos O sea que al tomar los bits de a dos de una señal binaria unipolar, hay solo cuatro combinaciones a la cuales se las denomina dibits, Y además si a cada par de bits, le asignamos diferentes niveles o amplitudes de señal, se obtiene la siguiente tabla. Tabla 2.1 Asignación de niveles para una señal binaria [24]

52 41 Los cuales se pueden representar de la siguiente manera Figura 2.32 Representación gráfica de bits de fase portadora [24] A los pulsos de las señales multinivel se los denomina dibits, puesto que en cada uno de ellos se envían dos bits. En forma similar se pueden obtener tribits, cuadribits, etc. Este tipo de señales son las que se emplean en MPSK. Para el caso particular de M= 4, se tiene 4PSK o QPSK. Como la señal portadora toma 4 valores posibles, se deberán producir 4 desplazamientos de fase que nos proveerán 4 fases distintas, correspondiendo cada uno de ellos a un dibit diferente. Para este caso, gráficamente tendremos los siguientes desplazamientos de fase: Figura 2.33 Distintos desplazamientos de fase de la señal modulada [24]

53 42 Si recordamos que la velocidad de transmisión V t está dada por Vt 1 = log2 N T Ecuación 23 [9] Al aumentar N estamos incrementando la velocidad de transmisión para el mismo ancho de banda, puesto que no hemos aumentado la velocidad de modulación. Por otra parte el periodo de un dibit será el doble del periodo de un bit, o sea T dibit = 2T bit Ecuación 24 [9] De donde se deduce que el ancho de banda para cada caso será BW dibit = 1 1 BW T = 2Tbit = 2 dbit bit Ecuación 25 [9] En consecuencia para la misma velocidad de transmisión Vt cuando se transmiten dibits, se requerirá la mitad del ancho de banda que para la transmisión de los bits individuales. En el sistema 4PSK las señales son más sensibles a los efectos de interferencias y ello provoca un aumento en la tasa d error. Si se desea transmitir 4PSK con la misma tasa de error que en 2PSK, se debe aumentar en 3dB la relación señal ruido Quadrature Amplitude Modulation (QAM) Es una técnica de modulación digital avanzada que transporta datos, mediante la modulación de la señal portadora de información tanto en amplitud como en fase. Esto se consigue modulando en amplitud (ASK) de forma independiente, dos portadoras que tienen la misma frecuencia pero que están desfasadas entre si 90. La señal modulada QAM es el resultado de sumar ambas señales ASK. Estas pueden operar por el mismo canal sin interferencia mutua porque sus portadoras están en cuadratura. La señal modulada en QAM está compuesta por la suma lineal de dos señales previamente moduladas en DBL-PS (Doble Banda Lateral - con Portadora Suprimida)

54 43 En la figura 2.34 se muestra un ejemplo de una señal modulada en QAM, específicamente en 8QAM, en ella con el uso de tres bits se pueden llegar a alcanzar 8 valores diferentes que puede tomar la señal modulada. Figura 2.34 Señal modulada en 8QAM [24]

55 44 CAPÍTULO 3: Multiplexación por división de frecuencias ortogonales OFDM. 3.1 OFDM tecnología actual necesaria El gran desafío de los sistemas de comunicación inalámbrica es proporcionar una elevada velocidad de transmisión y ofrecer un servicio de calidad garantizada. En los últimos años se ha observado un incremento en la demanda por servicios inalámbricos de banda ancha, en este sentido se han desarrollado tecnologías que, satisfagan estos requerimientos como se muestra en la figura 3.1, en la cual se muestra diferentes tipos de accesos inalámbricos, y con forme se desea mas ancho de banda para la transmisión de datos se van creando nuevas tecnologías e implantando nuevos estándares. El desarrollo de estas tecnologías debe enfrentar dos problemas, que presentan los sistemas de comunicación inalámbricas: i) El espectro de frecuencia es un recurso escaso y limitado ii) Las condiciones de transmisión son hostiles debido al desvanecimiento provocado por el ambiente y la interferencia provocada debido a la presencia de otros usuarios. En este sentido la utilización de tecnologías que presenten eficiencia espectral y confiabilidad en la transmisión, se torna esencial. [10] Figura 3.1: Capacidad de transmisión y movilidad de las tecnologías inalámbricas.[10]

56 45 Estos requerimientos de sistema pueden ser cumplidos por medio de la combinación de dos tecnologías para el proyecto de la capa física: OFDM (Orthogonal Frequency Division Multiplexing) y una estructura de comunicación MIMO (Multi-Input and Multi-Output). [10] OFDM es un esquema de modulación digital en el cual se divide el espectro disponible en varios subcanales de poco ancho de banda, cada uno centrado en una portadora, todas cercanas y ortogonales entre sí. Gracias a la ortogonalidad de las mismas, se elimina el cross-talk entre los subcanales y se simplifica el diseño del transmisor y el receptor, ya que no se requiere un filtro para cada subcanal. También nos permite una mayor eficiencia en el uso del espectro acercándonos a la capacidad máxima del canal. Dado que el ancho de los subcanales es pequeño, su atenuación resulta prácticamente constante dentro del mismo, lo cual simplifica la ecualización que se va a realizar con respecto a la necesaria en modulaciones de única portadora. [10] Esta técnica se torno popular en los 90 con el advenimiento, de los procesadores digitales de señales de alta capacidad. OFDM se esta convertido en una técnica popular para transmisión de señales de banda ancha sobre canales inalámbricos. El cual transforma a un canal selectivo en frecuencia, en un conjunto paralelo de sub-canales, que facilitan y hacen más sencillo el proyecto del receptor. Actualmente OFDM es la interface aérea para diversos estándares de transmisión de banda ancha, como los normas de audio digital DAB (Digital Audio broadcasting), de televisión digital DVB-T (Digital Video Broadcasting Terrestrial) y ISDB-T (Integrated Service of Digital Broadcasting Terrestrial), además de las normas WI-FI y WI-MAX en redes inalámbricas. [10] Múltiples antenas pueden ser usadas en el transmisor y receptor, ahora denominado sistema MIMO. Un sistema MIMO utiliza las ventajas presentadas en la diversidad espacial. La cual es conseguida debido a la separación espacial, obtenida por las antenas, dentro un ambiente con desvanecimiento multitrayecto. Las configuraciones utilizadas en la implementación de sistemas MIMO, presentan ganancia de diversidad, que permite combatir el desvanecimiento de la señal y también para obtener una ganancia en capacidad del sistema. [10] 3.2 Evolución de OFDM Diversos métodos para FDM han sido ampliamente utilizados para canales selectivos en frecuencia, tal como lo sería un canal con multitrayectoria. El problema constante que había presentado este tipo de multiplexaje es la prevención del traslape entre subportadoras, lo que exige la colocación de una región de espectro de separación entre ellas, la cual debía ser igual a lo que permitieran la precisión de los filtros en el receptor [7].

57 46 La separación y posterior discriminación entre subportadoras no supone tampoco un eficiente aprovechamiento del ancho de banda. Es entonces que eventualmente se propone OFDM, pues emplea tonos ortogonales para modular las señales. De este modo los tonos estás espaciados a intervalos de frecuencia iguales a la tasa de símbolos y a la que es capaz de separar el receptor [11] Figura 3.2 Modulación OFDM realizada en RF con 8 subportadoras [11] En la figura 3.2 se observa un esquema de lo que sería una implementación de OFDM con apenas 8 frecuencias ortogonales, realizada totalmente en la etapa de radiofrecuencia (RF). Se observa la dependencia del sistema de la precisión de cada oscilador y demás elementos que pueden introducir espurias como mixers y divisores, y debemos contar con las no linealidades de filtros y amplificadores que suponen una demodulación coherente en el receptor. Si tomamos en cuenta que normalmente se requerirían muchas más subportadoras, es fácil presumir la complejidad y costos prohibitivos en que incurriría este tipo de dispositivo. A pesar de estas limitantes este concepto fue introducido ya en los años 60 s para usarse en radios militares de alta frecuencia [13]. En el apartado de anexos A1 se presenta la transformada discreta de Fourier (DFT) y su inversa (idft) como los métodos que le darían viabilidad a OFDM, en lugar de los bancos de osciladores y la inmensa y costosa circuitería de RF. El uso de estos algoritmos implica pasar el trabajo a una etapa de procesamiento digital de señales (DSP). Por eso la implementación pudo hacerse efectiva con los avances en dispositivos de muy larga escala de integración (VLSI) y el desarrollo de los algoritmos de la Transformada Rápida de Fourier (FFT) [1].

58 Fue en 1971 en que Weinstein y Ebert introdujeron la ifft/fft para OFDM junto con el concepto de intervalo de guarda para evitar la interferencia intersimbólica (ISI) y la interferencia intercanal (ICI) [13] Desde ese entonces la técnica ha empezado a ocupar un sitio importante dentro de las comunicaciones siendo posiblemente en la actualidad su aplicación más difundida y trascendental el Estándar Europeo para Difusión de Video Digital por Redes Terrestres (DVB-T), cuya forma usada se denomina OFDM Codificada (COFDM) [7,13] Pero también está el estándar Europeo para Difusión de Audio Digital (DAB) [7] y otros para transmisión de datos como Cable-MODEM y DSL Asimétrico (ADSL) [11], no en todos los casos completamente estandarizados como para el caso de las comunicaciones usando las líneas de poder o PLC [11]. En años más recientes se ha introducido en estándares para redes de área local inalámbricas (WLAN) como el IEEE a en Norteamérica e HIPERLAN/2 en Europa [13] y por supuesto en el IEEE popularizado con el nombre comercial de WiMAX [11]. Hoy en día ya se perfila como uno de los principales contendientes para 4G, donde se ha llegado a proponer Fast Lowlatency Access with Seamless Handoff OFDM (FLASH-OFDM) como un estándar más completo que abarca capas superiores [11]. 47

59 48 En la tabla 3.1 podemos ver detallado el proceso histórico de OFDM en aplicaciones inalámbricas [13] y en la figura 3.3 encontramos un esquemático de un transceptor con el Estándar a para WLAN Kineplex, multi-carrier high frequency (HF) MODEM 1966 R. W. Chang, Bell Labs, OFDM paper + patente 1971 Weinstein y Ebert proponen el uso de la FFT y el intervalo de guarda 1985 Cimini describió el uso de OFDM para comunicaciones móviles 1985 MODEM Telebit Trailblazer fue incorporado usando un protocolo de ensamblaje de paquetes de 512 portadoras 1987 Alard&Lasalle propone OFDM para difusión digital 1988 TH-CSF LER, primer enlace experimental de TV Digital con OFDM, Área de París 1993 Morris: OFDM de 150Mbit/s wireless LAN experimental 1995 La ETSI establece el primer estándar basado en OFDM, el DAB 1997 El Estándar DVT-T fue adoptado 1997 Se emplea en difusión de Internet con Linea de Suscriptor Digital Asimétrica (ADSL) El proyecto Magic WAND demostró módems OFDM para W-LAN 1999 Los estándares IEEE a (WiFi) e HIPERLAN/2 son establecidos para W-LAN Vector-OFDM (V-OFDM) para acceso fijo inalámbrico y otros estándares propietarios como FLASH-OFDM 2001 OFDM fue considerado para los estándares IEEE g (W- LAN) e IEEE (W-MAN) IEEE g para Wireless LAN 2004 IEEE , para Wireless MAN (WiMax) Tabla 3.1 Historia de la Técnica OFDM y sus Aplicaciones Inalámbricas [11]

60 49 Figura 3.3 Transceptor según Estándar a usando OFDM [11] 3.3 Principio de la técnica de modulación OFDM El principio básico de OFDM es dividir la secuencia de datos que debe ser transmitida a una velocidad de transmisión Rs símbolos por segundo, en N sub-canales de datos paralelos, cada uno operando a una tasa de Rs/N símbolos por segundo. Cada sub-canal, modula una sub-portadora de manera que la velocidad de transmisión total del sistema sea equivalente, a la de una sub-portadora. En general, las frecuencias de las sub-portadoras utilizadas para transmitir señales multiplexadas en el dominio de la frecuencia deben ser espaciadas un valor mayor que el ancho de banda de cada subportadora [10], o sea: f > BW sp BW fsp > N f > 2R sp m sp s Ecuación 26 [10]

61 50 Donde BW sp es el ancho de banda ocupada por una sub-portadora y R m es la tasa de señalización de una sub-portadora. BW s es definido como: BW S Rb = (1 + α) = Rs (1 + α ) log( M ) Ecuación 27 [10] Donde R b es la tasa de bit necesaria para garantizar la calidad de servicio del sistema, M es el orden de la modulación empleada, R s es la velocidad de transmisión en la salida del modulador digital en fase y cuadratura y α es el factor de caída (roll-off) del filtro de Nyquist [10] empleado. Para realizar el espaciamiento entre sub-portadoras, como presentado en la ecuación 26, es necesario que el ancho de banda total sea mucho mayor al ocupado por la señal modulada en una única portadora. Para evitar este problema, es necesario que las sub-portadoras sean sobrepuestas en el espectro de frecuencia sin introducir interferencia entre subportadoras ICI (Intercarrier Interference). Para esto, las sub-portadoras deben ser ortogonales entre si, o sea: T Cos( ω ) ( ) 0 0 it Cos ωlt dt = i l Ecuación 28 [10] Donde T = 1 es la velocidad de transmisión de cada sub-portadora. R m En la figura 3.4 se muestra un gráfico con señales multiplexadas en OFDM, las cuales se ven con colores diferentes, y se observa claramente la ortogonalidad entre cada una de ellas a la hora de ser transmitidas, por ejemplo, primero se transmite la subportadora de color verde, luego ortogonalmente (desfasada 90 grados), se transmite la subportadora de color azul, así sucesivamente la roja, la negra, etc. Estas alcanzan su valor máximo en un punto adecuado para no interferir con las demás subportadoras.

62 51 Figura 3.4: Espectro de una señal OFDM con 6 sub-portadoras. [10] Generación y recepción de señales OFDM El primer abordaje para la generación de señales OFDM consistía en utilizar un convertidor serie paralelo para separar la secuencia de entrada en N sub-canales de datos. Cada uno de estos sub-canales modulan una sub-portadora compleja, formada por un seno y un coseno en la misma frecuencia. La suma de todas las formas moduladas resulta en una señal OFDM. El diagrama en bloques de un transmisor utilizando esta técnica es presentado en la figura 3.3 [10]. En el diagrama de la figura 3.3, la secuencia binaria de datos, m(t), es convertida por un modulador digital de fase y cuadratura en una secuencia de símbolos complejos c n =i n + jq n. La componente real del símbolo, i n, que representa la señal digital en fase, modulada por la cosenoide de frecuencia ω n, en cuanto que la componente imaginaria, q n, que representa la componente en cuadratura, modulada por la senoide también de frecuencia ω n. De esta forma, el símbolo OFDM puede ser expresado por: N 1 n= 0 [ ω ω ] s( t) = i cos( t) + q sin( t) n n n n Ecuación 29 [10]

63 52 Como las funciones seno y coseno son ortogonales entre si, entonces la señal OFDM puede ser detectada utilizando un banco de 2N correlacionadores, tal como se muestra en la figura 3.5. Figura 3.5: Diagrama en bloques de un transmisor OFDM. [10]

64 53 Figura 3.6: Diagrama en bloques de un receptor OFDM. [10] Suponiendo que, la señal recibida, r(t), sea igual a la señal transmitida, s(t); la información en la k-ésima portadora puede ser recuperada conforme a lo mostrado en la ecuación 30. T N 1 2 i = i cos( ω t) + q sin( ω t) cos( ω t) dt [ ] k n n n n k T 0 n= 0 0 T N 1 T N = [ i cos( ω t) cos( ω t) ] dt + [ q sin( ω t) cos( ω t) ] dt T n n n n n n 0 n= 0 T 0 n= 0 0 T T N = i cos( ω t) cos( ω t) dt + [ i sin( ω t) cos( ω t) ] dt T k k k n n k T 0 0 n= 1, n k T 2 cos ( ωk ) 0 2ik = t dt = i T k Ecuación 30 [10]

65 54 Para que las sub-portadoras no interfieran entre si, es necesario que todos los osciladores presentados en la figura 3.5 y figura 3.6 estén perfectamente espaciados de R m (Hz) y perfectamente sincronizados. Por otro lado, para que OFDM presente ventajas relevantes sobre el sistema de portadora única, es necesario que el número de portadoras sea elevado. En la norma Wi-MAX, esta previsto el uso de 256 o 2048 portadores [12]. La implementación de este número de osciladores sincronizados, es inviable para fines comerciales. Alternativamente, es posible generar la señal OFDM de una manera más fácil, si la teoría de procesamiento digital de señales fuera aplicada. Analizando la ecuación 29, es posible concluir que la señal OFDM puede ser vista como una serie de Fourier limitada de N elementos, donde las componentes de fase y cuadratura son los coeficientes de esta serie. La ecuación 29 puede ser reescrita de la siguiente forma: N 1 n= 0 [ ω ω ω ω ] s( t) = R i cos( t) ji sin( t) + jq cos( t) + q sin( t) n n n n n n n n Donde R[...] representa la parte real de s( t ). Ecuación 31 [10] Muestreando la señal s(t) presentada de la ecuación 31, a una tasa de R s muestras por segundo, es posible representar la señal OFDM como: s( m) N 1 2π n j m N = R Cne n= 0 Ecuación 32 [10] Donde m es la posición temporal de las muestras, de la señal OFDM. La ecuación 32 muestra que la señal OFDM discreta, puede ser obtenida realizando la IDFT (Inverse Discrete Fourier Transform) de los símbolos c n. Así, los símbolos c n pueden ser vistos como el espectro de amplitud del símbolo OFDM, s m. Para demodular la señal OFDM es solo necesario aplicar la DFT, de la señal OFDM discreta. El tiempo necesario para que el procesador digital realice la IDFT en la transmisión, y la DFT en la recepción es de T = 1/R m segundos. Con el aumento del número de portadoras, el tiempo necesario para realizar las operaciones involucradas en la IDFT y en la DFT aumenta linealmente, por lo cual el tiempo total para realizar estas

66 55 operaciones aumenta exponencialmente [12]. Para un número elevado de portadoras, la velocidad de procesamiento necesaria puede no viabilizar, la generación y la recepción de la señal OFDM. Una manera de minimizar el tiempo de procesamiento es utilizar un algoritmo eficiente para el cálculo de la IDFT/DFT. Este algoritmo es denominado de transformada rápida de Fourier FFT (Fast Fourier Transform) y permite que el tiempo de generación/detección de señales OFDM sea reducido, cuando el número de portadoras empleado sea dado por: N = 2 p Donde p es un número entero mayor que cero. 3.4 Uso de la FFT en OFDM Como se dijo anteriormente, en la parte de anexos de dicho trabajo, se adjunta un análisis detallado matemático de la Transformada rápida de Fourier FFT/iFFT, esto para comprender mejor el uso que se le da a ésta en la multiplexación por OFDM, que es el desarrollo que se presentará a continuación ya que las etapas de la FFT/iFFT constituyen sin duda alguna el núcleo mismo del esquema de modulación OFDM, al ser el que reemplazaría los grandes bancos de osciladores e incluso de filtros [13]. La FFT, como una implementación de la DFT, también tiene su inversa, la ifft, que funciona exactamente con el mismo algoritmo. Comprendiendo la base de que esta transformada toma un número definido de muestras NFFT en el tiempo y nos da como resultado N FFT muestras en el dominio de la frecuencia, ahora podemos observar su aplicación en OFDM. Al requerir OFDM una señal que sea la sumatoria de señales tales que, en el dominio de la frecuencia correspondan a frecuencias adyacentes y con una separación constante. Es exactamente esta la disposición de la información del contenido espectral que nos ofrece la FFT. Entonces, más bien, para la generación y transmisión de OFDM, deberemos usar la ifft, puesto que el paso previo será el hacer un mapeo del contenido de cada subportadora para que luego la transformada inversa convierta esto en la muestras de una señal en tiempo. Luego de la transmisión, es la FFT quien hace el trabajo de separar los datos entre subportadoras en el lado del demodulador [14]. Este esquema se lo puede observar en la figura 3.7.

67 56 NOTA: No se incluyen etapas complementarias como entrelazado, inserción de prefijo cíclico, códigos de corrección de errores, etc. Figura 3.7 Esquema de Modulación/Demodulación OFDM [11] De esta manera, de una forma sencilla y muy eficiente con la ifft se asegura que las subportadoras producidas sean además, ortogonales entre si (16). Como se indicó en la ecuación A1.6 (Anexo 1), el trabajo con las señales discretas y sus transformadas, implica el trabajo bajo el régimen de un tiempo de muestreo Ts, que es básicamente el que pone las limitantes básicas, y por ende, principales características del sistema. Es así que el ancho de banda teórico W es igual f s -ecuación A1.4-, y el espaciamiento entre subportadoras, o lo que es lo mismo, ancho de banda de subportadora, está dado por: fs 1 f = N = T Ecuación 33 [11] FFT u

68 57 Recordando que T u es el tiempo útil del símbolo OFDM que sirvió para definir la forma de la señal en la ecuación 32. Éste valor se puede definir de la misma ecuación 33, reescribiéndola como: T u = N f FFT s Ecuación 34 [11] Normalmente se pensaría que el ancho de banda debe ser, de acuerdo al criterio de Nyquist, la mitad del valor de la frecuencia de muestro para señales en banda base, sin embargo, en vista de que estamos en posibilidad de colocar los datos en todas las posiciones correspondientes tanto al rango positivo como negativo, se puede decir que de algún modo se van a reutilizar todas las frecuencias, pero esto deja de ser así en el momento que la señal pasa a RF. En la figura 3.8 se puede observar la disposición de las subportadoras dentro del rango de frecuencias. Nótese que la disposición de las subportadoras, tomando como eje d0 (la correspondiente a la portadora de frecuencia=0 cuando está en banda base, o a la frecuencia de la portadora, en RF), van en el rango d N... d FFT NFFT, donde, siendo f k la frecuencia correspondiente a la subportadora d k: f k k f s FFT FFT = + f0, k, 1 N FFT 2 2 N N Ecuación 35 [11] Figura 3.8 Disposición de los datos en los canales de frecuencia ortogonales contiguos en OFDM [11]

69 Transmisor/Receptor OFDM Un esquema básico para la modulación y demodulación OFDM ya fue presentado en la figura 3.7. Sin embargo, actualmente, rara vez se trabaja de manera práctica con un sistema así de básico para comunicaciones, siendo ahora prácticamente inseparable la etapa de inserción del prefijo cíclico tal como si fuera un estándar intrínseco incluso para las más simples implementaciones de OFDM [13,14,15] A continuación se describen las principales características de un transmisor/receptor OFDM, la etapa RF y se explicará en que consiste el tiempo de guarda y prefijo cíclico Transmisor OFDM El Transmisor OFDM básicamente trabaja transformando un grupo de bits en un grupo de números complejos correspondientes a valores dentro de las constelaciones disponibles para realizar la modulación I/Q [11]. Sus elementos esenciales ya se han estudiado y algunos más se pueden visualizar en la figura 3.7, además se mostró un ejemplo más completo en la figura 3.3 (MODEM a), donde podemos observar etapas destinadas a corrección de errores y la adición del prefijo cíclico. En general todo el tratamiento adicional que se deba hacer a los datos se realiza previo a la ifft, que es el que hace la modulación OFDM propiamente dicha, a la cual ya llegan únicamente los símbolos I/Q ordenados en la trama que es la que se desea enviar. En general con esto nos referimos a etapas de adición de códigos convolucionales o redundancia cíclica. Asimismo se puede incluir adición de FEC en virtud de los cual se puede denominar al sistema como COFDM (Coded OFDM) [11] En la etapa de codificación I/Q, se cuenta con un número finito de esquemas entre los que se puede escoger para operar entre los de mayor o menor orden de acuerdo al estándar a utilizar. En general los sistemas cableados como xdsl tienden a usar aquellos de mayor orden como 256-QAM, mientras los sistemas inalámbricos se mantienen usando los de menor como BPSK o QPSK o sus modos diferenciales [11] Si el sistema soportara más de un tipo de modulación en esta parte, esto implica que el sistema en su conjunto debe ser capaz de soportar en las etapas previas diferentes tasas de bits correspondientes a cada orden en que opere el transmisor [11]. También la adición de códigos de corrección afectará la tasa de bits que deberá adaptarse. Los mapas o constelaciones usan, se puede decir que de manera generalizada, código gray, lo cual sirve para asegurar que si ocurre un error a nivel de éstos símbolos por el desplazamiento hacia una posición adyacente, en el decodificador esto significará tan solo un bit de error [11]. Un ejemplo de uno de estos mapas está en la figura 3.9.

70 59 Figura 3.9 Constelación para 16-QAM que usa código Gray [11] Otra etapa que normalmente se incluye luego de los codificadores para corrección de errores es la del entrelazado, que bien se puede hacer antes o después de generar los símbolos I/Q, la diferencia hace que este trabajo afecte la distribución de los posibles errores a través de la dimensión del tiempo o a la de la frecuencia. La trama OFDM se completa con la inserción de pilotos. Cómo se observa en la figura 3.7, usan frecuencias fijas que no son usadas para datos, en su lugar se envían secuencias de datos conocidas o pseudoaleatorias (PN) codificadas con modulaciones de bajo orden como BPSK o QPSK [7]. Los pilotos tienen diversas utilidades, entre ellas el facilitar la sincronización y la estimación del canal [7], así como la detección de desplazamientos en fase y frecuencia [13] Además de los pilotos, también reducen la capacidad de transporte de información la utilización de guardas en frecuencia, que se usan con la finalidad de evitar ICI, que se da por el traslape con los canales adyacentes. Éstas guardas en frecuencia, así como la portadora correspondiente al nivel DC, simplemente se dejan en su valor de cero, y reducen la cantidad de energía utilizada en la transmisión [11].

71 60 Con la trama completa, puede tener lugar una etapa de moldeamiento (shaping) del espectro de la señal, en función de los requerimientos en frecuencia de las etapas analógicas o de los DACs. Según el caso, este trabajo puede ser realizado por una sencilla tabla de búsqueda (look up table) según frecuencias, o bien por un filtro complejo para hacer las variaciones en amplitud y fase. Entonces, esta trama reformada es la que se introduce en la ifft [11]. Luego de tener la trama en forma de sus muestras en el tiempo, es decir, luego de la ifft, es que tiene lugar la adición de la guarda o prefijo cíclico (CP), cuya función se explica más a fondo en En el transmisor también tiene lugar la generación del preámbulo o tramas de entrenamiento (training), que consiste en un grupo de símbolos OFDM con datos conocidos para el receptor, generados especialmente al inicio de la transmisión, y luego de cada bloque, de acuerdo a lo que se encuentre configurado. Su principal objetivo es el poder realizar la sincronización, pero también puede servir para control automático de ganancia (AGC) y estimación del canal [13,19] Receptor OFDM El receptor se encarga de recibir la señal en forma compleja por medio de los canales I e Q (en fase y en cuadratura) para realizar el trabajo de demodulación, el cual primordialmente lo efectúa la FFT como se explicó en la parte 3.4. La complejidad en su conjunto dependerá mucho de todas las etapas adicionales que hayan contemplado el estándar respectivo y demás mejoras que se hayan implementado en la parte del transmisor [11] A la señal digitalizada por los ADCs que se obtiene, normalmente se le debe extraer el CP o tiempo de guarda, lo que para el sistema significará reducir el número de muestras a N FFT, sobre las cuales se realizará la FFT que convertirá las muestras en tiempo, en muestras en frecuencia [14] El receptor también deberá encargarse de la sincronización en tiempo y en frecuencia o ecualización, y, de haber sido consideradas estas etapas, efectuar la realimentación necesaria a la etapa de RF para realizar el AGC y la estimación del canal, para lo cual debe valerse de las secuencias de entrenamiento enviadas con datos conocidos, así como de los pilotos insertados en medio de los datos que se envían en todas las tramas [7,13,15]. EL flujo de datos para algunas de estas etapas se pueden observar tanto en la figura 3.3 como en la 3.7.

72 61 Luego de extraer todas estas componentes que no son información propiamente dicha, se hace la demodulación I/Q (B-PSK, Q-PSK o M-QAM) y, en caso de haberse incluido en el modulador, las etapas de desentralazado y de detección y corrección de errores, frecuentemente se tratará un decodificador de Viterbi, y entonces, puede venir incluido el mecanismo de Forward Error Correction (FEC) para solicitud de reenvío de datos mal receptados [11] Tiempo de Guarda y Prefijo Cíclico Figura 3.10 El Prefijo Cíclico [11] El tiempo de guarda o intervalo de guarda (GI) se refiere a aquel período que se deja entre símbolos OFDM consecutivos. Esta técnica tiene la finalidad de evitar la interferencia intersímbolo (ISI) e intercanal (ICI) en canales multitrayectoria. De acuerdo a la teoría, para cumplir con estos objetivos, su longitud debe corresponder al menos a la misma longitud del tiempo máximo de exceso de retardo (maximum excess delay time) o T m que caracteriza el canal [7,13,15] Como el símbolo recibido es compuesto de varias muestras, transmitidas de manera serial, podemos separar la interferencia entre símbolos (ISI) en dos partes. Unas perteneciente a un símbolo OFDM previamente transmitido y otras pertenecientes a versiones atrasadas del propio símbolo que es denominado como ISI auto-interferente. Esta parte auto-interferente resulta en una selectividad en frecuencia dentro de la banda total utilizada. Como esta banda total fue sub-dividida en varios sub-canales planos, estos pueden ser compensados con un único coeficiente multiplicativo en el dominio de la frecuencia para restaurar la fase y la amplitud. (11) La ISI introducida por las muestras pertenecientes al símbolo anteriormente transmitido puede degradar significativamente la transmisión debido a la quiebra de ortogonalidad de la señal, lo que resulta en ICI (Intercarrier Interference). Para minimizar, o eliminar este problema, es adicionado un prefijo antes o después del símbolo resultante de la IFFT. Este

73 62 prefijo es constituido de la parte final del símbolo resultante de la IFFT, garantizando de esta manera la periodicidad dentro del nuevo símbolo. Debido a esta característica de mantener la periodicidad se da el nombre de prefijo cíclico CP (Cyclic Prefix). La Figura 3.11, muestra el efecto producido por el prefijo cíclico en la señal transmitida, en la cual se debe cumplir que G > T, (máximo atraso de difusión producido por el canal). m Figura 3.11: Efecto del prefijo cíclico en el símbolo OFDM recibido. [10] Para OFDM, ya es prácticamente un estándar el utilizar un prefijo cíclico durante este intervalo. De esta manera se completa el símbolo OFDM: añadiendo por delante de las N FFT muestras que emite la ifft, G muestras que no son más que copias de las últimas G del símbolo. Entonces debemos distinguir entre un período útil T u y el de guarda T g dentro del período de símbolo T sym [7,14] Lo que inevitablemente reducirá la eficiencia de la transmisión, no obstante los beneficios de la técnica [13]. La secuencia del símbolo se completa con las G copias: { x G, x G 1... x 1, x0, x1, x2,... xn } FFT 2, x NFFT 1, { x G x G+ 1 x 1, } { xn, xn..., xn 2, xn 1} +, donde la subsecuencia =, como se muestra en la figura 3.10 [14].,... FFT G FFT G 1 FFT FFT De acuerdo con los conceptos establecidos anteriormente, se generan las siguientes relaciones: Tsym = Tu + Tg Ecuación 36 [11]

74 63 para el tiempo total de símbolo, y T g = Gi T s Ecuación 37 Para el tiempo de guarda. Recordando que T u está definido por la ecuación 34. La reducción por ocupación de tiempo-espacio en el espectro debida a la técnica está dada N FFT por un factor de [13], por lo que el ancho de banda total BT estaría dado por G + NFFT (3) (cada estándar lo puede definir según algunos parámetros adicionales): BT G + N N FFT = FFT W Ecuación 38 Existen más posibilidades para trabajar con el intervalo de guarda más allá de dejarlo en cero o de usar el prefijo cíclico durante todo él mismo, así como la variación de su longitud. Se puede mencionar el uso de un prefijo cíclico de 50% de ocupación del tiempo de guarda con cero señal en la otra mitad del período. Este tipo de implementación ofrece ventajas para la temporización del sistema, pero no presenta mucha protección contra la multitrayectoria [11]. El CP trabaja específicamente durante la transmisión, donde, gracias a las propiedades de la DFT, se realiza una convolución circular con el canal [11], dando más elementos a favor de la señal en cada símbolo. Luego, en el receptor, las muestras que lo conforman son extraídas para nuevamente tener N FFT muestras [13]. Uno de los alcances que tiene la aplicación de ésta técnica es la posibilidad de poder implementar redes de frecuencia única o de isofrecuencia, debido a que se puede hacer retransmisiones de una misma señal a través de retransmisores en una gran área, y la manera en que un receptor recibe copias de uno u otro transmisor no es distinta a la generada por multitrayectoria, lo cual se lograría regular con éxito graduando el tamaño del CP [7].

75 Estructura del símbolo OFDM La estructura del símbolo OFDM esta compuesto por sub-portadoras las cuales pueden ser: de datos; pilotos que son usadas para estimación de canal; sub-portadoras nulas que son utilizadas como bandas de guarda; sub-portadoras no activas y DC. La figura 3.12, muestra la estructura de un símbolo OFDM. Figura 3.12: Estructura del símbolo OFDM. [10] Codificación para la corrección de errores Como en la gran mayoría de las comunicaciones, al usar OFDM, se usa algún tipo de codificación del canal para la corrección de errores (FEC) e interleaving en tiempo y en frecuencia. El interleaving en frecuencia aumenta la tolerancia a las propiedades selectivas en frecuencia de los canales, como la atenuación. [26] Así mismo, el uso de esta técnica en tiempo, asegura que los bits que originalmente se encuentran juntos sean trasmitidos separados. De esta manera, se contrarresta el efecto de los ruidos en ráfaga. Un típico código de corrección de errores utilizado en OFDM son los códigos de convolución concatenados con los códigos de Reed-Solomon. En los sistemas más modernos se están comenzando a emplear los códigos turbo.

76 65 CAPÍTULO 4: Aplicaciones, ventajas y desventajas del uso de OFDM en diversos sistemas de comunicación. 4.1 Aplicaciones Este capítulo, además de presentar algunas de las aplicaciones mas importantes que se le ha dado a la OFDM se presentan también algunos tipos de variantes de esta técnica que se implementan en dichas aplicaciones, esto para adecuar esta técnica a las necesidades que cada tipo de aplicación requiere. Una de las mayores ventajas de OFDM es su robustez frente al multitrayecto. Por ello, su aplicación típica es en ambientes de radio no muy favorables. OFDM es también apropiado para redes de una sola frecuencia (se trata de otorgar una frecuencia fija para una entidad emisora a lo largo de toda la geografía, en lugar de otorgar distintas frecuencias a una misma entidad emisora, según el repetidor que dé cobertura a cada zona, por ejemplo el caso de la TV analógica), pues la señal de otros transmisores se puede ver como eco, por ejemplo propagación multitrayecto. Esto significa que es favorable el uso de OFDM en aplicaciones de difusión, tales como Digital Video Broadcasting, DVB y DAB Digital Audio Broadcasting. El uso de OFDM en sistemas multiusuarios ha ganado un aumento considerable en los últimos años. El downlink en esos sistemas es similar a la difusión, mientras que el uplink exige muchas necesidades. [22] El futuro de OFDM como técnica de transmisión para multiusuarios depende de cómo de bien se resuelvan estos problemas en nuestros días. En sistemas cableados, OFDM se muestra muy eficiente en cuando a tasa de bits. Esto es debido, entre otras cosas, a la posibilidad de otorgar mayor tasa binaria a las subportadoras que presenten mejor SNR. Sin duda, hoy por hoy esta técnica es la más extendida para acceso a internet, englobada en las siglas xdsl. Hay también problemas asociados al diseño de los sistemas OFDM. Los dos grandes obstáculos cuando usamos OFDM son la alta relación potencia de pico a potencia media y la sincronización. Lo primero necesita de amplificadores muy lineales en todo su rango. Los errores de sincronización, en tiempo o frecuencia, acaban con la ortogonalidad y causan interferencia. Usando un prefijo cíclico, los requerimientos de temporización se relajan un poco, por lo que el gran problema será los altos requisitos de sincronización en frecuencia. La degradación por errores de frecuencia pueden ser causados por diferencias en los osciladores locales o por desplazamiento Doppler [19].

77 66 Como en cualquier sistema de comunicaciones, hay dos alternativas a la hora de modular: coherente y diferencial; QPSK diferencial es apropiado para tasas de datos bajas y proporciona receptores simples y baratos, lo que es muy importante para receptores portátiles que tengan que llegar a muchos usuarios, como se espera en DAB. Sin embargo, en DVB la tasa de datos es mayor y una baja tasa de bits erróneos es difícil de obtener con PSK diferencial. Una elección natural para DVB son esquemas multiamplitud. Por último, debido a la estructura en OFDM, es fácil diseñar estimadores de canales eficientes y ecualizadores. Esta es un propiedad muy importante de OFDM, que se debe explotar para conseguir una alta eficiencia espectral. La multiplexación por OFDM, es sin duda la tecnología que esta revolucionando el mundo de las telecomunicaciones, pues se han logrado optimizar e implementar nuevos sistemas gracias a las muchas ventajas que este tipo de técnica posee. A continuación se desarrollaran algunos de los principales sistemas que utiliza este tipo de tecnología Digital Video Broadcasting (DVB-T) La mayor presencia de OFDM la encontramos en el estándar europeo de televisión digital terrestre DVB-T. El principio de operación de este estándar, llamado OFDM codificado (COFDM) guarda ciertas semejanzas con el estándar El estándar fue ratificado en marzo de 1997 por la ETSI. Especifica la señal modulada digitalmente en el lado del modulador y deja abierta las especificaciones en el lado del receptor para diferentes soluciones. El nuevo sistema tenía que operar con el espectro UHF existente para transmisiones analógicas lo que significa que tenía que ofrecer suficiente protección contra altos niveles de interferencia cocanal y suficiente protección contra interferencia de canal adyacente (ACI). Además, el espectro UHF existente debía ser aprovechado del modo más eficiente, por lo que se propuso las redes de una sola frecuencia (Single Frequency Network, SFN). En este tipo de redes, los transmisores usan la misma frecuencia si transmiten los mismos contenedores de datos. [16] Es decir, se trata de conseguir que en toda una región, la frecuencia asociada a cada canal sea la misma. Para cumplir con estos requerimientos, un sistema OFDM con codificación de corrección de errores fue el elegido para la transmisión, COFDM (recordemos que era de difusión y, por tanto, unidireccinal). [16]

78 67 Desde el punto de vista de capa física, se establecen dos modos de funcionamiento: 2k y 8k, que tienen que ver con el número de portadoras empleadas en la OFDM. El siguiente cuadro resume ambos modos. Tabla 4.1: Tabla que muestra las características de la modulación OFDM empleada por el estándar DVB-T. [16] La DVB-T supone un gran impulso al uso de la modulación OFDM para sistemas inalámbricos, reafirmándose como una gran alternativa para situaciones wireless, tras haber sido puesta en entredicho en numerosos artículos, en los que se descartaba esta opción por los problemas, antes mencionados, de poca eficiencia al pasar por dispositivos no lineales, como un amplificador de potencia (PA o HPA) Fundamentos de la DVB-T En lugar de llevar los datos en una sola frecuencia de radio (RF) portadora, OFDM como ya se explico funciona mediante la división del flujo de datos digitales en un gran número de lentas corrientes digitales, cada una de las cuales modulan digitalmente un conjunto de frecuencias portadoras adyacentes muy próximas entre sí. Como se menciono en el punto anterior, DVB-T, tiene dos opciones para el número de portadores: 2K-mode o modo de 8K. Estas son en realidad o compañías a las que aproximadamente las dividen 4 khz o 1 khz de separación. [27]

79 68 DVB-T ofrece tres diferentes esquemas de modulación ( QPSK, 16QAM, 64QAM ). DVB-T ha sido adoptada o propuesta para la radiodifusión de televisión digital por muchos países, utilizando principalmente VHF y UHF de 7 MHz canales de 8 MHz, mientras que Taiwán, Colombia, Panamá, Trinidad y Tobago y Filipinas utilizan canales de 6 MHz. Algunos ejemplos son el Reino Unido, Freeview. [27] Las aplicaciones basadas en la corriente de transporte MPEG-2, que da detalles sobre el uso de DVB de los métodos de codificación de fuente para el MPEG- 2 y, más recientemente, H.264/MPEG-4 AVC, así como sistemas de codificación de audio. Muchos países que han adoptado DVB-T han publicado las normas para su aplicación. Estos incluyen la D-libro en el Reino Unido, el italiano DGTVi, [3] de la. ETSI E-Book y NorDig Scandivia DVB-T ha sido desarrollado en los nuevos estándares como DVB-H (de mano), actualmente en funcionamiento, y DVB-T2, que se aprobó recientemente. DVB-T como una transmisión digital ofrece los datos de una serie de bloques discretos en la tasa de símbolos. DVB-T es un COFDM técnica de transmisión que incluye el uso de un intervalo de guarda. Se permite que el receptor para hacer frente a situaciones de múltiple fuertes. Dentro de una zona geográfica, DVB-T también permite una sola frecuencia de la red (SFN), donde dos o más transmisores que llevan los mismos datos operan en la misma frecuencia. En tales casos, las señales procedentes de cada transmisor en el SFN tiene que ser con exactitud el tiempo de alineamiento, que se realiza por la información de sincronización en el flujo y el tiempo en cada transmisor se hace referencia a los GPS. La longitud del intervalo de guarda puede ser elegido. Se trata de un compromiso entre velocidad de datos y SFN capacidad. Cuanto mayor sea el intervalo de guarda mayor es el potencial de la zona SFN sin crear interferencias entre símbolos (ISI). Es posible operar SFN que no cumplan la condición de intervalo de guarda, si el auto-interferencia está debidamente planificado y monitoreado. [27] Digital Audio Broadcasting (DAB) Actualmente, la tecnología digital puede aumentar hasta un 50% la calidad del sonido producido con técnicas convencionales, pero este aumento no llegará al 100% hasta que la transmisión sea también digital. Esto constituye un reto importante para los radiodifusores dado que el oyente, que toma como referencia actual la calidad del sonido digital de los compact disc, comienza a exigir la misma calidad en el sonido radiofónico. La transmisión con técnicas analógicas sufre los problemas de la degradación de la señal, que va acumulando ruidos y distorsiones en cada una de las etapas por las que va pasando. En cambio, con la técnica digital, la señal sufre menos degradaciones, ya que se incorporan métodos de corrección de errores para corregir las distorsiones que puedan alterar la

80 69 información. De esta forma, la información digital es fácilmente transportable y almacenable, utilizando además menor espacio. [17] Historia del DAB Lo que actualmente se conoce como estándar europeo DAB (Digital Audio Broadcasting) es el sistema de radiodifusión digital desarrollado por el proyecto Eureka 147 de la Unión Europea impulsado por la UER (Unión Europea de Radiodifusión). El objetivo era especificar un sistema de radiodifusión digital válido para comunicaciones terrestres y por satélite. En 1995, el European Telecommunication Standard Institute (ETSI) adoptó el sistema DAB como estándar único europeo (ETS ). A nivel mundial, la Recomendación 1114 de la International Telecommunications Union (ITU) recomienda el DAB como sistema para la difusión terrestre y por satélite. Actualmente, el DAB está entrando en la fase de implementación en varios países europeos y existen multitud de proyectos en marcha, tanto en Europa como en otras partes del mundo. [17] La técnica OFDM en DAB El DAB aporta una gran novedosa técnica a la radiodifusión, que posiblemente sea más importante que la calidad digital de audio que proporciona y que la gran capacidad del canal. A como se ha desarrollado a lo largo de este documento sobre la técnica de OFDM, esta al aplicarla a este tipo de comunicación permite el establecimiento de redes de frecuencia única y elimina prácticamente todo el problema de las interferencias que sufren las transmisiones convencionales. La implementación de una red de frecuencia única es muy importante para la recepción móvil. Implica que todos los emisores de una red utilicen la misma frecuencia para la transmisión de un mismo programa en toda su área de cobertura. De esta forma, por ejemplo, un automóvil que se desplaza no necesita re sintonizar continuamente la frecuencia para seguir escuchando el mismo programa. Asimismo, mediante la utilización de la frecuencia única se aprovecha mejor el espectro. La mayoría de las interferencias producidas durante la recepción móvil están causadas por la propagación múltiple.

81 70 La propagación múltiple significa que la señal recibida en la antena es una superposición de la señal transmitida y de sus reflexiones en edificios u otros objetos que encuentre en su camino. Esta superposición causa una interferencia que se denomina "dependiente de la frecuencia". [27] Mediante el multiplexado OFDM la información a transmitir se reparte en un gran número de portadoras, 1536 concretamente, distribuidas en un ancho de banda de 1.5MHz. Estas portadoras se entrelazan en tiempo y frecuencia y están codificadas de forma redundante. Esto significa que la interferencia solamente afecta a algunas de las portadoras, siendo la mayoría recibidas libres de ruido. Con la redundancia de información y con la incorporación de técnicas digitales de corrección de errores es posible reconstruir la secuencia de bits en el receptor. [27] Servicios adicionales El DAB, como sistema de transmisión digital, puede también transmitir otro tipo de datos además de audio. En principio, cualquier tipo de información se puede transmitir siempre que esté en formato digital y no exceda la capacidad máxima disponible del DAB (aproximadamente 1,7 Mbit/s). Actualmente se están transmitiendo datos asociados a los programas de radio (PAD - Programme Associated Data) que son recibidos por la primera generación de receptores DAB. Los datos no asociados a los programas (non-pad), también llamados datos independientes, son actualmente centro de atención para el diseño de aplicaciones comerciales. Estos datos se transmiten a través del canal principal de servicios (MSC - Main Service Channel) y pueden ser organizados en paquetes (Packet Mode) o transmitidos en flujo contínuo (Stream Mode) para proporcionar simultáneamente un gran número de servicios. Para la recepción de los servicios se necesita un terminal diseñado específicamente. Algunos ejemplos de servicios pueden ser la distribución de periódicos electrónicos, la transmisión de páginas Web o la transmisión de imágenes estáticas como mapas meteorológicos o mapas de tráfico. [17] Por esta razón se ha comenzado a hablar de "radiodifusión multimedia". Mediante ella cualquier tipo de información puede ser transportada por el canal DAB, y con la ventaja sobre la televisión por cable de que el DAB puede ser recibido en terminales portátiles y vehículos en movimiento. También se ha dotado al DAB del sistema de acceso condicional (Conditional Access System). Mediante este sistema se pueden implementar servicios dirigidos a usuarios de pago, servicios restringidos a un área de cobertura particular, etc. individuales, servicios. [17]

82 Protocolos de red local, Wireless LAN El grupo IEEE : una visión global El estándar para redes de área local (LANs) inalámbricas (WLAN) IEEE es uno de los más populares estándares de redes inalámbricas actualmente. Desde 1997 cuando la primera versión del IEEE se lanzó, se han desarrollado muchas versiones diferentes. El estándar inicial IEEE , en 1997, especificaba tasas de transmisión de 1 Mbps y 2 Mbps para un único tipo de capa de acceso al medio, MAC, y tres capas físicas diferentes basadas en secuencia directa de espectro ensanchado (DSSS), salto de frecuencia con espectro ensanchado (FHSS) y técnica de infrarrojos (IR) respectivamente. La banda de operación de DSSS y de FHSS se fijaba en la banda industrial, científica y médica de 2.4 GHz. De esas tres capas físicas, la DSSS es la más ampliamente aceptada y está probado que es la que ofrece mayores tasas de transmisión. Desafortunadamente, la tasa de 2 Mbps resultaba baja para las aplicaciones para las que se había pensado, por lo que su implantación no fue muy extensa, si bien sirvió de puerta para el nacimiento de nuevos estándares para WLAN. [16] El estándar define el protocolo para redes con topologías ad-hoc y clienteservidor. La topología ad-hoc consiste en una red simple donde las comunicaciones son establecidas entre múltiples estaciones en un área de cobertura dada sin el uso de un punto de acceso o servidor. La topología cliente-servidor usa un punto de acceso que controla en qué instante transmite cada estación y permite que las estaciones móviles pasen de una célula a otra del área de cobertura, y además cursa el tráfico entre el acceso radio y el sistema de distribución (cableado o inalámbrico) de la red cliente servidor. El método de acceso al medio es mediante escucha pero sin detección de colisión (CSMA/CA). La dificultad de detectar la portadora en el acceso WLAN consiste básicamente en que la tecnología utilizada es Spread Spectrum y con acceso por división de código (CDMA), lo que conlleva que el medio radioeléctrico es compartido, ya sea por DSSS o por FHSS. El acceso por código CDMA implica que pueden coexistir dos señales en el mismo espectro utilizando códigos diferentes, y eso para un receptor de radio implica que detectaría la portadora inclusive con dos señales distintas de las de la propia red WLAN. A este respecto, hay que mencionar que la banda de 2.4 GHz está reglamentada para uso público sin licencia y en ella funcionan gran variedad de sistemas, entre los que se incluyen teléfonos inalámbricos y dispositivos Bluetooth. [16] El rápido desarrollo de las WLAN desembocó en la realización de los estándares IEEE a/b/g. El estándar b ofrece tasas de 11 Mbps a 2.4 GHz usando DSSS. IEEE a especifica una capa física basada en OFDM, que separa la señal de información en

83 72 52 subportadoras separadas para ofrecer tasas de transmisión desde 6 Mbps a 54 Mbps en la banda de infraestructura de información nacional sin licencia de 5GHz (U-NII). Aunque vemos que la tasa que ofrece es mucho mayor que la b, su punto débil será el hecho de que trabajar a 5GHz le impide interoperabilidad con los demás estándares. La convergencia entre b y a vendrá con el nuevo estándar g. Éste proporciona las tasas del a pero en la banda de 2.4 GHz, por lo que la interoperabilidad con el b es posible IEEE g El estándar g se estableció en 2003 como un nuevo protocolo inalámbrico que mejoraba las tasa de transmisión existente. El g es un tipo de híbrido entre el a y el b. El estándar g usa la misma tecnología de transmisión que el a, OFDM, lo que aumenta la tasa de transmisión. Sin embargo, la banda de trabajo la sitúa en los 2.4 GHz, en lugar de en los 5GHz del a, y a semejanza del b. A modo de esquema, presentamos las mejoras que el estándar IEEE g ofrece con respecto a los demás estándares comentados: - Provisión de cuatro capas físicas diferentes. - El uso obligatorio del preámbulo corto. - Nuevos mecanismos de protección para satisfacer los aspectos de la interoperabilidad. Veamos de una manera un poco más extendida cada uno de estos aspectos. [18] Cuatro capas físicas diferentes Mientras que el IEEE b usa sólo DSSS, IEEE g emplea DSSS, OFDM o ambos a 2.4 GHz para ofrecer tasas de hasta 54 Mbps. El uso conjunto de DSSS y OFDM es posible gracias a la incorporación de 4 tipos de capas físicas diferentes, definidas en el estándar como extended rate physicals (ERPs), que coexisten durante un intercambio de tramas, de forma que el transmisor y el receptor pueden ponerse de acuerdo en qué tipo utilizar. Las cuatro capas físicas son: ERP-DSSS/CCK: esta es una capa física antigua usada en el b. Se usa DSSS. Las tasas que proporcionan son las mismas que el b (5.5 y 11 Mbps). Obligatoria.

84 73 ERP- OFDM: es una nueva capa, introducida para proporcionar las tasas del a. Obligatoria. Soporta 8 modos diferentes de 6 a 54 Mbps. ERP-DSSS/PBCC: similar a la de b pero añadiendo las tasas de 22 y 33 Mbps. DSSS-OFDM: es una nueva capa que usa un híbrido de DSSS y OFDM. La cabecera se transmite con DSSS pero la carga de datos de transmite usando OFDM. Las 8 tasa de transmisión que permite van de 6 a 54 Mbps. [16,18] Tabla 4.2: Tabla que resume las 4 capas físicas que describe el estándar g [16] Uso obligatorio del preámbulo corto El comienzo de una trama de capa física de IEEE siempre consta de dos partes: el Physical Layer Convergence Protocol (PLCP) para la sincronización; y la cabecera del PLCP que aporta información sobre la capa física. El grupo IEEE b se dio cuenta de que el tiempo dedicado a PLCP era demasiado largo. Por ello, para la norma g recomendó sólo el uso de un preámbulo corto de manera obligatoria. En la tabla anterior, Figura 2.9, también se puede ver el retraso y la longitud de estos preámbulos para cada tipo de capa. Este preámbulo corto será la base para la compatibilidad de las dos normas, pues sirve para sincronización y, al ser de igual tamaño en ambos, permite el funcionamiento de las dos normas en el mismo espacio; y al ser corto evita que se produzca un número excesivo de colisiones. Sin embargo, los campos de los que consta el preámbulo corto son los mismos que los del largo. [16,18]

85 Nuevos mecanismos de protección para satisfacer los aspectos de la interoperabilidad En cuanto a retrocompatibilidad con.b, la señal OFDM del g no se detecta en dispositivos b, pues éstos se basan en detección de portadora. Sin embargo, el caso contrario, la detección de.b en.g, sí es posible, como hemos visto, gracias a la versatilidad que se tuvo en cuenta a la hora de diseñar el estándar. La compatibilidad con.a no es posible, pues las bandas de trabajo son distintas. [16,18] Línea de Suscriptor Digital Asimétrica (ADSL) OFDM se utiliza en las conexiones ADSL, usualmente llamado Discrete Multitone (DMT), que siguen Al estándar G.DMT (ITU G.992.1), es en el que los cables de cobre existentes se utilizan para lograr conexiones de alta velocidad de datos. Los cables largos de cobre sufren de atenuación a altas frecuencias. El hecho de que OFDM puede hacer frente a esta atenuación selectiva en frecuencia y con la interferencia de banda estrecha son las principales razones por las que se utilizan con frecuencia en aplicaciones tales como módems ADSL. Sin embargo, DSL no se puede utilizar en todos los pares de cobre, la interferencia puede ser importante si más del 25% de las líneas telefónicas que llegan a una oficina central se utilizan para DSL [28] Esta tecnología esta usando desde 255 subportadoras en modalidad de subida hasta 512 subportadoras en modalidad de bajada de información. También permite separar un canal de voz simultáneo al de datos por el mismo medio. La transmisión del sistema banda base, solo permite transmisión de las partes reales, osea señales complejas no pueden ser transmitidas Estándar ITU G ITU G (mejor conocido como G.DMT) es un estándar de la UIT para ADSL utilizando modulación DMT (Discrete Multi-Tone) que expande el ancho de banda utilizable en las líneas telefónicas de cobre, facilitando comunicaciones de datos de alta velocidad de hasta 12 Mbps bajada y 1,3 Mbps de subida. DMT asigna de 2 a 15 bits por canal (bin). A medida que cambian las condiciones de la línea, se puede aumentar o disminuir el número de bits utilizados por canal. Si el cambio de bits está desactivado, esto no ocurre y el módem necesita volver a inicializarse a fin de adaptarse a las cambiantes condiciones de la línea.

86 75 Hay 2 normas en competencia para ADSL DMT: la G (o G.DMT) del ITU y la T1.413 del ANSI. ANSI T1.413 es un estándar norteamericano, mientras que G (G.DMT) es un estándar de la UIT (Comisión de telecomunicaciones de las Naciones Unidas). G.DMT se utiliza más comúnmente hoy en todo el mundo, pero el estándar ANSI fue anteriormente popular en América del Norte. Hay una diferencia de encuadre entre los dos, y seleccionar la norma mal puede causar errores de alineación de trama cada 5 o más minutos. La corrección de errores se realiza utilizando Reed-Solomon, codificación y más protección puede utilizarse si se utiliza la codificación de Trellis. También puede utilizarse Interleaving para aumentar la robustez de la línea, pero esto aumenta la latencia. [29] Coded orthogonal frequency-division multiplexing (COFDM) El uso de contenedores produce un sistema de transmisión conocido como Coded ortogonal frequency-division multiplexing (COFDM). En el contexto de la G.992.1, el término "Discrete Multi-Tone" (DMT) se utiliza en su lugar, de ahí el nombre alternativo de la norma, G.dmt. el uso de DMT es útil ya que permite que el equipo de comunicaciones (módem de usuario / router y el intercambio / DSLAM) pueda seleccionar sólo los contenedores que se pueden utilizar en la línea lo que efectivamente producirá tener la mejor tasa de bits total de la línea en un momento dado en el tiempo. Con COFDM, una señal combinada que contiene muchas frecuencias (para cada grupo) se transmite por la línea. La Transformada Rápida de Fourier (y la inversa IFFT) se utiliza para convertir la señal en la línea en los contenedores individuales [29] OFDM en telefonía móvil, LTE-4G Después de ya casi dos décadas de prácticamente ininterrumpido crecimiento de las comunicaciones móviles, primero de la mano de GSM y últimamente con el despliegue definitivo de UMTS, estamos en los albores de una nueva generación de comunicaciones móviles, la cuarta generación o 4G, de la que el sistema LTE ( Long Term Evolution ), cuya primera especificación fue concluida por 3GPP a finales de 2008, puede considerarse el primer eslabón en una supuesta trayectoria evolutiva que debe culminar con el LTE- Advanced. El diseño de la interfaz radio es, obviamente, uno de los aspectos más relevantes y definitorios de un sistema de comunicaciones móviles. En el caso de GSM, se diseñó una interfaz radio basado en TDMA ajustado a las características del servicio de voz y del codificador estandarizado (RPE-LTP a 13 Kbits/s). En el caso de UMTS, y sobre la base de una potencial mayor eficiencia así como mayor flexibilidad para poder acomodar servicios

87 76 multimedia, la solución adoptada fue WCDMA. En el caso de LTE (y posteriormente LTE- A), el hecho de considerarse anchos de banda de hasta 20 MHz (y hasta 100 MHz para LTE-A) requirió de nuevo considerar los principios de transmisión y acceso múltiple que pudieran resultar más apropiados. [19] La transmisión de una señal sobre 20 MHz de ancho de banda estará afectada por un comportamiento del canal móvil que introducirá una fuerte distorsión por interferencia intersimbólica derivada de la propagación multicamino [17]. En estas condiciones, la consideración de la técnica de transmisión OFDM (Orthogonal Frequency Division Multiplexing), consistente en multiplexar un conjunto de símbolos sobre un conjunto de subportadoras ortogonales entre sí, permite eliminar los efectos de la interferencia intersimbólica gracias a la introducción del denominado prefijo cíclico, tal y como se explicará en detalle en Tecnologías de nivel físico. El uso de OFDM permite evitar la transmisión de una única señal de banda ancha mediante la transmisión de un conjunto de señales de banda estrecha ortogonales entre sí, resultando por tanto más robusta frente a la propagación multicamino. Sobre la base de una transmisión OFDM, el empleo de la técnica de acceso múltiple OFDMA proporciona un alto grado de flexibilidad al permitir la asignación dinámica de las diferentes subportadoras a los diferentes usuarios, tal y como se verá en detalle. También se describirá en detalle la técnica SC-FDMA, empleada en el enlace ascendente para mitigar los inconvenientes que presenta OFDMA en cuanto a que la potencia instantánea transmitida puede ser significativamente superior a la potencia media, lo que diiculta la realización del amplificador de potencia a incorporar en el terminal móvil. Finalmente, cabe mencionar que la elección del esquema de transmisión y acceso múltiple viene también condicionada por la complejidad y coste de implementación (incluyendo aquí los aspectos de propiedad intelectual) así como por las propias dinámicas de la industria de fabricación que impulsa de manera natural a la renovación tecnológica. En este caso, el diseño del acceso radio LTE facilita su implementación en el dominio digital a través de la realización de los procesos FFT/IFFT de manera eficiente. [19] Para la implementación de la tecnología LTE-4G, existen una serie de pila de protocolos o capas que se deben de seguir, a continuación se presentan: Packet Data Convergence Protocol (PDCP). Constituye la capa superior de la torre de protocolos encargada de proporcionar el punto de acceso al servicio portador radio (Radio Bearer, RB). Es decir, los paquetes IP del tráfico de usuario se entregan y se reciben a través del servicio de transferencia proporcionado por la capa PDCP. [19] Radio Link Control (RLC). La capa RLC permite enviar de forma fi able los paquetes PDCP entre el enb y equipo de usuario. Para ello, la capa RLC soporta funciones de

88 77 corrección de errores mediante mecanismos Automatic Repeat ReQuest (ARQ), concatenación, segmentación y re-ensamblado, entrega ordenada de paquetes PDCP a capas superiores. [19] Medium Access Control (MAC). Es la capa encargada de controlar el acceso al canal radio. Para ello, la capa MAC soporta funciones de scheduling dinámico entre equipos de usuario atendiendo a prioridades, multiplexa los paquetes RLC de diferentes servicios portadores radio en los canales de transporte ofrecidos por la capa física (un canal de transporte puede ser compartido por varios servicios portadores de uno o varios equipos de usuario) y realiza un control de errores mediante Hybrid ARQ (HARQ). Los servicios de transferencia que la capa MAC ofrece a la capa RLC se denominan canales. [19] Capa física. Es la capa encargada de realizar la transmisión propiamente dicha a través del canal radio. Alberga funciones de codificación de canal, modulación, procesado asociado a las técnicas de múltiples antenas de transmisión/recepción, y mapeo de la señal a los recursos físicos frecuencia-tiempo apropiados. En el enlace ascendente, la capa física se basa en un esquema single-carrier FDMA. En el enlace descendente, el esquema de transmisión es OFDMA. En el Capítulo 4 se analizan los fundamentos básicos de los mecanismos de transmisión utilizados en la capa física de LTE. Los servicios de transferencia que la capa física ofrece a la capa MAC se denominan canales de transporte. Existe una única entidad de capa física por celda. [19] Radio Resource Control (RRC). Esta capa permite establecer una conexión de control entre el enb y un equipo de usuario a través de la cual se llevan a cabo un número importante de funciones relacionadas con la gestión de la operativa de la interfaz radio. Señalización de los protocolos NAS. Los protocolos NAS se extienden entre la entidad de red MME en la red troncal y el equipo de usuario. Los mensajes de estos protocolos se transportan de forma transparente en la interfaz radio encapsulados dentro de la parte de datos de los mensajes RRC. Las principales funciones de los protocolos NAS [19] Como podemos ver, es en la capa física de la arquitectura de este tipo de interfaz donde interviene el uso de OFDM, es por ello que nos vamos a concentrar en esta parte, y conocer un poco más de cómo se lleva a cabo este proceso.

89 OFDMA como técnica de acceso múltiple para el enlace descendente La técnica de acceso múltiple OFDMA (Ortogonal Frequency Division Multiple Access), utilizada en el enlace descendente de LTE, surge de forma natural a partir de la modulación OFDM presentada anteriormente al considerar la posibilidad de que los diferentes símbolos modulados sobre las subportadoras pertenezcan a usuarios distintos. De esta forma, es posible acomodar varias transmisiones simultáneas correspondientes a diferentes flujos de información al viajar en subportadoras diferentes, tal y como se ilustra en el esquema de transmisión de la Figura 4.1. Obsérvese que en dicha figura existen U flujos de información correspondientes a diferentes usuarios, siendo Nk el número de símbolos enviado para el usuario k-ésimo, y donde di,k representa el i-ésimo símbolo del k-ésimo usuario. Análogamente, en el receptor de cada usuario bastará con recuperar el contenido de las subportadoras asignadas a dicho usuario para separar la información destinada a este usuario de la del resto (obsérvese que será preciso disponer de los mecanismos de señalización adecuados para notificar a cada usuario a través de qué subportadoras se le está enviando la información). [19] Figura 4.1 Multiplexación de usuarios en OFDMA [19] Parámetros de OFDMA empleados por LTE Con objeto de ilustrar la técnica de acceso múltiple OFDMA, a continuación se presentan los parámetros definidos en el contexto del enlace descendente del sistema LTE.

90 79 La separación definida entre subportadoras es de f=15 khz, si bien también existe un espaciado reducido de 7.5 khz, particularmente pensado para el caso de transmisión multicast en SFN. Las subportadoras se agrupan en bloques de 12 subportadoras consecutivas, con un ancho de banda resultante de 12 f=180 khz, constituyendo cada uno de estos bloques un recurso en el dominio frecuencial, o equivalentemente la unidad mínima de asignación de recursos a un usuario. A partir de aquí, el número total de subportadoras ocupadas por una portadora LTE en el enlace descendente es de NS=12NB+1, siendo N B el número de bloques de 12 subportadoras utilizados. En esta última expresión, hay que tener en cuenta que la subportadora en el centro de la banda no se utiliza en ninguno de los bloques, en tanto que puede ser altamente interferida por el oscilador local en recepción. [19] La flexibilidad en el ancho de banda ocupado viene dada por el número de bloques N B utilizados, que puede tomar los valores {6, 15, 25, 50, 75, 100}, correspondiente a anchuras de banda de transmisión de BW=(12NB+1) f ={1.095, 2.715, 4.515, 9.015, , } MHz. De acuerdo con estos valores, se pueden configurar diferentes espaciados entre canales LTE, correspondientes a {1.4, 3, 5, 10, 15, 20} MHz, en los que, como puede observarse, la anchura de banda ocupada es aproximadamente un 90% del espaciado entre canales (excepto para el caso de 1.4 MHz, que es del 78%). El empleo de una u otra configuración en términos del número de bloques empleados se regula mediante el número de muestras empleado para los procesos de IDFT/DFT, dados por: N={128, 256, 512, 1024, 1536, 2048}, y los correspondientes valores de frecuencia de muestreo f m=n f={1.92, 3.84, 7.68, 15.36, 23.04, 30.72} MHz. Es importante remarcar que la selección de estos valores de frecuencia de muestreo se hizo teniendo en cuenta aspectos de compatibilidad con los actuales sistemas UMTS, en tanto que la frecuencia de muestreo de 3.84 MHz coincide con la tasa de chips de UMTS de valor 3.84 Mchips/s, lo que facilita la implementación de terminales multimodo UMTS/LTE con un único oscilador. [19] Por otra parte, del conjunto anterior de frecuencias de muestreo, la mayor de ellas define el intervalo temporal de referencia como T m =1/30.72 µs, a partir del cual se definen las duraciones de los símbolos, de los prefijos cíclicos, y finalmente de la estructura temporal de trama. En concreto, la duración del símbolo OFDM, que corresponde al inverso de la separación entre subportadoras, TS=1/ f=66.67 µs, puede expresarse como TS=2048 Tm. Por último, comentar que en relación a las modulaciones empleadas, en el enlace descendente de LTE pueden utilizarse QPSK, 16QAM y 64 QAM, correspondientes a 2, 4 y 6 bits por símbolo, respectivamente. [19]

91 SC-FDMA como técnica de acceso múltiple para el enlace ascendente Justificación Uno de los aspectos importantes a tener en cuenta en la elección de una modulación para un sistema de comunicaciones es la variación en la potencia instantánea de la señal transmitida, en tanto que si es muy grande la efi ciencia de los amplificadores de potencia se reduce. Una métrica para caracterizar esta variación es el denominado factor de cresta o PAPR (del inglés Peak-to-Average-Power Ratio), que en definitiva mide la relación entre la potencia instantánea de la señal transmitida respecto de la potencia media, y que se define matemáticamente como [1]: PAPR S( T ) = E S ( T ) 2 2 Ecuación 39 [19] Señales con un valor de PAPR muy grande requieren amplificadores de potencia altamente lineales para evitar la distorsión asociada a la intermodulación. Para conseguir esta elevada linealidad, el amplificador debe operar bastante por debajo de su potencia de pico, lo que se traduce finalmente en una eficiencia reducida, entendida dicha eficiencia como la relación entre la potencia transmitida respecto de la potencia consumida. [19] En el caso de modulaciones multi-portadora, como ocurre con OFDM (y por extensión con OFDMA), el PAPR se incrementa al incrementar el número de subportadoras utilizadas. Este efecto se ilustra gráficamente en la Figura 4.2 y en la Figura 4.3, que muestran, respectivamente, la evolución temporal de un símbolo OFDM y del PAPR resultante cuando se emplean 3, 6 y 12 subportadoras, moduladas por una secuencia de símbolos alternados +1 y -1. Como puede apreciarse, el incremento en el número de subportadoras se traduce en un incremento en el valor máximo del PAPR que puede llegar a existir.

92 81 Figura 4.2 Ejemplo de la evolución temporal de un símbolo OFDM compuesto por 3, 6 y 12 subportadoras, moduladas por una secuencia de símbolos alternados +1, -1 [19] Figura 4.3 Ejemplo del PAPR para un símbolo OFDM compuesto por 3, 6 y 12 subportadoras, moduladas por una secuencia de símbolos alternados +1, -1 [19]

93 82 En general, si el número de subportadoras es muy grande, como ocurre de hecho en la práctica, esto tenderá a incrementar el PAPR de la señal transmitida. A modo de ejemplo, y de acuerdo con resultados obtenidos en [6], en la Figura 4.4 se muestra la distribución estadística del PAPR en una transmisión OFDMA en términos de la función de distribución acumulada complementaria (CCDF: Complementary Cumulative Distribution Function), que refl eja para un cierto valor x la probabilidad de que el PAPR sea superior a dicho valor x. La gráfi ca considera una señal OFDMA construida con una IDFT/DFT de longitud N=256 y en la que la transmisión ocupa K=64 subportadoras. Como puede apreciarse, existe una probabilidad del 10% de tener un PAPR superior a 8.5 db, y del 1% de tener un PAPR superior a 10 db. Figura 4.4 CCDF del PAPR para una transmisión OFDMA [19] Conseguir una efi ciencia elevada es algo crítico para los amplifi cadores de los terminales móviles, en tanto que esto permite reducir tanto el consumo de potencia del terminal (y consecuentemente incrementar la duración de las baterías) como su coste. Si bien existen algunos métodos que permiten reducir el PAPR de la señal OFDMA (por ejemplo mediante la reserva de algunas subportadoras no utilizadas, o bien mediante técnicas de prefi ltrado o precodifi cación de los símbolos antes de modularlos según OFDM), estos métodos también acostumbran a comportar un incremento signifi cativo en la complejidad computacional o una reducción en las prestaciones obtenidas [2]. Por este motivo, en el sistema LTE, la técnica de acceso múltiple OFDMA se emplea únicamente en el enlace descendente, en tanto que en la estación de base no son tan críticos ni la efi ciencia ni el coste de los amplifi cadores. Por el contrario, en el enlace ascendente, se ha optado por utilizar una técnica de

94 83 acceso de portadora única ( single carrier), la denominada SC-FDMA (Single Carrier Frequency Division Multiple Access ), y que pasamos a describir a continuación. [19] Esquemas de transmisión y recepción SC-FDMA El esquema de transmisión en banda base resultante para SC-FDMA se muestra en la Figura 4.5. Como puede apreciarse, existen K símbolos a transmitir, los cuales son pre codificados mediante una DFT de K muestras, como paso previo a efectuar una transmisión OFDM de acuerdo con una IDFT de N muestras, con una separación entre subportadoras f, y con el consiguiente añadido del prefijo cíclico. Debido al proceso de pre codificación basado en DFT, esta técnica de transmisión de señal también suele denominarse como DFT-Spread OFDM (DFTS-OFDM). Figura 4.5 Esquema de transmisión de la señal SC-FDMA [19] Claramente, en el esquema mostrado, en el caso de que el tamaño de la DFT, K, fuera igual al de la IDFT, N, los procesos de DFT y de IDFT se cancelarían entre sí sin tener ningún efecto, por lo que de hecho la señal enviada sería simplemente el mismo conjunto de símbolos original, resultando en una señal en banda base no modulada sobre diferentes subportadoras, esto es, una señal de portadora única ( single carrier), que presenta mejores propiedades de PAPR que las señales multiportadora. Sin embargo, en tanto que K<N y el resto de entradas de la IDFT están puestas a 0, el resultado del proceso es una señal que continua teniendo la propiedad de ser de portadora única, y cuyo ancho de banda B=K f=kf m /N es regulable simplemente cambiando el valor de K, lo que permite

95 84 proporcionar la deseada flexibilidad en la banda asignada. Por otra parte, simplemente escogiendo adecuadamente las entradas de la IDFT sobre las que se introducen los K símbolos de salida de la IDFT, se puede cambiar el rango de frecuencias de salida sobre las que se ubicará la señal resultante. [19] Tal y como ocurría en el caso de OFDMA, la selección del valor de muestras de la IDFT suele tomarse de modo que N sea una potencia de 2, lo que permite implementar la IDFT de forma rápida mediante un proceso de transformada rápida de Fourier inversa (IFFT). A su vez, en el caso de K, si bien también sería deseable esta misma propiedad, resultaría en una reducción del grado de fl exibilidad a la hora de asignar la banda de señal (en tanto que solamente se podrían tener como bandas múltiplos de f que fueran potencia de 2). Por este motivo, en la práctica se ha optado por permitir que K no sea potencia de 2, y esta condición se sustituye por el hecho de que K se pueda expresar como el producto de números primos pequeños, lo que todavía permite una implementación relativamente rápida del proceso de IDFT [27].

96 Ventajas y desventajas de el uso de OFDM El empleo de la técnica de OFDM desarrollada en este documento, ya ha demostrado ser de vital importancia en muchos de los sistemas de comunicación de hoy en día, esto por las diversas aplicaciones que se explicaron anteriormente, y las cuales constituyen prácticamente todo tipo de tecnología que podemos disfrutas en nuestros, hogares o centros de trabajo, etc. El uso de la televisión digital, el audio digital, internet de banda ancha, comunicación celular, etc., el uso de la OFDM esta prácticamente en todo sistema de comunicación que utilizamos a diario en nuestra vida. De igual manera como toda tecnología, ésta presenta ciertas desventajas en su uso, debido a problemas de su implementación, o a problemas de diseño, que con el desarrollo y el paso del tiempo se irán corrigiendo. A continuación se presentarán en extracto de algunas de las ventajas y desventajas en el uso de la multiplexación por división de frecuencias ortogonales, OFDM Ventajas Debido a que la transmisión del flujo de datos se hace en paralelo, osea se divide la información en canales adyacentes, cada canal transporta solo una parte de los datos totales, lo que ocasiona que si ocurriera un error en alguna transmisión, estos errores no estarán seguidos a la hora de recuperar la información en el receptor, este tipo de ventaja se le conoce como tecnología de errores esparcidos. Con la implementación del uso de la transformada de Fourier, IFFT/FFT en el proceso de modulación de la señal, llevó a contribuir en la simplificación significativa de los transmisores y receptores OFDM, pues todo el proceso que antes se realizada por banco de osciladores para desfasar cada frecuencia subportadora y que además debía de estar bien perfectamente sincronizado entre el transmisor y receptor, se eliminó y todo este tratamiento se realiza por medio de los algoritmos de la transformada rápida de Fourier, tanto en el transmisor con la ifft, como en el receptor con la FFT. La frecuencia primaria de el sistema de única portadora con el uso de OFDM se divide en cada N subportadoras que ahora transmite símbolos más largos a alta velocidad permitiendo aumentar el desempeño del sistema. OFDM al dividir el canal principal en subcanales, por medio de separaciones de frecuencias, las cuales tendrán su propia subportadora, optimiza el espectro permitiendo más canales en un ancho de banda que el método tradicional, de filtraje pasa banda.

97 86 Los sistemas OFDM son bastante robustos a las variaciones del canal, cuando el número de sub-portadoras es bastante grande comparado con el ancho de banda del canal. Por sus características es capaz de recuperar información entre distintas señales con distintos retardos y amplitudes (fading) que llegan al receptor, por lo que existe la posibilidad de crear redes de radiodifusión de frecuencia única sin problemas de interferencia. Posee una gran resistencia a la degradación debida a la multitrayectoria que se dan en ambientes sin líneas de vista o con línea de vista problemáticos, dos escenarios muy típicos en las ciudades. Y esta capacidad le otorga a esta tecnología un importante atractivo a las empresas, pues convierte a éste un modo más rápido y barato de implementación de redes considerando la facilidad para el lado del suscriptor que no tendría que contar con una antena fuertemente direccionada como es lo normal. Otra ventaja es que debido a que en OFDM el período del símbolo se incrementa, el retardo por multipropagación (delay spread) constituye una fracción del mismo considerablemente más corta que en el caso de los sistemas convencionales serie, lo que hace a los sistemas OFDM bastante menos sensibles a la dispersión del canal. Diversidad multiusuario: Mediante OFDMA la asignación de subportadoras a usuarios se lleva a cabo dinámicamente, pudiéndose cambiar en períodos cortos de tiempo dicha asignación a través de estrategias de scheduling. De esta forma, teniendo en cuenta que el canal radio presentará desvanecimientos aleatorios en las diferentes subportadoras, y que dichos desvanecimientos serán independientes para cada usuario, se puede intentar seleccionar para cada subportadora aquél usuario que presente un mejor estado del canal (esto es, perciba una mejor relación señal a ruido), lo que se traducirá en una mejor utilización de la banda disponible para conseguir una mayor velocidad de transmisión, esto es, una mayor eficiencia espectral. Robustez frente a la propagación multicamino: Gracias a la aplicación del prefijo cíclico, la técnica OFDMA es muy robusta frente a la interferencia intersimbólica resultante de la propagación multicamino y se puede combatir la distorsión mediante técnicas de ecualización en el dominio de la frecuencia, que resultan más eficientes y menos complejas que las técnicas de ecualización clásicas en el dominio temporal, particularmente cuando se tiene que efectuar una transmisión de banda ancha y en consecuencia se está ante canales muy dispersivos. Esto es particularmente relevante cuando se pretenden emplear bandas de transmisión superiores a 5 MHz, como ocurre con LTE, en que se pretende llegar hasta los 20 MHz. Flexibilidad en la banda asignada: La técnica OFDMA proporciona una forma sencilla de acomodar diferentes velocidades de transmisión a los diferentes usuarios en función de los requerimientos de servicio de cada uno, simplemente a base de la

98 87 asignación de más o menos subportadoras por usuario. Nótese que esto puede llevarse a cabo sin ninguna modificación en el proceso de modulación, solamente cambiando los valores de entrada sobre los que se efectúa la IDFT. Elevado grado de utilización de la banda asignada: Gracias al empleo de la transmisión OFDM la transmisión multiportadora se consigue con un espaciado mínimo entre las diferentes subportadoras utilizadas, existiendo de hecho una cierta superposición en el espectro ocupado por éstas (ver Figura 4.1) sin que ello afecte a la recuperación de la señal transmitida. Por el contrario, otras técnicas de transmisión diferentes de OFDM requerirían una cierta banda de guarda entre los diferentes canales, lo que reduciría el grado de utilización de la banda asignada y en consecuencia la efi ciencia espectral Desventajas Dispersión: Tanto la dispersión en tiempo como en frecuencia pueden destruir la ortogonalidad del sistema, por lo tanto introducen ISI y/o ICI. Si estos efectos no son lo suficientemente irrelevantes, debido por ejemplo a la inclusión de un prefijo cíclico o a un gran espaciamiento entre portadoras, deberán ser incluidos en el modelo. Una forma de modelar esto será incrementar la potencia de ruido aditivo. No linealidades: Los sistemas OFDM tienen una gran relación potencia de pico a potencia media (PAPR) y son muy exigente en cuanto a linealidad en los amplificadores de potencia. Las no linealidades en los amplificadores causan tanto ISI como ICI en el sistema. Especialmente, si los amplificadores no se diseñan para un back-off de salida (OBO) adecuado. Interferencia externa: Tanto los sistemas sobre cable como los inalámbricos están sujetos a interferencias externas. Para el caso inalámbrico, la interferencia suele provenir de otras transmisiones y equipamiento electrónico situado en la vecindad de los propios del sistema. Para los sistemas sobre soporte físico, lo más común será encontrarnos con crosstalk. En cualquier caso, la interferencia suele modelarse como un ruido coloreado. Sincronización de símbolo: La sincronización de símbolo tendrá gran importancia en OFDM. Sin embargo, el uso del prefijo cíclico relaja un poco las exigencias de temporización. El objetivo será conocer cuándo el símbolo comienza. Un offset en la temporización provoca un aumento de la rotación de fase de las portadoras. Esta rotación es mayor en los bordes de la banda de frecuencia. Si el error de temporización es lo suficientemente pequeño para mantener la respuesta impulsiva del canal dentro del tiempo del prefijo cíclico, la ortogonalidad se mantendrá. En este caso, un retraso de símbolo puede ser visto como un desplazamiento de fase introducido por el canal, y la rotación de

99 88 fase puede ser estimada por un estimador. En caso de que el desplazamiento temporal sea mayor que el prefijo cíclico, la ISI aparecerá. Susceptibilidad frente a errores de frecuencia: La ortogonalidad en OFDMA se basa en que la separación entre subportadoras coincide con el inverso de la duración del símbolo OFDMA. Por este motivo, en el caso de que existan desplazamientos en la frecuencia de las subportadoras respecto de su frecuencia de referencia, esto se traducirá en una cierta pérdida de ortogonalidad y la consiguiente interferencia entre subportadoras. Los motivos de estos errores en frecuencia pueden ser diversos, como por ejemplo la estabilidad de los osciladores, el efecto Doppler asociado al movimiento de los terminales, etc. En este sentido, la disponibilidad de mecanismos de sincronización eficientes para hacer frente a estos errores en frecuencia es uno de los aspectos necesarios a tener en cuenta. A continuación luego de conocer en extracto las ventajas y desventajas que trae el uso de la técnica de multiplexación por OFDM en los sistemas de comunicación, haremos una comparación en forma de tabla entre este tipo de multiplexación y otros tipos de multiplexación que existen hoy en día, esto para conocer aun con mas claridad cuan importante y cuanto beneficio ha traído la adaptación de esta técnica a los sistemas de comunicación de hoy en día. Para la simplificación en el uso de la tabla, se llamará a cada una de las técnicas de multiplexado por sus siglas en inglés, las cuales serán: Multiplexación por división del tiempo (TDM) Multiplexación por división de frecuencia ortogonal (OFDM) Multiplexación por división de código (CDM) Multiplexación estadística o asíncrona (SM)

100 89 Técnica Ancho de banda Esquema multiplexado Inmunidad al ruido Característica de errores Complejidad en algoritmo Problemas de distorsión Velocidad de los dispositivos Costo adición de nuevo receptor OFDM Divide el canal en subcanales de frecuencia, transmisión simultánea TDM Asigna un tiempo para cada transmisión, transmisión serie. CDM Se realiza distintas codificaciones al canal, comparte tiempo y frecuencia. SM Transmite datos al canal del emisor que este listo para transmitir OFDM Cada subcanal posee una fracción del ancho de banda total, i.e. menor ancho de banda que las demás. TDM,CDM,SM Se asigna todo el ancho de banda a cada transmisión OFDM Analógico TDM Analógico o digital CDM Digital SM Digital OFDM Menos inmune al ruido que todas las demás TDM,CDM,SM Mas propensas a fluctuaciones del medio (ruido) OFDM Presenta errores esparcidos, debido a transmisión en paralelo. Presenta errores concentrados debido a transmisión TDM,CDM,SM serie, que afecta a más bits juntos si ocurre error de ráfaga. OFDM Algoritmo con baja complejidad, al ser FFT es muy conocido. TDM Algoritmo de implementación complejo CDM Algoritmo de implementación muy complejo SM Algoritmo implementación muy simple, el que esta listo transmite simplemente. OFDM Podría presentar problemas de distorsión entre subcanales, debido a canales adyacentes. TDM,CDM,SM No presenta problemas de distorsión entre canales porque hay un único canal de transmisión serie de datos. OFDM Trabaja más efectivamente con dispositivos de baja velocidad. TDM,CDM,SM Pueden trabajar con dispositivos mas rápidos, debido a la simplicidad de método. OFDM Medio TDM Elevado CDM Bajo SM Muy bajo Tabla 4.3 Comparación de OFDM con otros tipos de multiplexación

101 Variantes en la implementación de OFDM Como todo sistema tecnológico, con el pasar del tiempo se van mejorando parámetros y técnicas en el desarrollo e implementación de estos. Igual le ocurre a la técnica de multiplexación por OFDM, en la cual desde su nacimiento en si como técnica se ha mejorado mucho e incluso se han añadido ciertas variaciones a su implementación para adecuarlas a las necesidades que cada aplicaciones ha ido requiriendo con el pasar de los años, además de el inmenso desarrollo que ha tenido el sistema de comunicación principalmente inalámbrica en los últimos años. Ya se ha hablado un poco de algunas de estas técnicas en el desarrollo de este documento, sin embargo en este apartado se presentarán cada una por aparte, así como nuevas implementaciones que se le han hecho a esta técnica y que aun están en proceso de desarrollo COFDM A como se mencionó en el punto de este documento en el uso de DVB-T Y DAB, COFDM (Coded Orthogonal Frequency Division Multiplexing) es una técnica compleja de modulación de banda ancha utilizada para transmitir información digital a través de un canal de comunicaciones, que combina potentes métodos de codificación más el entrelazado para la corrección de errores en el receptor. COFDM modula la información en múltiples frecuencias portadoras ortogonales donde cada una esta modulada en amplitud y fase y lleva una tasa de símbolos muy baja además de tener una alta eficiencia espectral. Se obtiene una modulación específicamente diseñada para combatir los efectos multitrayectoria y otros tipos de interferencias que afectan a receptores. COFDM es una mejora para canales muy selectivos o variantes ya que: puede soportar multitrayecto Severo, la presencia de interferencias de banda estrecha de co-canal, la cancelación de la señal, el ruido de impulsos y la reducción rápida de la amplitud de la señal. La codificación (la C en COFDM) es el ingrediente clave. Sin embargo, los resultados deseados solo se logran cuando la codificación se integra estrechamente con el sistema de OFDM junto con el entrelazamiento de portadoras. [27] DMT-OFDM Un caso particular de OFDM es la modulación multitono. En ésta se adapta el tamaño de la constelación de QAM utilizada en cada subcanal dependiendo de las características que presentan, como por ejemplo, el nivel de ruido. Para implementarlo, se utilizan algoritmos de Water Filling. Esta variación es relevante ya que es la utilizada en tecnologías populares como ADSL y VDSL el cual se presento en el apartado 4.14 de este documento.

102 91 Este tipo de variante se lleva a cabo en el transceptor DMT/OFDM en donde se produce la comunicación entre estaciones. En lugar de proporcionar módulos independientes para llevar a cabo de ifft y de FFT, el transceptor tiene sólo un único módulo FFT, o ifft, que opera en partes reales e imaginarias de la secuencia de datos; las salidas de la FFT o ifft se suministran a una etapa de procesamiento posterior donde se le aplican simultáneas ecuaciones de términos reales e imaginarios, esto con el fin de lograr separar la transmisión de la recepción de datos. [26] OFDMA OFDMA, Orthogonal Frecuency-Division Multiple Access es la versión multiusuario de OFDM, esta se menciona en el apartado de este documento, en el uso de el download link de la tecnología LTE-4G, se utiliza para conseguir que un conjunto de usuarios de un sistema de telecomunicaciones puedan compartir el espectro de un cierto canal para aplicaciones de baja velocidad. El acceso múltiple se consigue dividiendo el canal en un conjunto de subportadoras que se reparten en grupos en función de la necesidad de cada uno de los usuarios. Para conseguir una mayor eficiencia, el sistema se realimenta con las condiciones del canal, adaptando continuamente el número de subportadoras asignadas al usuario en función de la velocidad que éste necesita y de las condiciones del canal. Si la asignación se hace rápidamente, se consigue cancelar de forma eficiente las interferencias co-canal y los desvanecimientos rápidos, proporcionando una mejor eficiencia espectral del sistema que OFDM. [19] ERP-OFDM ERP-OFDM es uno de los 4 esquemas de operación del estándar IEEE g, este es un esquema obligatorio de dicho estándar, el cual se basa en las especificaciones del estándar IEE a con alguna excepciones. Esta capa se compone de una subcapa PLCP que adiciona campos a las tramas recibidas de la capa MAC para ayudar a la sincronización de los transmisores DSSS-OFDM DSSS-OFDM es otro de los 4 esquema de operación que define el estándar IEE g, este es un esquema opcional, utiliza una modulación híbrida que combina preámbulo y encabezado modulado en DSSS y transmisión de datos en OFDM. Permite tasas de datos desde 6 a 54 Mbps. La técnica es combinar la señal a transmitir con el código de usuario

103 92 (chipping code), el cual solo existe una secuencia de chip para todos los sistemas. Su obejetivo principal es ensanchar el espectro para dar robustez a la comunicación Técnicas para reducción de PAPR (peak-to-average power radio) PAPR es un problema que aqueja a la multiplexación por OFDM, significa una alta relación entre potencia de pico y potencia media, y es que desde el punto de vista de eficiencia energética, operar con señales que presentan una alta relación PAPR resulta sumamente ineficiente. Para que el amplificador de potencia (AP) del transmisor trabaje en zona lineal, es necesario operar con niveles de back-off similares o por encima del nivel de PAPR. En cuyo caso la potencia media de la señal es mucho menor que los picos de señal que aparecen eventualmente y por lo tanto, el precio de tener amplificación lineal en transmisión es la ineficiencia energética en el AP, aspecto critico especialmente en equipos móviles operados con baterías. Es por esta razón que hoy en día se han desarrollado técnicas adecuadas para mitigar la ineficiencia asociada a trabajar con señales con gran PAPR, para ello se han propuesto las siguientes técnicas de reducción del factor de cresta en señales OFDM multiportadora. [30] Clipping La técnica de clipping consiste en recortar la señal a transmitir a partir de un cierto umbral de amplitud. El recorte de los picos de la señal produce distorsión no lineal dentro y fuera de la banda de transmisión. El recrecimiento espectral fuera de banda puede eliminarse mediante el filtrado de la señal en los canales adyacentes. Para ello es necesario multiplicar por cero la muestras de la transformada de Fourier que estén fuera del canal de la señal OFDM (canales adyacentes). Ahora bien, mediante este tipo de filtrado no es posible mitigar la distorsión dentro de la banda, por lo que eventualmente se utilizan técnicas de predistorsión digital para intentar compensar la degradación de la señal dentro de la banda. La degradación de la señal en banda se cuantifica mediante el cálculo de vector de error en la constelación, es decir, mediante el Error vector Magnitude (EVM). En la técnica de clipping se utilizan varias etapas de recorte de picos mas filtrado (ej. 3 etapas), ya que cada vez que filtramos los picos de amplitud de la señal vuelven a crecer respecto al umbral fijado para limitarlos. Este proceso puede ser llevado a cabo tantas veces como sea necesario, si bien cada etapa lleva implícita un incremento del EVM. Existen dos tipos básicos de clipping, el Hard Clipping (HC), y el Soft Clipping (SC), los cuales según sea la aplicación y lo estricto o la cantidad de PAPR que se quiera limitar se aplica cada uno, en la figura 4.6 se muestran las dos técnicas anteriormente citadas, aplicadas a una señal OFDM. [30]

104 93 Figura 4.6 Comparación entre Hard Clipping y Soft Clipping [30] Tone injectión (TI) La técnica de TI sigue el mismo principio de SLM, modificando los símbolos antes del bloque IDFT para así reducir el PAPR. Sin embargo, en la técnica TI, los símbolos se desplazan a una posición de la constelación concreta de manera que el receptor pueda identificar su posición original unívocamente. Así pues, a diferencia de SLM, no es necesario enviar información extra al receptor. En TI el símbolo mapeado se mueve a una posición fuera de la constelación original (Figura 4.7), lo que permite reducir los picos de la señal solo modificando uno o varios (pocos) símbolos. Sin embargo expandir la constelación ocasiona principalmente dos inconvenientes. El primero es que se aumenta la potencia media de transmisión, lo que puede conllevar un aumento de picos de la señal secundarios. El segundo es que el aumento de potencia media de la señal implica una reducción del margen de SNR. [30]

Conversor Analógico Digital (CAD)

Conversor Analógico Digital (CAD) Conversor Analógico Digital (CAD) La salida de los sensores, que permiten al equipo electrónico interaccionar con el entorno, es normalmente una señal analógica, continua en el tiempo. En consecuencia,

Más detalles

REDES LOCALES BASICO FASE1 PRESENTADO POR JENNER MEJIA CODIGO: 17901846 TUTOR LEANDRO BERNAL ZAMORA

REDES LOCALES BASICO FASE1 PRESENTADO POR JENNER MEJIA CODIGO: 17901846 TUTOR LEANDRO BERNAL ZAMORA REDES LOCALES BASICO FASE1 PRESENTADO POR JENNER MEJIA CODIGO: 17901846 TUTOR LEANDRO BERNAL ZAMORA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA

Más detalles

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda Introducción El nivel físico es el encargado de establecer una conexión entre dos nodos y de enviar los datos como unos y ceros (u otra forma análoga). Para ello, este nivel define detalles físicos como

Más detalles

Capítulo 2. Sistemas de comunicaciones ópticas.

Capítulo 2. Sistemas de comunicaciones ópticas. Capítulo 2 Sistemas de comunicaciones ópticas. 2.1 Introducción. En este capítulo se describen los diferentes elementos que conforman un sistema de transmisión óptica, ya que son elementos ópticos que

Más detalles

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN CONVERSION ANALÓGICO A DIGITAL Con el paso del tiempo, las comunicaciones electrónicas han experimentado algunos cambios tecnológicos notables. Los sistemas tradicionales de comunicaciones electrónicas

Más detalles

Teoria de las Telecomunicaciones. TEMA 2 Tècnicas de modulacion. Luis Lujan

Teoria de las Telecomunicaciones. TEMA 2 Tècnicas de modulacion. Luis Lujan Teoria de las Telecomunicaciones TEMA 2 Tècnicas de modulacion Luis Lujan 1 Índice Técnicas de codificación: Datos digitales: Señales digitales. Señales analógicas. Datos analógicos: Señales digitales.

Más detalles

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES TEMA 2 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1.- Conceptos y definiciones básicas. 1.1.- Elementos de un sistema de comunicación.

Más detalles

3.3 SISTEMAS ANALÓGICOS DE TV SATÉLITE

3.3 SISTEMAS ANALÓGICOS DE TV SATÉLITE 3.3 SISTEMAS ANALÓGICOS DE TV SATÉLITE En las comunicaciones vía satélite se utiliza la banda de les microondas (SHF y EHF) y sus márgenes están comprendidos entre 10,95 GHz y 12,5 GHz... La señal procedente

Más detalles

TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos

TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos MODULACIÓN TRANSMISION DIGITAL La amplia naturaleza de las señales analógicas es evidente, cualquier forma de onda está disponible con toda seguridad en el ámbito analógico, nos encontramos con una onda

Más detalles

SISTEMAS DE COMUNICACIONES.

SISTEMAS DE COMUNICACIONES. SISTEMAS DE COMUNICACIONES. Conceptos Básicos. Los sistemas de comunicación están compuestos por tres partes principales: transmisor, medio o canal de comunicación y receptor. En un sistema de comunicación,

Más detalles

Tema 2 CODIFICACIÓN Y MODULACIÓN DIGITAL COMUNICACIÓN DE DATOS. ESI-CR.UCLM 1

Tema 2 CODIFICACIÓN Y MODULACIÓN DIGITAL COMUNICACIÓN DE DATOS. ESI-CR.UCLM 1 Tema 2 CODIFICACIÓN Y MODULACIÓN DIGITAL ESI-CR.UCLM 1 Técnicas de Codificación Datos digitales, señales digitales Datos analógicos, señales digitales (PCM) Datos digitales, señales analógicas (modem)

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Escuela Técnica Superior de Ingeniería Informática PRÁCTICA 5: DISEÑO DE MODULADORES (FSK), DEMODULADORES (ASK) Tecnología Básica de las Comunicaciones (Ingeniería Técnica Informática

Más detalles

Tema 1: Sistemas de comunicación digital. Transmisión digital (I.T.T. Telemática)

Tema 1: Sistemas de comunicación digital. Transmisión digital (I.T.T. Telemática) Tema 1: Sistemas de comunicación digital Transmisión digital (I.T.T. Telemática) Introducción Se entiende por comunicación al proceso por el cual se transfiere información desde un punto llamado fuente

Más detalles

REDES DE COMUNICACIONES INDUSTRIALES 2º semestre 2006-2007. Nuria Oliva Alonso

REDES DE COMUNICACIONES INDUSTRIALES 2º semestre 2006-2007. Nuria Oliva Alonso REDES DE COMUNICACIONES INDUSTRIALES 2º semestre 2006-2007 Nuria Oliva Alonso CALENDARIO Y TEMAS U.D.1: 6 temas : 4 tutorías U.D.2: 6 temas : 4 tutorías U.D.3: 6 temas : 4 tutorías 1 tutorías de repaso

Más detalles

SISTEMAS DE COMUNICACIÓN. Clase 1: Introducción

SISTEMAS DE COMUNICACIÓN. Clase 1: Introducción SISTEMAS DE COMUNICACIÓN Clase 1: Introducción Mecánica del curso Horarios: martes 16:00 salón 301 jueves 16:00 salón 301 Viernes 16:00 salón 105 teórico teórico práctico Docentes del curso Alicia Fernández,

Más detalles

INDICE 2. Generación de Señales 3. Transmisión de Modulación de Amplitud 4. Recepción de Modulación de Amplitud

INDICE 2. Generación de Señales 3. Transmisión de Modulación de Amplitud 4. Recepción de Modulación de Amplitud INDICE Prefacio 1. Introducción a las Comunicaciones Electrónicas 1 Introducción 1 El espacio electromagnetismo 4 Ancho de banda y capacidad de información 7 Modos de transmisión 9 Arreglos de circuitos

Más detalles

Capítulo 7 Modulación de Pulsos

Capítulo 7 Modulación de Pulsos 237 Capítulo 7 Modulación de Pulsos Introducción Las modulaciones de amplitud, frecuencia y fase tratadas en los capítulos anteriores se designan genéricamente como modulaciones de onda continua, en que

Más detalles

M.C. MARIBEL TELLO BELLO

M.C. MARIBEL TELLO BELLO M.C. MARIBEL TELLO BELLO Cub.16 Espejos, faros de fuego, señales de humo. 1792 Claude Chappe, Telegrafo óptico, ~100 Km,

Más detalles

e-business Ing. Marco Guachimboza Mg.

e-business Ing. Marco Guachimboza Mg. e-business Ing. Marco Guachimboza Mg. UNIDAD I FUNDAMENTOS DE INTERNET INTRODUCCIÓN A LAS TELECOMUNICACIONES TELECOMUNICACIÓN La telecomunicación («comunicación a distancia»), del prefijo griego tele,

Más detalles

Teoría y Aplicaciones de la Informática 2 TRABAJO PRACTICO. MODEM DE 56 Kbps

Teoría y Aplicaciones de la Informática 2 TRABAJO PRACTICO. MODEM DE 56 Kbps UNIVERSIDAD CATOLICA NUESTRA SEÑORA DE LA ASUNCION FACULTAD DE CIENCIAS Y TECNOLOGIA Teoría y Aplicaciones de la Informática 2 TRABAJO PRACTICO MODEM DE 56 Kbps Autores : Gregorio Ariel Guerrero Moral

Más detalles

Modelo para las Comunicaciones y Transmisión de Datos

Modelo para las Comunicaciones y Transmisión de Datos Modelo para las Comunicaciones y Transmisión de Datos Mg. Gabriel H. Tolosa. tolosoft@unlu.edu.ar "You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head

Más detalles

SISTEMAS DE TELECOMUNICACION TELEMATICA

SISTEMAS DE TELECOMUNICACION TELEMATICA SISTEMAS DE TELECOMUNICACION TELEMATICA TEMA 2 0. INTRODUCCIÓN. 0.1. Concepto de telecomunicación. El término telecomunicación nació a principios del siglo XX y en 1932 se definió como: "toda comunicación

Más detalles

Análisis de Diagramas de Ojo

Análisis de Diagramas de Ojo Universidad Técnica Federico Santa María Departamento de Electrónica Teoría de Comunicaciones Digitales Informe de Teoría de Comunicaciones Digitales Análisis de Diagramas de Ojo Nombre: José Antonio Dinamarca

Más detalles

UNIDAD II. TÉCNICAS DE MODULACIÓN. para transportar información sobre una onda portadora, típicamente una

UNIDAD II. TÉCNICAS DE MODULACIÓN. para transportar información sobre una onda portadora, típicamente una UNIDAD II. TÉCNICAS DE MODULACIÓN En telecomunicación el término modulación engloba el conjunto de técnicas para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas

Más detalles

Tema 1. Introducción a las redes de comunicaciones.

Tema 1. Introducción a las redes de comunicaciones. Tema 1. Introducción a las redes de comunicaciones. 1.- Cuando se realiza una llamada telefónica local a otra persona, qué tipo de configuración se está utilizando? a) Punto a punto b) Punto a multipunto

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capítulo 1. Generalidades Universidad del Cauca Teoría de Telecomunicaciones 1 Limitaciones en las Comunicaciones Eléctricas En el diseño de sistemas de comunicaciones eléctricos, siempre se debe enfrentar

Más detalles

COMUNICACIONES DE DATOS. TRANSMISIÓN DE DATOS

COMUNICACIONES DE DATOS. TRANSMISIÓN DE DATOS TEMA 1 COMUNICACIONES DE DATOS. TRANSMISIÓN DE DATOS 1.1. Modelo simplificado de comunicaciones Objetivo: intercambiar información entre dos entidades. Modelo en bloques. Fig 1.1 Fuente o Genera los datos

Más detalles

16-0085 / 29-1207 ARQUITECTURA DE SISTEMAS DIGITALES Y ORDENADORES

16-0085 / 29-1207 ARQUITECTURA DE SISTEMAS DIGITALES Y ORDENADORES DESCRIPCIÓN DEL TÉCNICO EN TELECOMUNICACIONES Las telecomunicaciones engloban todas las tecnologías que permiten el envío y la recepción de señales que transportan información entre dos sistemas. Las tecnologías

Más detalles

UNSE PLANIFICACION TELECOMUNICACIONES

UNSE PLANIFICACION TELECOMUNICACIONES UNSE PLANIFICACION DE TELECOMUNICACIONES 2012 UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS CARRERA: INGENIERIA ELECTRÓNICA PLAN: 2008 PLANIFICACIÓN DE LA ASIGNATURA

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

ESTADO DE LA TCNOLOGIA DE LAS REDES PLC (POWER LINE COMMUNICATION)

ESTADO DE LA TCNOLOGIA DE LAS REDES PLC (POWER LINE COMMUNICATION) ESTADO DE LA TCNOLOGIA DE LAS REDES PLC (POWER LINE COMMUNICATION) J. Parés (p), E. Hernández y J. Matínez Departamento de Proyectos de Ingeniería, E.T.S.E.I de Barcelona 1. INTRODUCCIÓN. Presentamos el

Más detalles

La Modulación de señales

La Modulación de señales 15/ 05/ 13 ww w w.ea1uro.com/ eb1dgh/digitales/modulaci%f3n/modulacion.html La Modulación de señales La modulación es el proceso mediante el cual una señal de info se multiplica por otra señal de mayor

Más detalles

PSK - Desplazamiento de fase

PSK - Desplazamiento de fase MODULACIÓN DIGITAL Existe una clara tendencia hacia los sistemas digitales de comunicación. Los servicios de telefonía celular, analógicos hasta hace un par de años, hoy son todos de naturaleza digital.

Más detalles

Tema 3. Propagación de las señales. Modulación

Tema 3. Propagación de las señales. Modulación Tema 3. Propagación de las señales. Modulación 1. Propagación de la señal. 2. Perturbaciones en la transmisión. 3. Transformaciones para la propagación de la señal. 4. Ejemplos de Modulación 5. Ejemplos

Más detalles

5.5.- Ruido en comunicaciones

5.5.- Ruido en comunicaciones RUIDO EN COMUNICACIONES Y MODULACIONES DIGITALES 5.5.- Ruido en comunicaciones En comunicación, se denomina ruido a toda señal no deseada que se mezcla con la señal útil que se quiere transmitir. El ruido

Más detalles

5.3 TX. DIGITAL PASABANDA - MODULACIÓN DIGITAL

5.3 TX. DIGITAL PASABANDA - MODULACIÓN DIGITAL 5.3 TX. DIGITAL PASABANDA - MODULACIÓN DIGITAL La transmisión de datos pasabanda es una técnica en la cual los datos son transmitidos usando una señal portadora (normalmente una señal analógica, tal como

Más detalles

WDM. Wavelength Division Multiplexing Comunicación Multicanal Vía Fibra Óptica

WDM. Wavelength Division Multiplexing Comunicación Multicanal Vía Fibra Óptica Wavelength Division Multiplexing Comunicación Multicanal Vía Fibra Óptica LA NECESIDAD DE VELOCIDAD Las telecomunicaciones para el acceso local se han desarrollado lentamente: los teléfonos y TV, han permanecido

Más detalles

INTEGRANTES Victor Sauhing Betsy Rivera Israel Santen

INTEGRANTES Victor Sauhing Betsy Rivera Israel Santen INTEGRANTES Victor Sauhing Betsy Rivera Israel Santen Divide la comunicación de red en partes mas pequeñas y sencillas. Permite a los distintos tipos de hardware y software de red comunicarse entre sí

Más detalles

Tema 2 Fundamentos. Organización

Tema 2 Fundamentos. Organización Tema 2 Fundamentos Para aprender más: L. CUADRA, REDES DE COMUNICACIÓN II: UNA VISIÓN CONCEPTUAL, Universidad de Alcalá, Madrid, 2010. (ÚlJma actualización: 28 de marzo de 2011) Organización Parte I: Nivel

Más detalles

UD - 5 TELEVISIÓN DIGITAL. Eduard Lara

UD - 5 TELEVISIÓN DIGITAL. Eduard Lara UD - 5 TELEVISIÓN DIGITAL Eduard Lara 1 1. DIGITALIZACIÓN DE IMÁGENES Las técnicas digitales se llevan utilizando desde hace algunos años dentro del ámbito profesional de la televisión, debido a las altas

Más detalles

TELEVISION CATV. La televisión por cable o CATV, comúnmente denominada video cable o

TELEVISION CATV. La televisión por cable o CATV, comúnmente denominada video cable o TELEVISION CATV La televisión por cable o CATV, comúnmente denominada video cable o simplemente cable, es un servicio de sistema de televisión se ofrece a través de señales de RF que se transmiten a los

Más detalles

REDES INALÁMBRICAS 2. MEDIO DE PROPAGACIÓN INALÁMBRICA. El canal de comunicación inalámbrica. El fenómeno de la propagación

REDES INALÁMBRICAS 2. MEDIO DE PROPAGACIÓN INALÁMBRICA. El canal de comunicación inalámbrica. El fenómeno de la propagación REDES INALÁMBRICAS 2. MEDIO DE PROPAGACIÓN INALÁMBRICA El canal de comunicación inalámbrica La tecnología de comunicaciones inalámbricas esta basada en el estándar IEEE 802.11b. El término más utilizado

Más detalles

Redes de Computadores. Capa Física. http://elqui.dcsc.utfsm.cl 1

Redes de Computadores. Capa Física. http://elqui.dcsc.utfsm.cl 1 http://elqui.dcsc.utfsm.cl 1 Sistema Telefónico Para comunicar 2 computadores cercanos, se usa un cable si computadores están muy lejos, se debe cruzar calles o ciudades...implica instalar una red privada

Más detalles

Una señal es una magnitud física de interés que habitualmente es una función del tiempo.

Una señal es una magnitud física de interés que habitualmente es una función del tiempo. 1.- Introducción al Procesado Digital de Señales. 1.1.- Introducción. Podemos decir que cuando realizamos cualquier proceso digital para modificar la representación digital de una señal estamos haciendo

Más detalles

Para qué se modula? Técnicas de Modulación Digital Pasabanda. Comunicación Digital Fabio G. Guerrero Universidad del Valle

Para qué se modula? Técnicas de Modulación Digital Pasabanda. Comunicación Digital Fabio G. Guerrero Universidad del Valle Comunicación Digital Fabio G. Guerrero Universidad del Valle Para qué se modula? Para obtener tamaños de antena razonables en una radio transmisión. (Ej: las antenas para teléfonos celulares tienen típicamente

Más detalles

Práctica: Simulación de un sistema de acceso ADSL

Práctica: Simulación de un sistema de acceso ADSL Práctica: Simulación de un sistema de acceso ADSL Tecnologías de Acceso a Red Grado en Ing. de Sistemas de Comunicaciones Universidad Carlos III de Madrid Curso 2012-2013 Luca Martino (luca@tsc.uc3m.es)

Más detalles

TECNOLOGÍAS DE LA COMUNICACIÓN

TECNOLOGÍAS DE LA COMUNICACIÓN TECNOLOGÍAS DE LA COMUNICACIÓN La comunicación consiste en la transmisión de información de una persona a otra Necesitamos un emisor, un medio para transmitir el mensaje y un receptor. EVOLUCIÓN DE LAS

Más detalles

2 Power Line Communications PLC

2 Power Line Communications PLC 2 Power Line Communications PLC 2.1 Introducción A lo largo de este capítulo se presenta el panorama general de la tecnología Power Line Communications (PLC), tecnología en la cual se hace uso de las líneas

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA MAESTRÍA EN TELEINFORMÁTICA BOGOTÁ D.C.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA MAESTRÍA EN TELEINFORMÁTICA BOGOTÁ D.C. ANÁLISIS DEL RENDIMIENTO DE LOS ESQUEMAS DE ACCESO PROPUESTOS POR LA ITU (INTERNATIONAL TELECOMMUNICATIONS UNION) Y ETSI (EUROPEAN TELECOMMUNICATIONS STANDARD INSTITUTE) PARA LAS COMUNICACIONES INALÁMBRICAS

Más detalles

ENRUTADOR DE CANALES DE AUDIO CON CONTROL VIRTUAL EN TIEMPO REAL

ENRUTADOR DE CANALES DE AUDIO CON CONTROL VIRTUAL EN TIEMPO REAL Revista Colombiana de ENRUTADOR DE CANALES DE AUDIO CON CONTROL VIRTUAL EN TIEMPO REAL ISSN:1692-7257 Volumen 2 - No 2 2003 Ms.C. Antonio Gan Acosta* Ing. Oscar José Cabrales Baena** Grupo de Investigación:

Más detalles

5. Modulación digital.

5. Modulación digital. 5. Modulación digital. La portadora y la señal modulada son analógicas como las señales AM y FM. La modulación digital se divide dos clases: - PSK ( Phase shift keying ) Codificación por cambio de fase.

Más detalles

Conversión Analógica-a-Digital

Conversión Analógica-a-Digital Conversión Analógica-a-Digital OBJEIVOS: Comprender la conversión de señales analógicas a digitales, analizando las modificaciones que se producen con este proceso. Fundamentalmente, las "réplicas" en

Más detalles

Tema IV. Comunicaciones digitales.

Tema IV. Comunicaciones digitales. Tema IV. Comunicaciones digitales. IV.. INTRODUCCIÓN. IV.. TRANSMISIÓN DIGITAL EN BANDA BASE CON RUIDO ADITIVO BLANCO GAUSSIANO. IV.3. ANÁLISIS EN EL ESPACIO DE SEÑALES. IV.. TRANSMISIÓN DIGITAL PASO BANDA

Más detalles

Laura Gonzalo Abril 03 CURSO MODULACIONES DIGITALES

Laura Gonzalo Abril 03 CURSO MODULACIONES DIGITALES Es un proceso en el que la información se imprime sobre una señal de alta frecuencia. Señal Moduladora Señal Modulada Señal Portadora Para proteger la información de las agresiones del medio. Por facilidad

Más detalles

1 Conceptos Básicos de Señales y Sistemas

1 Conceptos Básicos de Señales y Sistemas CAPÍTULO 1 Conceptos Básicos de Señales y Sistemas Cuando se hace referencia a los conceptos de señales y sistemas, su aplicación es válida para una variedad amplia de disciplinas, tales como sismología,

Más detalles

Espectro Electromagnético. Espectro de Radiofrecuencia 13/09/2013. Sistemas cableados Vs Inalámbricos

Espectro Electromagnético. Espectro de Radiofrecuencia 13/09/2013. Sistemas cableados Vs Inalámbricos Comunicaciones Inalámbricas Capitulo 1: Fundamentos Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Maestría en Electrónica y Telecomunicaciones II-2013 Sistemas cableados Vs Inalámbricos

Más detalles

Tecnologías de la Comunicación

Tecnologías de la Comunicación Objetivos Antes de empezar Esta quincena aprenderá sobre: Conocer y comprender los conceptos y magnitudes relacionados con la transmisión de información a través de ondas o de corriente eléctrica. Describir

Más detalles

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM J. Rodríguez-Asomoza, D. Báez-López, E. López-Pillot. Universidad de las Américas, Puebla (UDLA-P) Departamento de Ingeniería

Más detalles

Última modificación: 25 de agosto de 2010. www.coimbraweb.com

Última modificación: 25 de agosto de 2010. www.coimbraweb.com TRANSMISIÓN DIGITAL EN BANDA BASE Contenido 1.- Codificación de línea. 2.- Esquemas de codificación de línea. 3.- Características de la transmisión digital. 4.- Capacidad de información de canal. 5.- Interferencia

Más detalles

TEMA 1 INTRODUCCION AL PROCESAMIENTO DIGITAL DE SEÑALES

TEMA 1 INTRODUCCION AL PROCESAMIENTO DIGITAL DE SEÑALES TEMA 1 INTRODUCCION AL PROCESAMIENTO DIGITAL DE SEÑALES CURSO 2010/2011 OBJETIVOS y BIBLIOGRAFIA El objetivo fundamental de este tema es proporcionar una visión panorámica del Procesamiento Digital de

Más detalles

SPREAD SPECTRUM TIPOS DE MULTICANALIZACIÓN

SPREAD SPECTRUM TIPOS DE MULTICANALIZACIÓN SPREAD SPECTRUM TIPOS DE MULTICANALIZACIÓN FDMA (Frecuency Division Multiple Access). FDMA divide los canales de radio en un rango de radiofrecuencias y es utilizado en el sistema analógico celular tradicional.

Más detalles

01/10/2010. 3. Señales, codificación y modulación. Contenido. a. Señales digitales. a. Señales digitales b. Conversión digital a digital

01/10/2010. 3. Señales, codificación y modulación. Contenido. a. Señales digitales. a. Señales digitales b. Conversión digital a digital 3. Señales, codificación y modulación Contenido a. Señales digitales b. Conversión digital a digital c. Conversión esó analógico aógcoadga digital d. Conversión digital a analógico e. Conversión analógico

Más detalles

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS COMUNICACIONES RADIO. Índice

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS COMUNICACIONES RADIO. Índice Índice 1. comunicaciones radio... 2 1.1 ESPECTRO DE RADIOFRECUENCIA, BANDAS Y SERVICIOS... 2 1.2 CONCEPTOS BÁSICOS DE LA PROPAGACIÓN EN ESPACIO LIBRE... 4 1.3 ANTENAS. DIAGRAMA DE RADIACIÓN... 7 1.4 VELOCIDADES

Más detalles

Introductoria. Capítulo 1. 1.1. Elementos del procesamiento digital de señales

Introductoria. Capítulo 1. 1.1. Elementos del procesamiento digital de señales Capítulo 1 Introductoria El procesamiento de señales posee una larga y rica historia. Es un conjunto de herramientas 1 que son empleadas en un inmenso abanico de disciplinas entre las que se encuentran

Más detalles

TECNOLOGÍA 4º ESO TEMA 3: Tecnologías de la comunicación

TECNOLOGÍA 4º ESO TEMA 3: Tecnologías de la comunicación Tecnología 4º ESO Tema 3: Tecnologías de la comunicación Página 1 TECNOLOGÍA 4º ESO TEMA 3: Tecnologías de la comunicación Tecnología 4º ESO Tema 3: Tecnologías de la comunicación Página 2 Índice de contenido

Más detalles

Práctica 1: Capa Física

Práctica 1: Capa Física 75.43 Introducción a los Sistemas Distribuidos Práctica 1: Capa Física Resumen En los enlaces como Ethernet, Wi-fi o líneas seriales que integran las redes de computadoras, se utilizan esquemas de codificación

Más detalles

En este capítulo se presenta el marco teórico sobre las redes inalámbricas que utilizan el

En este capítulo se presenta el marco teórico sobre las redes inalámbricas que utilizan el Capítulo 2 Estándar IEEE 802.11 En este capítulo se presenta el marco teórico sobre las redes inalámbricas que utilizan el WEP como protocolo de seguridad. Se mencionan las características generales de

Más detalles

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos Introducción El análisis del espectro de colores es una forma de análisis de componentes frecuenciales que para el caso

Más detalles

INTRODUCCIÓN Videoconferencia sobre Frame Relay

INTRODUCCIÓN Videoconferencia sobre Frame Relay INTRODUCCIÓN Videoconferencia sobre Frame Relay Homero Andrango María Fernanda Jerez Patricia Yacelga Se denomina videoconferencia al sistema que permite a un grupo de personas ubicadas en lugares distantes

Más detalles

Sonido digital. Características: altura, timbre e intensidad:

Sonido digital. Características: altura, timbre e intensidad: Sonido digital Podemos definir al sonido como la interpretación que hace nuestro cerebro de las variaciones de presión que genera un objeto vibrante en determinado medio, habitualmente, el aire, sobre

Más detalles

Introducción y Conceptos Básicos (I)

Introducción y Conceptos Básicos (I) Introducción y Conceptos Básicos (I) La transmisión de datos entre un emisor y un receptor siempre se realiza a través de un medio de transmisión. Estos pueden clasificarse en: Guiados. Estos pueden a

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de

Más detalles

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Apellidos, nombre Departamento Centro Bachiller Martín, Carmen (mabacmar@dcom.upv.es) Fuster Escuder, José Miguel (jfuster@dcom.upv.es)

Más detalles

Transmisión de Datos Transmisión de datos y redes de ordenadores Transmisión de datos Teoría de la Comunicación Análisis de Fourier Medios de transmisión Medios guiados: par trenzado, cable coaxial, fibra

Más detalles

Desarrollo e Integración de una Estación de radio AM/FM basada en computadora

Desarrollo e Integración de una Estación de radio AM/FM basada en computadora Desarrollo e Integración de una Estación de radio AM/FM basada en computadora E. INZUNZA, A. VALDIVIA, J. LUNA, J. SOARES, J. OLGUÍN, S. INFANTE Facultad de Ingeniería Ensenada, Universidad Autónoma de

Más detalles

TEORÍA DE LAS TELECOMUNICACIONES

TEORÍA DE LAS TELECOMUNICACIONES DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD NACIONAL DE QUILMES Roque Sáenz Peña 35 (B1876BXD) Bernal Buenos Aires Argentina TEORÍA DE LAS TELECOMUNICACIONES TRANSMISIÓN DIGITAL EN BANDA BASE Una

Más detalles

Ventajas de la Televisión Digital. Hugo Carrión G. Febrero, 2009

Ventajas de la Televisión Digital. Hugo Carrión G. Febrero, 2009 Ventajas de la Televisión Digital Hugo Carrión G. Febrero, 2009 1 Contenido Definiciones previas Sistemas de televisión Formatos de transmisión Espectro electromagnético Tecnología digital Ventajas de

Más detalles

1. CONCEPTOS BASICOS ANCHO DE BANDA.

1. CONCEPTOS BASICOS ANCHO DE BANDA. INTRODUCCION La necesidad de comunicación que ha encontrado el hombre desde el comienzo de su historia lo ha llevado ha dar pasos gigantes en la evolución. Pero estos pasos no están dados solo en lo biológico,

Más detalles

EMISIÓN Y RECEPCIÓN DE RADIO

EMISIÓN Y RECEPCIÓN DE RADIO EMISIÓN Y RECEPCIÓN DE RADIO 1.- EMISIÓN Y RECEPCIÓN DE RADIO 2.- EQUIPO TRANSMISOR 3.- PROPAGACIÓN DE LAS ONDAS DE RADIOFRECUENCIA 4.- EQUIPO RECEPTOR 5.- SISTEMAS DE RADIO DIGITAL 6.- RECEPTORES DE LOS

Más detalles

Análisis del enlace físico de una transmisión ADSL. Cecilia G. Galarza

Análisis del enlace físico de una transmisión ADSL. Cecilia G. Galarza Análisis del enlace físico de una transmisión ADSL Cecilia G. Galarza Esquema de la Presentación Características generales del Servicio Capa física de la transmisión ADSL Diagrama en bloque de un modem

Más detalles

MÓDULOS DE RF PARA RADIOCONTROL (Versión: 10-12-11)

MÓDULOS DE RF PARA RADIOCONTROL (Versión: 10-12-11) MÓDULOS DE RF PARA RADIOCONTROL (Versión: 10-12-11) Introducción A la hora de pensar en diseñar sistemas radiocontrolados, surgen mas de una opción para llevar a cabo nuestro proyecto en lo que respecta

Más detalles

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario

Más detalles

Capítulo 1 CAPÍTULO 1-INTRODUCCIÓN-

Capítulo 1 CAPÍTULO 1-INTRODUCCIÓN- CAPÍTULO 1-INTRODUCCIÓN- 1 1.1 INTRODUCCIÓN El Procesamiento Digital de Señales es un área de la ingeniería que ha estado creciendo rápidamente a través de las últimas décadas. Su rápido desarrollo es

Más detalles

Redes de Acceso Residencial

Redes de Acceso Residencial 1 xdsl Qué es xdsl? Conjunto de estándares para bucle de abonado sobre hilo de cobre. ADSL: Asymmetrical Digital Subscriber Line SDSL: Symmetrical Digital Subscriber Line HDSL: High data rate Digital Subscriber

Más detalles

LA CONVERGENCIA ENTRE EL INTERNET Y LAS REDES INALÁMBRICAS

LA CONVERGENCIA ENTRE EL INTERNET Y LAS REDES INALÁMBRICAS LA CONVERGENCIA ENTRE EL INTERNET Y LAS REDES INALÁMBRICAS Por: José Adrian Moreno Agudelo Estudiante de ingeniería telemática El gran desarrollo tecnológico que ha alcanzado el Internet en la actualidad

Más detalles

Entre las aplicaciones más importantes para los satélites cabe destacar:

Entre las aplicaciones más importantes para los satélites cabe destacar: Comunicación de datos Entre las aplicaciones más importantes para los satélites cabe destacar: La difusión de la televisión. La transmisión telefónica a larga distancia. Las redes privadas. Debido a que

Más detalles

RECOMENDACIÓN UIT-R F.1332* SEÑALES RADIOELÉCTRICAS TRANSPORTADAS POR FIBRAS ÓPTICAS (Cuestión UIT-R 204/9)

RECOMENDACIÓN UIT-R F.1332* SEÑALES RADIOELÉCTRICAS TRANSPORTADAS POR FIBRAS ÓPTICAS (Cuestión UIT-R 204/9) Rec. UIT-R F.1332 1 RECOMENDACIÓN UIT-R F.1332* SEÑALES RADIOELÉCTRICAS TRANSPORTADAS POR FIBRAS ÓPTICAS (Cuestión UIT-R 204/9) Rec. UIT-R F.1332 (1997) La Asamblea de Radiocomunicaciones de la UIT, considerando

Más detalles

El Sistema Telefónico

El Sistema Telefónico El Sistema Telefónico Juan Manuel Orduña Huertas Telemática y Sistemas de Transmisión de Datos - Curso 2011/2012 Contenido 1 conmutada Redes de televisión por cable (CATV) para Internet por cable 2 Jerarquía

Más detalles

SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES DIGITALES (LVSIM -DCOM), MODELO 9481

SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES DIGITALES (LVSIM -DCOM), MODELO 9481 AB Telecomunicaciones SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES DIGITALES (LVSIM -DCOM), MODELO 9481 DESCRIPCIÓN GENERAL LVSIM -DCOM es un software de simulación basado en Windows que cubre el mismo

Más detalles

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA: REDES Y TELECOMUNICACIONES.

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA: REDES Y TELECOMUNICACIONES. TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA: REDES Y TELECOMUNICACIONES. HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de computadoras son:

Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de computadoras son: TECNICAS BÁSICAS DE MODULACIÓN ANALÓGICA. En telecomunicaciones, la frecuencia modulada (FM) o modulación de frecuencia es una modulación angular que transmite información a través de una onda portadora

Más detalles

Multiplexación. Mg. Gabriel H. Tolosa. Divide y Vencerás." Máxima militar. . tolosoft@unlu.edu.ar

Multiplexación. Mg. Gabriel H. Tolosa. Divide y Vencerás. Máxima militar. . tolosoft@unlu.edu.ar Mg. Gabriel H. Tolosa. tolosoft@unlu.edu.ar Divide y Vencerás." Máxima militar Problemática "Los enlaces son caros, por eso hay que compartirlos entre varios usuarios Solución: Multiplexación (Mux) Técnica

Más detalles

Unidad II Conmutación.

Unidad II Conmutación. Unidad II Conmutación. 2 Multicanalización (Frecuencia, Tiempo) Multiplexación. Se le llama al conjunto de técnicas que permiten la transmisión simultánea de múltiples señales a través de un solo enlace

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones SISTEMAS DE COMUNICACIONES DIGITALES POP en Tecnologías Electrónicas y de las Comunicaciones Señalización pasabanda de modulación binaria Las técnicas más comunes de señalización pasabanda de modulación

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: COMUNICACIONES ÓPTICAS

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: COMUNICACIONES ÓPTICAS SÍLABO ASIGNATURA: COMUNICACIONES ÓPTICAS CÓDIGO: 8F0115 1. DATOS GENERALES: 1.1 Departamento Académico : Ingeniería Electrónica e Informática 1.2 Escuela Profesional : Ingeniería de Electrónica 1.3 Especialidad

Más detalles

Conversión Analógica/Digital

Conversión Analógica/Digital 11 Conversión Analógica/Digital 11.1 Introducción. Misión del convertidor analógico/digital La salida de los sensores, que permiten al equipo electrónico interaccionar con el entorno, es normalmente una

Más detalles

5. Modulaciones Binarias: Teoría y simulación en LabVIEW

5. Modulaciones Binarias: Teoría y simulación en LabVIEW OpenStax-CNX module: m35717 1 5. Modulaciones Binarias: Teoría y simulación en LabVIEW Mariangela Mezoa Translated By: Mariangela Mezoa This work is produced by OpenStax-CNX and licensed under the Creative

Más detalles