Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/"

Transcripción

1 Númers cmplejs El cjut frmad pr tds ls úmers de la frma acib, dde a y b s úmers reales, c las peracies de adició y prduct defiidas pr: 1/100.a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/ se llama cuerp de ls úmers cmplejs y se represeta pr C. Se dice que a es la parte real y b la parte imagiaria del úmer cmplej aci b. Ds úmers cmplejs s iguales cuad tiee igual parte real e igual parte imagiaria. Ls úmers cmplejs c parte imagiaria cer, a D a C i0, s úmers reales. Ls úmers cmplejs c parte real cer, ib D 0 C ib, se llama imagiaris purs.

2 Es muy fácil cmprbar las prpiedades asciativa, cmutativa y distributiva de las peracies así defiidas. El elemet eutr de la suma es 0 y la uidad del prduct es 1. Además, a ib es el puest de a C ib, y td úmer a C ib 0 tiee ivers: a b.a C ib/ i D 1: a 2 C b 2 a 2 C b 2 r la defiició del prduct de úmers cmplejs, se tiee que: i 2 D 1: El úmer cmplej i se llama uidad imagiaria". 2/100

3 Es ciert que 1 D 1? Acabams de ver que i 2 D 1 per es s permite escribir así, si más i más, que i D p 1. Fíjate l que curre si pems i D p 1 y maejams ese símbl c las reglas a las que estams acstumbrads: 3/100 1 D i 2 D i i D p 1 p 1 D p. 1/. 1/ D p 1 D 1 Lueg 1 D 1. r tat, las matemáticas s ctradictrias y aquí hems acabad. Dóde está el errr?

4 N hay u rde e C cmpatible c la estructura algebraica Al ampliar R a C gaams much per perdems la relació de 4/100 rde. N se puede defiir u ccept de úmer cmplej psitiv de frma que la suma y el prduct de cmplejs psitivs sea psitiv. r ell se defie e C igú rde. Así que ya sabes: uca escribas desigualdades etre úmers cmplejs! Naturalmete, puedes escribir desigualdades etre las partes reales imagiarias de úmers cmplejs, prque tat la parte real cm la parte imagiaria de u úmer cmplej s úmers reales.

5 Represetació gráfica cmplej cjugad y módul Se represeta z D x C iy cm el vectr del pla.x; y/ y, e ese setid, se habla del pla cmplej. El eje hriztal recibe el mbre de eje real, y el eje vertical recibe el mbre de eje imagiari. 5/100 Si z D x C iy es u úmer cmplej (c x e y reales), etces el cjugad de z se defie cm: z D x iy y el módul valr abslut de z, se defie cm: jzj D p x 2 C y 2

6 6/100 y Y z z = x + iy x z = x iy X ÊÔÖ ÒØÒ Ö ÙÒ ÒÑÖÓ ÓÑÔÐÓ

7 7/100 Y z + w z w x u x + u ËÙÑ ÒÑÖÓ ÓÑÔÐÓ X

8 rpiedades de la cjugació El cjugad de ua suma es la suma de ls cjugads y el cjugad de u prduct es el prduct de ls cjugads. z D z; z C w D z C w; zw D zw rpiedades del módul 8/100 Cualesquiera sea ls úmers cmplejs z; w 2 C se verifica que: a) mkaxfjre zj; jim zjg 6 jzj 6 jre zj C jim zj b) El módul de u prduct es igual al prduct de ls móduls. jzwj D jzjjwj c) El módul de ua suma es mer igual que la suma de ls móduls. jz C wj 6 jzj C jwj (desigualdad triagular) La desigualdad triagular es ua igualdad si, y slamete si u de ells es u múltipl psitiv del tr; equivaletemete, está e ua misma semirrecta a partir del rige.

9 9/100 ara expresar u cciete de cmplejs e frma cartesiaa se multiplica umeradr y demiadr pr el cjugad del demiadr: u C iv x C iy.u C iv/.x D iy/ x 2 C y 2 D ux C vy x 2 C y C i vx uy 2 x 2 C y : 2

10 10/100 Ejercici Realiza las peracies idicadas y expresa el resultad e la frma a C i b. i).7 2i/.5 C 3i/ ii).i 1/ 3 iii).1 C i/.2 C i/.3 C i/ iv) v).4 i/.1 3i/ 1 C 2i vi).1 C i/ 2 vii) 1 C 2i 2 i 3 C i 2 C i viii) i 2.1 C i/ 3

11 11/100 Ejercici Supuest que z D x C iy es u úmer cmplej, calcula la parte real e imagiaria de las fucies: a) f 1.z/ D z 2 b) f 2.z/ D z 3 c) f 3.z/ D 1 z d) f.z/ D 1 1 C z 2 e) f 4.z/ D z C i z i

12 12/100 Ejercici Calcula las siguietes catidades. a) j.1 C i/.2 i/j b) 4 3i ˇ 2 i p ˇ c) j.1 C i/ 20 j d) j p 2 C i. p 2 C 1/j 5

13 13/100 Ejercici Calcula ls úmers cmplejs zdxciy tales que 1 C z 1 z es: a) U úmer real; b) U úmer imagiari pur.

14 Frma plar y argumets de u úmer cmplej 14/100 U úmer cmplej x D x C iy distit de 0 puede escribirse e la frma: z D jzj.cs # C i se #/ Dde debems elegir # pr las cdicies: cs # D x jzj ; se # D y jzj Cualquier úmer # 2R que cumpla estas cdicies se llama u argumet de z. El cjut de tds ls argumets de z es: Arg.z/ D ft2r W z D jzj.cs t C i se t/g Este cjut queda determiad cuad se cce algu de sus elemets: Si t 0 2Arg.z/ cualquier tr es de la frma t 0 C 2k para algú k 2Z.

15 15/100 Y y x = z cs ϑ z = x + iy z ϑ y = z se ϑ X x ÓÖÑ ÔÓÐÖ ÙÒ ÒÑÖÓ ÓÑÔÐÓ

16 16/100 De etre tds ls argumets de u úmer cmplej z 0 hay u úic que se ecuetra e el iterval ;, se represeta pr arg.z/ y se le llama argumet pricipal de z. El argumet pricipal de z D x C iy 0 viee dad pr: 8 arc tg.y=x/ si y 0, x 0 =2 si y 0, x D 0 ˆ arg.z/ D arc tg.y=x/ si x 0 =2 si y 0, x D 0 ˆ: arc tg.y=x/ C si y 0, x 0

17 arg(z) = arc tg(y/x) + π π 2 17/100 w = x + iv π π arg(z) = arc tg(y/x) z = x + iy arg(z) = arc tg(y/x) π π 2 ÖÙÑÒØÓ ÔÖÒÔÐ

18 La frma plar es muy útil para realizar prducts de úmers cmplejs. Sea z D jzj.cs # C i se #/; w D jwj.cs ' C i se '/ Teems que: 18/100 zw D jzjjwj.cs # C i se #/.cs ' C i se '/D D jzwjœ.cs # cs ' se # se '/ C i.se # cs ' C cs # se '/D D jzwj.cs.# C '/ C i se.# C '// ara multiplicar ds úmers cmplejs se multiplica sus móduls y se suma sus argumets. Así pues, el prduct de ds úmers cmplejs es gemétricamete u gir seguid de ua hmtecia.

19 # 2 Arg.z/; ' 2 Arg.w/ # C ' 2 Arg.zw/ 19/100 E particular: arg z C arg w 2 Arg.zw/. r tat: arg z C arg w D arg.zw/ arg z C arg w 6 Fórmula de De Mivre Si z 0, # 2Arg.z/ y 2Z, se verifica que # 2Arg.z /. Es decir: z D jzj.cs # C i se #/ D jzj cs.#/ C i se.#/

20 20/100 Ejercici Expresa ls siguietes úmers e frma cartesiaa: a). 1 C i p 3/ 11 b) 1 C i 1 i 5 c) 1 C i p! 6 3 d). p 3 C i/ 13 1 i

21 21/100 Calcula arg.zw/ y arg arg w. Ejercici z supuests ccids arg z y w

22 22/100 Ejercici Sea z D x C i y. Supuest que jzj D 1, z 1, z i, prueba que 8 z 1 =4 si 1 x C y 0 arg D z C i : 3=4 si 1 x C y 0

23 23/100 Ejercici Demuestra la llamada igualdad del paralelgram : jz C wj 2 C jz wj 2 D 2.jzj 2 C jwj 2 /.z; w 2 C/ y explica su sigificad gemétric.

24 24/100 Ejercici Dads ds úmers cmplejs y ˇ, calcula el míim valr para z 2 C de la catidad jz j 2 C jz ˇj 2 : Sugerecia: La igualdad del paralelgram puede ser útil.

25 25/100 Ejercici rueba que ˇ z a ˇ 1 si jzj 1 y jaj 1 y tambié si 1 a z jzj 1 y jaj 1. Sugerecia: Ua estrategia básica para prbar desigualdades etre móduls de úmers cmplejs csiste e elevar al cuadrad ambs miembrs de la desigualdad.

26 Raíces de u úmer cmplej Dad u úmer atural 2, td úmer cmplej z 0 tiee raíces cmplejas distitas que viee dadas pr: z k D jzj 1= cs arg z C 2k C i se arg z C 2k k D 0; 1; 2; : : : ; 1 26/100 Gemétricamete, s ls vértices de u plíg regular de lads cetrad e el rige. Se defie la raíz -ésima pricipal de z que se represeta pr p z cm: p z D jzj 1= cs arg z arg z C i se Observa que arg p z D arg z y, pr tat: arg p z 6. La raíz -ésima pricipal de z es la úica de las raíces -ésimas de z cuy argumet pricipal está e el iterval =; =.

27 27/100 Ê ÒÓÚÒ Ð ÙÒ

28 Terema 28/100 El úmer cmplej i es la raíz cuadrada pricipal del úmer cmplej 1. i D p 1 Demstració. Se tiee que arg. 1/ D. r tat: p 1 D cs.=2/ C i se.=2/ D i

29 p z p w D p zw? 29/100 E geeral NO p z p w, es ua raíz -ésima de zw per tiee pr qué ser la pricipal. Se verifica que: p z p w D p zw arg.z/ C arg.w/ 6

30 ara D 2, z D w D 1, teems arg. 1/ C arg. 1/ D 2, y 30/100 se cumple la cdició aterir. E este cas: p 1 p 1 D 1 1 D p 1 D p. 1/. 1/ es decir p 1 p 1 D 1 es ua raíz cuadrada de 1 D. 1/. 1/ per es la raíz cuadrada pricipal de 1. Ahra ya sabes dóde está el errr e l que sigue: 1 D i 2 D i i D p 1 p 1 D p. 1/. 1/ D p 1 D 1

31 31/100 Ejercici Calcula tdas las slucies de las ecuacies: z 7 D 1; z 9 D 1 2 C i p 3 2

32 32/100 Ejercici rueba que si ua ecuació pliómica c ceficietes reales admite ua raíz cmpleja, z, etces tambié admite cm raíz a z. Da u ejempl de ua ecuació pliómica de grad mayr que 1 que tega cm raíz cmpleja 1 C i per admita cm raíz a 1 i.

33 33/100 Ejercici Calcula las slucies de la ecuació: z 4 i p 3z 2 1 D 0

34 La fució expecial e xci y D exp.x C i y/ D e x cs y C i se y Es ua extesió de la expecial real a td C. Observa que: 34/100 j e z j D e Re z ; Im z 2Arg.e z / E particular, bteems la llamada fórmula de Euler: e i t D cs t C i se t.para td t 2 R/ De la fórmula de Euler se deduce las Ecuacies de Euler: cs t D ei t C e i t ; se t D ei t e i t.t 2R/ 2 2i La expecial cmpleja trasfrma sumas e prducts. e zcw D e z e w para tds z; w 2C La expecial cmpleja es ua fució periódica c períd 2i. e z D e zc2ki para td k 2Z

35 35/100 Ejercici Sea w u úmer cmplej de módul 1. Expresa ls úmers w 1 y w C 1 e frma plar.

36 Ejercici Sea x u úmer real que es múltipl eter de 2. rueba las igualdades C 1 se x a) 1 C cs x C cs 2x C C cs x D cs 2 x 2 x se 2 C 1 se x b) se x C se 2x C C se x D se 2 x 2 x se 2 Sugerecia: Si llamams A a la primera suma y B a la seguda, calcula A C ib hacied us de la fórmula de De Mivre. 36/100

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

v. Ninguna de las anteriores se obtiene v. Ninguna de las anteriores

v. Ninguna de las anteriores se obtiene v. Ninguna de las anteriores UPR Departamet de Ciecias Matemáticas RUM MATE 7 Primer Eame Parcial de septiembre de 009 Prfesr: Secció: Nmbre: # Estudiate: Istruccies: Lea cada preguta miucisamete. N se permite el us de librs i libretas.

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N GUIA DE TRABAJO PRACTICO Nº PAGINA Nº 69 GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 4 OBJETIVOS: Lgrar que el Alum: Iterprete el ccept de Dierecial Resuelva ejercicis y prblemas de aplicació. CONTENIDOS:

Más detalles

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo Tema 1.1: El cuerpo de los úmeros complejos. Módulo y argumeto de u úmero complejo Facultad de Ciecias Experimetales, Curso 2008-09 Erique de Amo, Uiversidad de Almería Notació. N deotará el cojuto de

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS º BCT DPTO DE MATEMÁTICAS T4: NÚMEROS COMPLEJOS - LOS NÚMEROS COMPLEJOS.- INTRODUCCIÓN: LAS ECUACIONES DE º GRADO CON SOLUCIONES IMPOSIBLES Desde el siglo XVI al XVIII llamaro la ateció, por la forma de

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad : Números Complejos. Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fc Ayala de Graada Sbrates de 004 (Mdel 6) Slucies Germá-Jesús Rubi Lua OPCIÓN A EJERCICIO 1_A (1 put) Dibuje la regió del pla defiida pr las siguietes iecuacies: x 3y -13; x + 3y 17, x + y 11; y 0.

Más detalles

Dado el autómata finito, Q=(Q,E,5,q,F), conjunto n, de la forma siguiente:

Dado el autómata finito, Q=(Q,E,5,q,F), conjunto n, de la forma siguiente: 45 Sbre el terema de Myhill-Nerde Pr E.García Camarer. Dad el autómata fiit, Q=(Q,E,5,q,F), cjut, de la frma siguiete: defiims el = {it=[qi, q±,... q ] 3 xg E tt= [ ó ( qq,x ),ó ( q x,x ),... ( q^x),]}

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Sistemas de ecuaciones lineales Introducción

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Sistemas de ecuaciones lineales Introducción Uidad Sistemas de ecuacies lieales..1.- Itrducció.... - -..- Sistemas de ecuacies.... - -..1.- Ntacies.... - -...- Clasificació.... - 5 -...- Sistemas equivaletes.... - 5 -..- Discusió de sistemas. Terema

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 2004-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0 Númers cmplejs ACTIVIDADES a) a = + = b = 0 b) a = 0 a b = b = a) y = 0 b) x = 0 c) x 0, y 0 a) Opuest: + i Cnjugad: + i e) Opuest: i Cnjugad: i b) Opuest: + i Cnjugad: + i f) Opuest: 7 Cnjugad: 7 c) Opuest:

Más detalles

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Aterirmete se ha ich que la itegral efiia equivale a ectrar el valr el área cmpreia etre la gráfica e ua fució y el eje, la cual puee ser calculaa pr mei el

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

1. INTRODUCCIÓN Formas diversas de expresión de Funciones. a) Funciones dadas en forma de tabla.

1. INTRODUCCIÓN Formas diversas de expresión de Funciones. a) Funciones dadas en forma de tabla. . INTRODUCCIÓN. Al bservar ls feómes que se prduce e la aturaleza pdems dars cueta que se puede elegir ds magitudes e y etre las cuales eiste ua depedecia fucial que epresa el aspect cuatitativ del feóme

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Apéndice Números Complejos

Apéndice Números Complejos Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos

Más detalles

Conocer la definición de derivada y su interpretación geométrica. Calcular derivadas de funciones elementales utilizando las siguientes técnicas:

Conocer la definición de derivada y su interpretación geométrica. Calcular derivadas de funciones elementales utilizando las siguientes técnicas: Igeiería de Telecmuicació Fudamets Matemátics I Tería: Fucies de ua variable Objetivs: Ccer la defiició de derivada y su iterpretació gemétrica. Calcular derivadas de fucies elemetales utilizad las siguietes

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Teoría: Números Complejos. Necesidad de ampliar el conjunto de los números reales

Teoría: Números Complejos. Necesidad de ampliar el conjunto de los números reales Necesidad de ampliar el cojuto de los úmeros reales Defiició El cojuto de los úmeros complejos se defie como el cojuto R co la suma y el producto complejo defiido ateriormete. Es decir, = (, +,*) C R.

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

Álgebra I Práctica 2 - Números Naturales e Inducción

Álgebra I Práctica 2 - Números Naturales e Inducción FCEyN - UBA - Verao 07 Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria: (a) + + 3 + 4 +... + 00 (b) + + 4 + 8 + 6 +...

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos 162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN (i) Efectuado el roducto, teemos z 1 z 2 = jz 1 jjz 2 j (cos ' 1 + i se ' 1 )(cos ' 2 + i se ' 2 ) = jz 1 jjz 2 j [(cos ' 1 cos ' 2 se ' 1 se ' 2 )+(se ' 1 cos

Más detalles

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales.

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales. NUMEROS COMPLEJOS El cojuto de los úmeros complejos fue creado para poder resolver alguos problemas matemáticos que o tiee solució detro del cojuto de los úmeros reales. Por ejemplo x 2 + 1 = 0 o tiee

Más detalles

1. LOS NÚMEROS REALES

1. LOS NÚMEROS REALES TEMA NÚMEROS REALES -. LOS NÚMEROS REALES Númers rciles s ls que se puede per cm cciete de ds úmers eters. Su expresió deciml es exct periódic. Númers irrciles s ls rciles, es decir, ls que puede bteerse

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

LABORATORIO DE TEORÍA DE COMUNICACIONES OCTUBRE 2017 MARZO PRACTICA No. 2

LABORATORIO DE TEORÍA DE COMUNICACIONES OCTUBRE 2017 MARZO PRACTICA No. 2 PRACICA N. EMA: ANÁLISIS DE SEÑALES CON EL USO DE MALAB. OBJEIVOS: Aplicar MALAB para aalizar las señales e el dmii de la frecuecia y e el dmii del tiemp.. INRODUCCIÓN:. INRODUCCIÓN AL ANÁLISIS ESPECRAL

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Medida de la longitud de onda del láser con una regla Fundamento

Medida de la longitud de onda del láser con una regla Fundamento Medida de la lgitud de da del láser c ua regla Fudamet Es psible medir la lgitud de da de la luz láser, utilizad cm red de difracció, ua regla graduada e medis milímetrs. Para ell, se hace icidir e direcció

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

1 SISTEMA DE NUMEROS COMPLEJOS

1 SISTEMA DE NUMEROS COMPLEJOS UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS Prof DORIS HINESTROZA SISTEMA DE NUMEROS COMPLEJOS Sea C el cojuto de parejas ordeadas (a, b) deúmeros reales, esto es C = {(a, b)

Más detalles

TEMA 1: FUNCIONES. 1ºBach.Ciencias Bloque III: FUNCIONES BLOQUE III :FUNCIONES

TEMA 1: FUNCIONES. 1ºBach.Ciencias Bloque III: FUNCIONES BLOQUE III :FUNCIONES ºBach.Ciecias Blqe III: FUNCIONES BLOQUE III :FUNCIONES TEMA : FUNCIONES Idea ititiva de fció. Dmiis. RECUERDA: Dmii de a fció, f, es el cjt de ls valres reales qe pede tmar la variable idepediete,, para

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Inferencia estadística Tests de hipótesis

Inferencia estadística Tests de hipótesis Iferecia estadística Tests de hipótesis Hasta ahra hems vist cm bteer, a partir de ua muestra, u estimadr putual u iterval de cfiaa para u parámetr θ. Frecuetemete el bjetiv del estudi es decidir, e base

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c

n n Solución: empleando la siguiente propiedad de producto de bases con un mismo exponente dentro de la llave c c c Elbrd pr: Jhy Chquehuc Lizrrg Mtemátics Pre-Uiversitri. Hllr el ceficiete del mmi M ( ) si su grd es. Slució: empled l siguiete prpiedd de prduct de bses c u mism epete detr de l llve c c c M ( ) Orded

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Seminario de problemas Curso Hoja 12

Seminario de problemas Curso Hoja 12 Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 1)

Álgebra I Práctica 4 - Números enteros (Parte 1) Divisibilidad y úmeros primos Álgebra I Práctica 4 - Números eteros (Parte 1) 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z: i) a b c a c y b c, ii) 4 a 2 2 a, iii) 2 a b 2 a ó

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Ídice 3. Sucesioes y series. 3.. Sucesioes de úmeros reales..............................

Más detalles

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades:

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades: Aritmética Itroducció Bautizo: Decimos a divide a b (a factor de b, a es divisor de b, b es múltiplo de a, b es divisible por a) si existe u etero c tal que b=ac Lo aterior se simboliza como a b, e caso

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

MATEMÁTICAS 2. GIE. El cuerpo de los números complejos.

MATEMÁTICAS 2. GIE. El cuerpo de los números complejos. MATEMÁTICAS. GIE. El cuerpo de los úmeros complejos.. Expresar los siguietes úmeros complejos e forma biómica: (a) ( + i) 3 (c) +3i 3 4i (e) i 5 + i 6 (g) + i + i + i 3 (b) i (d) (+i 3) 3 (f) π/ (h) π/4.

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Resolver. 2. Inecuaciones de segundo grado. La expresión ax bx c puede ser mayor, menor o igual que 0. Esto es, podemos plantearnos: 2

Resolver. 2. Inecuaciones de segundo grado. La expresión ax bx c puede ser mayor, menor o igual que 0. Esto es, podemos plantearnos: 2 1 Inecuacines Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines se clasifican pr su grad

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Problema 1.- Para el embrague de quijada cuadrada que se muestra en la figura. pul.

Problema 1.- Para el embrague de quijada cuadrada que se muestra en la figura. pul. Diseñ mecáic II/Prblemas de la uidad 5 Prblema 1.- Para el embrague de quijada cuadrada que se muestra e la figura b 1 r i 1 3 8 pul; y se trasfiere 75 hp a 650 rpm. Cada ua de las quijadas susteta u águl

Más detalles

1 i) c) ( 3+ 2i) (1 5i) es una diagonal del paralelogramo de lados z. 1 i) c) ( 3 + 2i)(1 5i) 3 4i e) c) 33

1 i) c) ( 3+ 2i) (1 5i) es una diagonal del paralelogramo de lados z. 1 i) c) ( 3 + 2i)(1 5i) 3 4i e) c) 33 Ejerccs resuelts en vde http://www.aprendermatematcas.rg 6. De ls sguentes númers cmplejs, calcula:,,,,,, a) = b) = + c) = 7. A) Calcula: a) ( ) + ( + 6) b) ( ) (7 + 5 ) c) ( + ) ( 5). B) Representa gráfcamente,

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos Complemeto Coordiació de Matemática I (MAT01) 1 er Semestre de 011 Semaa 13: Lues 30 de Mayo Vieres 3 de Juio Coteidos Clase 1: Forma Polar de u Número Complejo. Teorema de Moivre. Clase : Raíces de la

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma:

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma: Uiversidad de Sa Carlos de Guatemala Teoría de Cojutos Estudiate: Roald Oliverio Chubay Gallia -6 de mayo 0- Marco Teórico Para el presete texto se deduce alguas expresioes y luego se demuestra, para otras

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

TAREA Profundizaciones. Problemas. Estructuras Matemáticas en Mecánica Cuántica MPG3433/FIM3403 Departamento de Matemática - Instituto de Física

TAREA Profundizaciones. Problemas. Estructuras Matemáticas en Mecánica Cuántica MPG3433/FIM3403 Departamento de Matemática - Instituto de Física Profesor: Giuseppe De Nittis Sala: 5 (Depto. Matemáticas) Fecha: 27/03/2017 Estructuras Matemáticas e Mecáica Cuática MPG3433/FIM3403 Departameto de Matemática - Istituto de Física TAREA - 02 Objetivos:

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

Unidad I: Números Complejos

Unidad I: Números Complejos Uidad I: Números Complejos INTRODUCCIÓN Desde Al'Khwarimi (800 DC), quie fuera precursor del Álgebra, sólo se obteía las solucioes de las raíces cuadradas de úmeros positivos El matemático italiao Girolamo

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles