MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes"

Transcripción

1 MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes

2 Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos interiores iguales. Polígono Irregular: Son aquellos polígonos que no son regulares, es decir, no cumplen una o ambas condiciones de los polígonos regulares Polígono Cóncavo: Son aquellos polígonos que poseen al menos un ángulo interior que mide más de 180º. Polígono Convexo: Son aquellos polígonos que poseen todos sus ángulos interiores menores, en medida, a 180º. Los polígonos reciben su nombre de acuerdo con el número de lados que tienen. N de lados del polígono Nombre 3 Triángulo 4 Cuadrilátero 5 Pentágono 6 Hexágono 7 Heptágono 8 Octágono Los polígonos y sus ángulos Ángulos exteriores de un polígono La suma de las medidas de los ángulos exteriores de un polígono cualquiera es siempre 360. Ángulos interiores de un polígono Si llamamos S a la suma de las medidas de los ángulos interiores de un polígono y n al número de lados del polígono, podemos escribir la siguiente fórmula: S = 180 (n 2) 2 CEPECH Preuniversitario, Edición 2005

3 Ejemplos: 1) Cuadrilátero : n de lados: 4, luego = 360, es la suma de sus ángulos interiores. 2) Pentágono : n de lados: 5, luego = 540, es la suma de sus ángulos interiores. Diagonales de un polígono Las diagonales de un polígono regular son los segmentos que unen vértices no consecutivos F de un polígono. E A B C D AE, AD, AC son diagonales desde el vértice A del polígono. Polígonos regulares Polígonos regulares son aquellos cuyos lados y cuyos ángulos interiores tienen igual medida. Medida de un ángulo exterior de un polígono regular Para calcular la medida de un ángulo exterior de un polígono regular que tenga n lados puedes utilizar la siguiente fórmula: β = 360 n donde β es la medida de un ángulo exterior del polígono regular y n es su número de lados. Medida de un ángulo interior de un polígono regular Para calcular la medida de un ángulo interior de un polígono regular que tenga n lados puedes utilizar la siguiente fórmula: 180. (n 2) α = n, donde α es la medida de un ángulo interior del polígono regular y n es su número de lados. 180 Ejemplos: 1) Triángulo equilátero : 3 lados, luego = 180º, finalmente, = 60º 3 2) Cuadrado : 4 lados, luego = 360º, finalmente, 360 = 90º 4 CEPECH Preuniversitario, Edición

4 Nivelación Perímetro de polígonos Perímetro de un polígono regular Para calcular el perímetro de un polígono regular de n lados, cuyo lado mide a, se puede utilizar la siguiente fórmula: Área de un triángulo: donde b es la base y h es la altura. P = a n A = b h 2 Área de polígonos no regulares Para calcular el área de polígonos no regulares puedes dividirlos en figuras cuyas áreas ya sabes calcular. Por ejemplo, en triángulos, cuadrados, rectángulos, etc. Ejercicios Propuestos: 1. Determina la medida del ángulo indicado con una letra griega. a) β 125º α γ 92º δ b) L 1 // L 2 60º L 1 α β L 2 4 CEPECH Preuniversitario, Edición 2005

5 c) L 1 // L 2 L 1 74º α γ β L 2 d) L 1 // L 2 85º α β 80º L 1 L 2 2. Clasifica los polígonos en cóncavos o convexos. a) b) c) 3. Nombra los siguientes polígonos de acuerdo con el número de lados. a) b) c) CEPECH Preuniversitario, Edición

6 Nivelación 4. Calcula la medida de cada ángulo exterior de los siguientes polígonos: a) 4x b) 6x 6x 5. El área del triángulo ABC es igual a 45 cm 2, si AB = 15 cm, DE = 5 cm y FG = 4 cm. C x 45º x x x 45º x D 5 cm F E Determina: a) El área del triángulo DEC. A G B b) Qué porcentaje del área del Triángulo ABC es el área del Triángulo DEC? c) Calcula el área del cuadrilátero ABED (trapecio). d) Qué porcentaje del área del Triángulo ABC es el área del trapecio ABED? Aproxima tu resultado al entero más cercano. 6. Calcula el número de lados que tiene un polígono si la suma de los ángulos interiores es: a) b) c) CEPECH Preuniversitario, Edición 2005

7 Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad de equidistar de otro punto llamado centro (el término equidistar significa que están a la misma distancia). Los puntos de la circunferencia y los que se encuentran dentro de ella forman una superficie llamada círculo. Círculo. Es la región del plano delimitada por la circunferencia, es decir, es el área contenida en la circunferencia. Su diámetro divide al círculo en dos partes iguales llamadas Semicírculos. Elementos Principales Radio: Es el segmento que une el punto centro con cualquier punto de la circunferencia. El radio permite nombrar a la circunferencia y lo identificamos con la letra r. Ejemplos: los segmentos OA, OE, OC son radios. C β O α B A Diámetro: Segmento que une dos puntos de la circunferencia pasando por el punto centro. El diámetro equivale a la medida de dos radios. Ejemplo: CE = 2 CO = 2 OE... D E T E Cuerda: Es un trazo o segmento rectilíneo que une dos puntos de la circunferencia. Ejemplo: DE. Arco: Es una parte o subconjunto de la circunferencia, limitada por dos puntos de ella. Ejemplos: BC, EA, CD. Secante: Es recta que corta a la circunferencia en dos puntos. Ejemplo: CB Sector Circular: Porción de círculo comprendido entre un arco y los dos radios que llegan a sus extremos. Ejemplo: Sector Círcular EOA, tal que: OA y OE son radios y EA Arco Segmento circular: Es la porción de círculo limitado por un arco y la cuerda correspondiente. Ejemplos: 1) Arco: DE, Cuerda: ED 2) Arco: BC, Cuerda: CB CEPECH Preuniversitario, Edición

8 Nivelación Ángulo del Centro: Porción del círculo encerrada por un ángulo cuyo vértice es el centro de la circunferencia, y un arco de la circunferencia. La medida del ángulo del centro es igual al arco que sus lados sustenta. Ejemplo: 1) Medida (ángulo EOA) = Medida (Arco EA ) 2) Medida (ángulo COE) = Medida (Arco CE ) Tangente: Es la recta que corta a la circunferencia en un sólo punto. Ejemplo: ET Perímetro y Área La medida o longitud de la circunferencia recibe el nombre de perímetro. En general se designa por la letra P. Por otra parte el área de un círculo corresponde a la superficie que éste ocupa, su notación por lo general se hace a travéz de la letra A. Dichas longitud y superficie, quedan exprersadas mediante una constante numérica llamada Pi y que se designa por la letra griega π. Observación: Los matemáticos griegos decidieron indicar, con una letra de su alfabeto, el número de veces que la circunferencia contiene su propio diámetro. La letra escogida fue la letra π. Del número π, se conocen muchas cifras (tiene infinitas y por lo tanto es númeroo Irracional). Como las primeras son 3, pero normalmente consideramos como valor de π = 3,14. Perímetro de un círculo Para calcular el perímetro (P) de un círculo de diámetro d se puede ocupar la siguiente fórmula: P = diámetro π = d π Como el diámetro es el radio multiplicado por dos (d = 2r), se suele escribir: P = π diámetro = π 2 r = 2 π r = 2 π r El área del círculo Para calcular el área (A) de un círculo de radio r se debe utilizar la siguiente fórmula: A = (π r) r = π r 2 8 CEPECH Preuniversitario, Edición 2005

9 Ejemplo: Verifica los valores en la siguiente tabla. Radio Diámetro Perímetro Área 1 2 2π π 2 4 4π 4π 4 8 8π 16π π 25π π 49π π 100π π 144π Ejercicios Propuestos: 1. Calcula el perímetro de un círculo cuyo diámetro mide 7 cm. Calcula el diámetro de un círculo cuyo perímetro es 18π cm. Calcula el radio de un círculo cuyo perímetro es π m. 2. Calcula el área de un círculo cuyo radio mide 7 cm. Calcula el radio de un círculo cuya área es 36π cm 2. CEPECH Preuniversitario, Edición

10 Nivelación Volúmenes Clasificación de cuerpos geométricos Los cuerpos geométricos se clasifican en poliedros y cuerpos redondos. Ejemplos: Poliedros: Cuerpos redondos: Poliedros Los poliedros, al igual que los polígonos, se pueden agrupar, según sus caras, en poliedros regulares o poliedros no regulares. Poliedros regulares Los poliedros regulares se construyen a partir de polígonos regulares, tales como: triángulos equiláteros, cuadrados, pentágonos regulares, etc. Ejemplos: 1) Cubo o hexaedro 2) Pirámide triangular o tetraedro 3) Octaedro 4) Icosaedro 10 CEPECH Preuniversitario, Edición 2005

11 Poliedros no regulares. Los poliedros no regulares se construyen a partir de polígonos no regulares, tales como: triángulos isósceles, triángulos rectángulos, rectángulos, pentágonos no regulares, etc. Ejemplos: Ciertas caras de estos poliedros no regulares concurren a un vértice llamado cúspide y los otros tienen un par de caras opuestas congruentes y paralelas llamadas bases del poliedro. Usando este criterio, se pueden clasificar en prismas y pirámides, respectivamente. De acuerdo con lo anterior, se pueden observar los siguientes poliedros no regulares: a) Los prismas se nombran de acuerdo con el nombre de sus caras basales: Prisma cuadrado Prisma triángular Prisma rectangular Prisma pentagonal b) Las pirámides se nombran de acuerdo con el nombre de la base: Pirámide cuadrada Pirámide rectangular Pirámide triángular Pirámide pentagonal CEPECH Preuniversitario, Edición

12 Nivelación Cuerpos redondos Elementos de los cuerpos redondos Observa los elementos de los cuerpos redondos: diámetro de la esfera altura base generatriz altura radio basal base Áreas y Volúmenes de Cuerpos Geométricos Volumen de un cuerpo geométrico es la cantidad de espacio que éste ocupa. Cubo. V (Volumen)= a 3 A (Área de la superficie) = 6a 2 (con a arista del cubo) a Paralelepípedo. h l a V (Volumen) = largo ancho alto = l a h A (Área) = 2(l h + a h + l a) 12 CEPECH Preuniversitario, Edición 2005

13 R Esfera. d 4 π d 3 Volumen = π R 3 = 3 6 Área = 4π R 2 d : diámetro R : Radio Cono. R g R h 1 Volumen = π R 2 h 3 Área = π R 2 + π R g R : Radio Cilindro. Pirámides h R R Volumen = π R 3 h Área = 2π R 2 + 2π R h = 2π R(R + h) R : Radio La pirámide es un poliedro cuya base es un polígono y sus caras laterales son triángulos, los que concurren en un vértice llamado cúspide. La medida de la superficie de una pirámide es la suma de las áreas de las caras que la forman. Recuerda que el área de un triángulo es igual al producto de la base por la altura dividido por dos. A = b h 2 donde b es la base del triángulo y h es la altura correspondiente a la base del triángulo. Volumen de la pirámide V = 1 3 B h = B h 3 donde B es el área de la base de la pirámide y h es la altura de la pirámide. CEPECH Preuniversitario, Edición

14 Nivelación Ejercicios Propuestos: 1. Las medidas de las aristas de los siguientes cubos están en la razón 1 : 4, en ese orden. Si la arista del cubo B mide 8 cm, calcula: a) La superficie total del cubo B. A B 8 cm b) La superficie total del cubo A. c) Cuál es la razón entre la superficie total del cubo A comparada con la del cubo B? 2. Calcula el volumen de los siguientes prismas: a) 10 cm b) c) 5 cm 6 cm 10 cm 18 cm 5 cm 5 cm 20 cm 10 cm 14 CEPECH Preuniversitario, Edición 2005

15 Actividades Propuestas Polígonos 1. Determina la medida del ángulo indicado con una letra griega. a) L 1 // L 2 75º α 80º β L 1 L 2 b) L 1 // L 2 y L 3 // L 4 α β L 1 72º γ L 2 L 3 L 4 c) L 1 // L 2 y L 3 // L 4 L 1 L 2 β α γ δ 115º L 4 L 3 CEPECH Preuniversitario, Edición

16 Nivelación 2. Calcula la suma de los ángulos interiores de un polígono regular de: a) 7 lados b) 14 lados c) 21 lados 3. Determina el valor de los ángulos x e y en la siguiente figura: x y 70º 124º 112º 4. ABCDE es un pentágono regular: D C E B a) Calcula la medida del DCE. A b) Calcula la medida del CEB. 16 CEPECH Preuniversitario, Edición 2005

17 5. Calcula la medida de un ángulo exterior de un polígono regular de: a) 5 lados b) 9 lados c) 15 lados 6. El perímetro del siguiente pentágono es 1 m. Calcula la medida de x. x 2x x 12 cm 12 cm 7. El perímetro del siguiente hexágono es 178 cm. Calcula la medida de x. x x + 4 x x + 2 x + 4 x Calcula el área de los siguientes trapecios isósceles (lados no paralelos y ángulos basales de igual medida). a) b) 16 cm 10 cm 6 cm 12 cm 4 cm 20 cm CEPECH Preuniversitario, Edición

18 Nivelación 9. Cuál de las siguientes figuras tiene mayor área? a) 3 cm 3,5 cm b) 1,5 cm 4 cm c) 3 cm 2 cm 5 cm 10. En la figura ABC es un triángulo equilátero. Los puntos D, E y F son puntos medios de los lados correspondientes. C D E A F B Qué porcentaje del ABC es el DEF? 18 CEPECH Preuniversitario, Edición 2005

19 Circunferencia y Circulo 11. Calcula el diámetro de un círculo cuyo perímetro es 18 cm. 12. Calcula el radio de un círculo cuyo perímetro es 1 m. 13. Calcula la medida del diámetro de un círculo cuyo perímetro es igual que el de un triángulo equilátero de lado 15 cm. 14. El radio de una rueda mide 30 cm. a) Qué distancia recorre la rueda al dar una vuelta completa? b) Cuántas vueltas completas da la rueda si recorre un kilómetro? c) Qué distancia recorre la rueda si ha dado 100 vueltas completas? 15. Calcula el perímetro de cada figura: a) Con O centro del semicírculo 4 cm O 3 cm b) D C CB = DA AB = 2 3 BC AB = 4 cm A B CEPECH Preuniversitario, Edición

20 15 cm Matemática 2005 Nivelación c) d) A B A B C C CA = 18 cm AB = 2 BC Si el segmento BC es el 40% del segmento AD y AD = 12 cm D 16. Calcula el radio de un círculo cuya área es 1 m 2. Calcula el área de un círculo cuyo perímetro es 100π m. Volúmenes 17. Cuál es la medida de la generatriz del cono que se introduce, como muestra la figura, en un cilindro cuyo diámetro de la base mide 12 cm y cuya altura mide 15 cm. 12 cm 20 CEPECH Preuniversitario, Edición 2005

21 18. Calcula el volumen de los siguientes prismas: a) 10 cm 12 cm 8 cm b) 2 m 1,7 m 3,5 m 2 m c) 5 cm 4 cm 8 cm 19. Calcula el área lateral de las siguientes pirámides: a) 12 cm 6 cm 6 cm CEPECH Preuniversitario, Edición

22 10 cm 10 cm 5 cm Matemática 2005 Nivelación b) c) 6 cm 6 cm 5 cm 12 cm 6 cm 10 cm 20. Calcula la medida de la superficie lateral de cada uno de los siguientes cilindros. 4 cm a) b) 8 cm c) 4 cm 22 CEPECH Preuniversitario, Edición 2005

23 Solucionario Matemática 2005 Solucionario Ejercicios Propuestos Polígonos Circunferencia y Círculo 1. a) α = 55º, β = 125º, γ = 92º, δ = 88º b) α = 60º, β = 120º c) α = 106º, β = 106º, γ = 74º d) α = 85º, β = 80º 1. 21,98 cm 18 cm 0,5 cm 2. a) Convexo b) Cóncavo c) Convexo 3. a) Cuadrilátero b) Hexágono c) Octágono ,86 cm 2 6 cm Volúmenes 1. a) 384 cm 2 b) 24 cm 2 c) 1 : a) 90º, 135º, 135º b) x = 90º y (x 45º) = 45º 2. a) 600 cm 3 b) cm 3 c) 125 cm 3 5. a) 5 cm 2 b) 11% c) 40 cm 2 d) 89% 6. a) 14 Lados b) 20 Lados c) 25 Lados Actividades Propuestas Polígonos 1. a) α = 75º, β = 100º b) α = 108º, β = 72º, γ = 108º c) α = 115º, β = 65º, γ = 115º, δ = 65º 2. a) 900º b) 2160º c) 3420º CEPECH Preuniversitario, Edición

24 Solucionario 3. x = 144º y = 88º 4. a) 36º b) 36º 5. a) 72º b) 40º c) 24º ,33 cm 14. a) 188,4 cm b) 530 vueltas completas c) 188,4 m 15. a) 14,85 cm b) 22,28 cm c) 46,26 cm d) 52,75 cm 6. x = 19 cm 7. x = 27 cm 8. a) 66 cm 2 b) 72 cm ,43 cm m 2 Volúmenes ,16 cm 2 9. a) 5,25 cm 2 b) 6 cm 2 c) 8 cm 2, la figura c) posee mayor área. 18. a) 480 cm 3 b) 5,95 cm 3 c) 80 cm % 19. a) 144 cm 2 b) 48 cm 2 c) 179 cm 2 Circunferencia y Círculo 11. 5,73 cm 20. a) 251,2 cm 2 b) 502,4 cm 2 c) 125,6 cm ,16 m 24 CEPECH Preuniversitario, Edición 2005

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO RESUMEN ÁSICO DEL LOQUE DE GEOMETRÍA Matemáticas 3º de ESO 1-. Conceptos fundamentales. Punto Recta Plano Semirrecta: porción de recta limitada en un extremo por un punto Semiplano: es cada una de las

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Un ángulo mide y otro Cuánto mide la suma de estos ángulos?

Un ángulo mide y otro Cuánto mide la suma de estos ángulos? Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

Diferencias entre Figuras y

Diferencias entre Figuras y 10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

f(x) = sen x f(x) = cos x

f(x) = sen x f(x) = cos x www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN 11 Medida de tiempo 1. Completa y relaciona los elementos de estas dos columnas que sean equivalentes. Trimestre 3 meses Lustro 5 años Quincena 15 días Siglo 100 años Semestre 6 meses 2. Escribe el siglo

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Matemática 3 Colegio N 11 B. Juárez

Matemática 3 Colegio N 11 B. Juárez Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA)

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3-1 Desempeño: Determina la clasificación

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles