Práctica N 6 Modelos de Programación Lineal Entera

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica N 6 Modelos de Programación Lineal Entera"

Transcripción

1 Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes costos: 00$ por semana la máquina de camisas 150$ por semana la máquina de shorts 100$ por semana la máquina de pantalones Se dispone de 150 horas hombre y 160 m de tela. Los requerimientos, costos y precio de venta de cada tipo de ropa son los siguientes Horas Hombre m de tela Costo Precio de Venta Camisas Shorts Pantalones Formular un modelo que maximice las ganancias. 6. Una compañía usa 5 máquinas (M i ) para fabricar 3 productos (P i ). El proceso de cada uno es el siguiente: P 1 : M (horas) M 1 (1 1 hora) M 4 (1hora) M 5 (3horas) P : M 1 (1hora) M 3 (1hora) M 4 (horas) P 3 : M 3 (horas) M (3horas) M 5 (1hora) La producción está sujeta a las siguientes restricciones: Dos máquinas no pueden trabajar simultáneamente en un producto Cada máquina debe finalizar el proceso en un producto antes de empezar otro Se requiere formular un modelo que determine el proceso de producción que minimice el tiempo necesario para procesar todos los productos. 6.3 Una empresa produce 3 tipos de autos: E 1, E, E 3. E 1 y E difieren en muy poco y sólo se requieren pequeï 1 os cambios en el proceso de ensamblado para hacer un modelo u otro. E 3 requiere grandes ajustes en el proceso. Es política de la empresa, (para evitar continuos cambios en el proceso de ensamblado) en el caso de producir E 1 y/o E hacerlo en cantidades superiores a 100. Los recursos necesarios y el beneficio de cada auto son los siguientes: Acero(t) Horas hombre Beneficio ($) E E E Si se dispone de 8000 toneladas de acero y horas hombre, formular un modelo que maximice las ganancias. 6.4 Una destilería produce dos tipos de gasolina a partir de dos tipos de petroleo crudo. Cada galón de GAS 1 debe contener al menos 50 % del primer tipo de petroleo y cada galón de GAS debe contener 60 % del mismo. Cada galón de GAS 1 puede ser vendido a 1 centavos y cada galón del GAS a 14 ctvs. En la planta hay 500 galones de pretóleo 1 y 1000 de petróleo. Se pueden comprar 1500 galones de petroleo 1 a los siguientes precios: los primeros 500 galones a 5ctvs, los siguientes 500 a 0ctvs por galón, los siguientes 500 a 15ctvs por galón. Formular un problema de P E que sirva para maximizar el beneficio de la empresa. 1

2 6.5 Un estudiante debe cursar al menos dos materias (M i ) de cada una de las tres áreas (A i ) de su carrera. Las áreas son: A 1 : M 1, M, M 3, M 4, M 5 A : M, M 4, M 5, M 6 A 3 : M 3, M 6, M 7 Existen prerrequisitos para cursar las materias: M 1 correlativa de M 4 M 7 correlativa de M 6 y M 3 M 4 correlativa de M 5 Formular un modelo para minimizar el número de materias necesarias para cumplir con los requisitos. 6.6 Se desea acceder a 5 archivos (A i ) que se encuentran guardados en 10 discos (D j )(X significa que el A i se encuentra en D j ): D 1 D D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 A 1 X X X X X X A X X A 3 X X X A 4 X X X A 5 X X X X X X X Costo 3$ 5$ 1$ $ 1$ 4$ 3$ 1$ $ $ a) Formular un modelo que minimice costos. b) Modificar el modelo si existe la obligación de comprar D si se compra D 3 y D 4. c) Modificar el modelo si hay una promoción que al comprar D 3 y D 5, D viene de regalo. 6.7 Una fábrica de impresoras abastece a 6 ciudades (C i ). Como una mejora del servicio al cliente proyecta establecer talleres de reparaciones. Por las leyes impositivas vigentes sólo las primeras 4 ciudades son candidatas a ser cede de los talleres. Según estudios de mercado que ha realizado la empresa, en cada ciudad las ventas aumentan si existe un taller de reparaciones en un radio de 150 km de la misma. Actualmente, ninguna de las ciudades tiene un taller a menos de 150 km. Cada impresora tiene un costo de 500ysevendea1000. En las tabla A se muestran las distancias entre las ciudades y en la tabla B los estimados de venta. Formular un modelo para maximizar ganancias. Tabla A C 1 C C 3 C 4 C C C C C C Tabla B Existe taller en radio 150 km? C 1 C C 3 C 4 C 5 C 6 Si No Se quieren grabar canciones en un cassette. Cada lado tiene una longitud entre 14 y 16 minutos. La duración de las canciones esta dada en la tabla. Existen ciertas restricciones: a) Cada lado debe tener exactamente baladas

3 b) El lado 1 debe tener al menos 3 tangos c) La canción 5 o la 6 debe estar en lado 1 d) Si las canciones y 4 están en lado 1, entonces la canción 5 debe ir al lado Explicar (usando ppl entera) si existe manera de satisfacer las restricciones. Canciones Tipo Duración 1 Balada 4 Tango 5 3 Balada 3 4 Tango 5 Balada 4 6 Tango 3 7 Clásico 5 8 tango/balada Un centro de conferencias tiene tres salones de 50 asientos, dos de 100 y dos de 150. El costo de los salones es de 100 veces la cantidad de horas pedidas. Los pedidos de salones son: Cantidad de asientos Horario Cantidad de salones hs hs hs hs Se debe decidir como asignar los salones teniendo en cuenta que en la tabla se informa en cuanto se multiplica el costo original que debe pagarse por asignar salones más grandes a los pedidos Sea la siguiente red: asientos salón asignado pedidos no no no Formular un PPL entero para encontrar el camino más corto entre 1 y Sea un tablero de ajedrez de 4x4 casillas. Formular un modelo para: a) Maximizar el número de reinas de tal manera que ninguna ataque a otra. b) Minimizar el número de reinas de tal manera que toda casilla quede atacada por lo menos por una reina. 6.1 Supongamos que un PPL tiene las restricciones x 1 + 5x + 8x 3 40 x 1, x, x 3 0 y además x 1 + 3x + 4x 3 1 ó x 1 + x + x 3 3 Formular el problema como un PPL entero. 3

4 6.13 Escribir un ppl entero para el siguiente problema Max 3 x 1 +4x 3x 3 s.a. x 1 + x +4x 3 60 x 1 +x + x 3 1 x 1 + x +3x 3 7 x 1, x, x 3 0 y si x + x 3 > 0 entonces x 1 + x Supongamos que u y v son variables binarias. Deducir desigualdades o igualdades que aseguren que: a) Exactamente una variable vale 1 b) Al menos una variable vale 1 c) Si u = 1 entonces v = 1 d) Si v = 0 entonces u = Los costos de envío de encomiendas entre dos ciudades varían según el peso: Peso Costo menos de 5 kg $ más de 5 kg y a lo sumo 15 kg 5$ más de 15 kg y a lo sumo 5 kg 7.5$ Modelizar una función objetivo que pueda ser usada en un PPL entero Cómo se podría usar programación entera para resolver el siguiente problema: Max 3x +y + xy s.a. x+ y 1 x, y {0, 1} 6.17 Una compañía farmaceutica debe determinar cuantos visitadores médicos debe asignar a cada uno de 4 distritos de ventas. El costo de tener n visitadores en un distrito es 88000$ $ n. La siguiente tabla muestra el tiempo en horas que le lleva a un representante que tiene su base en un distrito dado visitar a un doctor de otro distrito. Distr 1 Distr Distr3 Distr4 Distr Distr Distr Distr Cada visitador trabaja hasta 160 hrs por mes. La siguiente tabla muestra cuantos doctores se deben visitar en cada distrito. Distrito Nro. De Llamadas

5 Determinar cuantos visitadores se deben asignar a cada distrito para minimizar los costos. Resolver con LINDO La compañía QED debe diseñar un programa de producción para las próximas 9 semanas. Cada trabajo dura varias semanas y una vez que se empezó no puede interrumpirse. Cada semana se requiere un cierto número de trabajadores calificados para trabajar full-time en un trabajo. Entonces si el trabajo i dura p i semanas, se requieren l i,u trabajadores en las semanas u con u = u 1,..., u pi. En la semana t hay L t trabajadores disponibles. Abajo se muestra una tabla típica de cómo son los datos que se tienen para planificar. Trabajo Duración Sem1 Sem Sem3 Sem a) Formular el problema de encontrar un programa de producción factible. b) Formular un PLE para minimizar el máximo número de trabajadores usados por semana. c) Agregar la restricción de que el trabajo 1 debe empezar al menos semanas antes que el trabajo 3. d) Agregar la restricción de que el trabajo 4 debe empezar no más de una semana después del trabajo 5. e) Agregar la restricción de que los trabajos 1 y no pueden hacerse al mismo tiempo porque necesitan la misma máquina Formular un modelo de PLE para el siguiente problema de diseño de una red de comunicaciones a costo mínimo. Se tiene un conjunto V de lugares que tienen que estar interconectados por la red y un costo fijo cl asociado a la instalación de un link entre cada par de localidades entre las cuales es posible ponerlo. Hay requerimientos de supervivencia en los nodos de la red expresados de la siguiente forma: para cada par de nodos s y t de V, la red tiene que tener r st = mín{r s, r t } caminos disjuntos en los nodos entre s y t. 6.0 Dadas las siguientes formulaciones para un conjunto X B 4 decidir si hay alguna que sea mejor que las demás. Demostrar. P 1 = {x R 4 /97x 1 + 3x + 5x 3 + 0x 4 139; 0 x 1} P = {x R 4 /x 1 + x + x 3 + x 4 139; 0 x 1} P 3 = {x R 4 /x 1 + x + x 3 ; x 1 + x + x 4 ; x 1 + x 3 + x 4 ; 0 x 1} 6.1 Formular como P E los siguientes problemas: a) Problema de las N reinas. b) Árbol generador mínimo en un grafo conexo (o bosque en un grafo no conexo). 6. Supongamos que una persona está interesada en elegir entre un conjunto de inversiones (I i ) y quiere hacer un modelo 0-1 para tomar la decisión. Modelar las siguientes restricciones: a) No se puede invertir en todas. b) Hay que elegir al menos una de ellas. c) Si se elige I 3 no se puede elegir I 1. d) La inversión I 4 se puede elegir sólo si se elige la I. e) O se eligen las inversiones I y I 5 o ninguna de las dos. f ) Se puede elegir al menos una de las inversiones I 1,I,I 3 o al menos de entre I,I 4,I 5,I 6. 5

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

Formule un modelo de programación lineal binaria que minimice la distancia máxima entre un distrito y su respectiva estación.

Formule un modelo de programación lineal binaria que minimice la distancia máxima entre un distrito y su respectiva estación. Profesores: Daniel Espinosa, Roberto Cominetti. Auxiliares: Victor Bucarey, Pablo Lemus, Paz Obrecht. Coordinador: Matías Siebert. IN3701 - Modelamiento y Optimización Auxiliar 2 22 de Marzo de 2012 P1.

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN 15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Solución 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Una empresa fabrica dos tipos de juguetes de

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

PROBLEMAS de Programación Lineal : Resolución Gráfica

PROBLEMAS de Programación Lineal : Resolución Gráfica PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

Investigación de Operaciones I. Problemas de Asignación

Investigación de Operaciones I. Problemas de Asignación Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios

Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios 9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en

Más detalles

: ING4520 Programación Matemática Semestre II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez

: ING4520 Programación Matemática Semestre II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez Curso Profesor Auiliares : ING0 Programación Matemática Semestre 0 - II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez PAUTA PREGUNTA - PRUEBA Pregunta (Total:.0 puntos) Las posiciones

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Horas requeridas producto B

Horas requeridas producto B 1. J&M Winery fabrica dos tipos de Chardonnay, uno con etiqueta económica y otro con etiqueta especial. Han firmado un contrato de venta de 30.000 cajas de Chardonnay y están seguros que podrán vender

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

CAPÍTULO 3 EL MUNDO CLÁSICO DE DAVID RICARDO Y LA VENTAJA COMPARATIVA

CAPÍTULO 3 EL MUNDO CLÁSICO DE DAVID RICARDO Y LA VENTAJA COMPARATIVA CAPÍTULO 3 EL MUNDO CLÁSICO DE DAVID RICARDO Y LA VENTAJA COMPARATIVA I. Contenido Introducción Suposiciones del modelo ricardiano básico Ventaja comparativa ricardiana Ventaja comparativa y ganancias

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

PLANEACIÓN AGREGADA VARIABLES Y CONSIDERACIONES DE UN PLAN AGREGADO

PLANEACIÓN AGREGADA VARIABLES Y CONSIDERACIONES DE UN PLAN AGREGADO PLANEACIÓN AGREGADA -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B )

41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B ) 41 EJERCICIOS de MTRICES y GRFOS 2º BCH. 1 2 x 3 0 1 2 7 3 0 1. Hallar x e y para que ambas matrices sean iguales: = 3 2 1 0 3 y 2 1 0 3 2. Indicar tres ejemplos de matriz simétrica de orden 3 Operaciones

Más detalles

Soluciones - Tercer Nivel Juvenil

Soluciones - Tercer Nivel Juvenil SOIEDD EUTORIN DE MTEMÁTI ETP LSIFITORI "VII EDIIÓN DE LS OLIMPIDS DE L SOIEDD EUTORIN DE MTEMÁTI" Soluciones - Tercer Nivel Juvenil 01 de abril de 010 1. Una mesa cuadrada tiene 1 m de lado. uál es el

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale 1 punto.

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale 1 punto. EJERCICIO A Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale 1 punto. A.1. Diferencie entre un tipo de cambio fijo y otro flexible.

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

PROGRAMACIÓN DINÁMICA. Idalia Flores

PROGRAMACIÓN DINÁMICA. Idalia Flores PROGRAMACIÓN DINÁMICA Idalia Flores CONCEPTOS La programación dinámica es una técnica matemática que se utiliza para la solución de problemas matemáticos seleccionados, en los cuales se toma un serie de

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

Por dónde empezar? Para empezar a planear un proyecto responder estas preguntas puede ayudarnos mucho:

Por dónde empezar? Para empezar a planear un proyecto responder estas preguntas puede ayudarnos mucho: Qué es un proyecto? Un proyecto es una planificación, que consiste en un conjunto de actividades a realizar de manera articulada entre sí, con el fin de producir determinados bienes o servicios capaces

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Universidad de Guadalajara del 24 al 26 de Octubre del 2012.

Universidad de Guadalajara del 24 al 26 de Octubre del 2012. Primer Congreso Mexicano de Investigación de Operaciones Se celebrará en las instalaciones de la Universidad de Guadalajara del 24 al 26 de Octubre del 2012. Fecha límite de registro de participantes y

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

COLEGIO PABLO DE TARSO IED CONSTRUCCION DE PROYECTOS DE VIDA PRODUCTIVOS DREAMWEAVER UNO- PRÁCTICAS DOC RAUL MONROY PAMPLONA

COLEGIO PABLO DE TARSO IED CONSTRUCCION DE PROYECTOS DE VIDA PRODUCTIVOS DREAMWEAVER UNO- PRÁCTICAS DOC RAUL MONROY PAMPLONA Metas de comprensión cuarto periodo Comprende sus responsabilidades a la hora de formular sus propuestas como soluciones a problemas reales que impliquen el uso de las tecnologías de información y la gestión

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 011-01 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Programación entera: Ejemplos, resolución gráfica, relajaciones lineales Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Programación entera: definición, motivación,

Más detalles

Tamaño de la Fuerza de Ventas. Mtro. Sabino Valentín Olivares

Tamaño de la Fuerza de Ventas. Mtro. Sabino Valentín Olivares Tamaño de la Fuerza de Ventas Mtro. Sabino Valentín Olivares Destacamento de la fuerza de ventas El tamaño de la fuerza de ventas o la cantidad de territorios La asignación de esfuerzo total de las ventas

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Prácticas de IO con POM-QM 2014

Prácticas de IO con POM-QM 2014 BLOQUE DE PROBLEMAS DE TEORÍA DE JUEGOS I. El sindicato y la administración de una compañía negocian el nuevo contrato colectivo. Por ahora las negociaciones están congeladas, pues la empresa ha hecho

Más detalles

Requerimientos de Software

Requerimientos de Software Requerimientos de Software Ingeniería de Requerimientos Se define como el proceso de establecer los servicios que el consumidor requiere de un sistema y las restricciones sobre las cuales de funcionar

Más detalles

Contabilidad de costos

Contabilidad de costos Contabilidad de costos 1 Sesión No. 8 Nombre: Sistemas de Costos de Producción Conjunta Contextualización En esta sesión 8 conocerás y explicarás: Los conceptos y procedimientos de asignación de costos

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Planificación contra stock

Planificación contra stock Planificación contra stock 129 Problema FS1 Planificación contra stock Determinar el ciclo de producción para la siguiente familia suponiendo 250 días de trabajo por año. Producto D I (u/año) p i ( /u)

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en

Más detalles

19 a Competencia de MateClubes Ronda Final Primer Nivel

19 a Competencia de MateClubes Ronda Final Primer Nivel Ronda Final Primer Nivel Nombre del Club:.................................... Código del club: 19 1............ 1. Rafa elige 8 números distintos del 1 al 9 y los escribe en el tablero, un número en cada

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Economía Internacional Ayudantía # 04: Modelo Hecksher-Ohlin

Economía Internacional Ayudantía # 04: Modelo Hecksher-Ohlin Ayudantía # 04: Modelo Hecksher-Ohlin Profesor: Carlos R. Pitta 1 1 cpitta@spm.uach.cl COMENTARIOS Comente 01: Si los Estados Unidos está bien dotado en trabajo calificado, en relación a trabajo no calificado,

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

Título. Objetivos. Descripción. Gestión de Cadena de Suministros

Título. Objetivos. Descripción. Gestión de Cadena de Suministros Título Diseño e Implementación de Agentes Inteligentes basados en el framework TAC para Problemas de Manejo de Cadenas de Suministros (Supply Chain Management) Objetivos - Investigar las teorías y modelos

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Localizando el punto de intersección

Localizando el punto de intersección Localizando el punto de intersección Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. En la gráfica de una función, los valores de la variable están en el eje horizontal y los

Más detalles

z(x) = x 1. Solucion optima. x 2

z(x) = x 1. Solucion optima. x 2 CAPÍTULO FORMULACIÓN DE PROBLEMAS LINEALES Programación Lineal (PL) es un modelo de optimización de un problema de la vida real, en el cual una función objetivo es optimizada sujeta a un conjunto de restricciones.

Más detalles

Los diagramas de procesos

Los diagramas de procesos Los diagramas de procesos El ensamble de productos La mayoría de los objetos que nos rodean son producidos industrialmente en grandes cantidades. Para ello, las personas, suelen planificar la manera de

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA

ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA ÁNGULO ENTRE DOS RECTAS Y DISTANCIA DE UN PUNTO A UNA RECTA Sugerencias para quien imparte el curso Es importante que los alumnos tengan presentes los conceptos de congruencia de ángulos vistos en matemáticas

Más detalles

Sistema de ecuaciones e inecuaciones

Sistema de ecuaciones e inecuaciones 5 Sistema de ecuaciones e inecuaciones 1. Sistemas lineales. Resolución gráfica Piensa y calcula Indica, en cada caso, cómo son las rectas y en qué puntos se cortan: c) r r s P r s s Las rectas r y s son

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Operaciones con números decimales

Operaciones con números decimales 1. Identificación Nivel: Primario Área: Matemática Grado: Cuarto SC 9: Resumen: Esta Unidad Didáctica tiene como objetivo que los estudiantes de cuarto grado dominen, sin dificultad, las operaciones de

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Introducción a la Programación Dinámica. El Problema de la Mochila

Introducción a la Programación Dinámica. El Problema de la Mochila Tema 1 Introducción a la Programación Dinámica. El Problema de la Mochila La programación dinámica no es un algoritmo. Es más bien un principio general aplicable a diversos problemas de optimización que

Más detalles

Tema 4: Aplicaciones del equilibrio de Nash

Tema 4: Aplicaciones del equilibrio de Nash Tema 4: Aplicaciones del equilibrio de Nash Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Bienes públicos Quién avisa a la policía? Cournot Bertrand Productos diferenciados Basado

Más detalles