Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial"

Transcripción

1 Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial

2 Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos de movimiento Modelos geométricos para representación de mapas de entorno

3 Álgebra necesaria Necesitamos herramientas geométricas para manejar las posiciones de los robots y de los objetos en el espacio: Posición del robot dentro de un entorno Posición de un objeto dentro del mismo entorno Posición relativa del objeto con respecto al robot

4 Etiquetado de los ejes de coordenadas Podemos espacios de dos o tres dimensiones El origen de un sistema de coordenadas se puede colocar en cualquier posición Regla de la mano derecha Utilizaremos más de un sistema de coordenadas

5 Coordenadas cartesianas Un punto en el espacio se define mediante las coordenadas de su posición con respecto al origen del sistema ZZ p YY XX

6 Localización de objetos Objeto definido por cada uno de sus vértices Alternativa: Definir un nuevo sistema de coordenadas en el objeto. Las coordenadas de los vértices del objeto se definen con respecto al nuevo sistema.

7 Grados de libertad Grado de libertad: cada uno de los movimientos (desplazamiento y/o rotación) que se pueden realizar Un cuerpo 3D tiene 6 grados de libertad (dof: degree of freedom): 3 rotaciones y 3 posiciones Un cuerpo 2D tiene 3 dof: 1 rotación y 2 posiciones

8 Matrices de transformación Nos relacionan un sistema de coordenadas con otro (seis grados de libertad) r =términos de i rotación t =términos de i traslación Definen un conjunto de transformaciones (rotaciones y traslaciones)

9 Coordenadas homogéneas Una matriz de rotación 3x3 no nos da ninguna posibilidad para la traslación y el escalado Introducimos una cuarta coordenada donde w tiene un valor arbitrario y representa un factor de escala Así podemos trabajar con matrices de transformación y puntos en el espacio

10 Matrices de transformación Matriz de translación: Matrices de rotación:

11 Matrices de transformación II Cuando queremos realizar varias trasformaciones sucesivas multiplicamos las matrices de transformación correspondientes Las matrices se aplican siempre de derecha a izquierda. El resultado es distinto si no aplicamos el sentido correcto

12 Transformación de coordenadas Disponemos de las coordenadas de un punto con respecto a un sistema. Para encontrar las coordenadas de ese punto con respecto a otro sistema de coordenadas, multiplicamos las coordenadas del punto por la matriz que relaciona ambos sistemas

13 Sistemas de coordenadas 2D Vamos a tener dos sistemas principales: el global y el local Las coordenadas del robot cambian cuando se desplaza Debemos ser capaces de calcular las coordenadas de los objetos en nuestro entorno

14 Coordenadas en 2D Tenemos un mundo en dos dimensiones (x, y) y una orientación (θ) (tres grados de libertad) Las tres coordenadas (x, y, θ) definen tanto una posición como un sistema de coordenadas Matriz de rotación:

15 Relación de los sistemas de coordenadas

16 Transformación de coordenadas Sistema de coordenadas del robot: Coordenadas del punto p1 con respecto a R Coordenadas del punto con respecto a G

17 Ejemplo Tenemos el punto El sistema del robot

18 Transformación de coordenadas inversa Coordenadas del punto con respecto a R conocidas las de G:

19 Configuración y movimiento del robot Para cualquier tipo de configuración, si una rueda tiene un radio r, podemos calcular el desplazamiento de dicha rueda usando 2πr Odometría es la técnica que calcula la distancia desplazada midiendo el giro de las ruedas Diremos que un robot es holonómico si es capaz de girar sobre sí mismo

20 Centro de curvatura instantáneo Una rueda no puede desplazarse en la dirección de su eje de giro Las ruedas deben estar configuradas de tal manera que exista un punto (Centro de Curvatura Instantáneo CCI) sobre el que se realizará el giro del robot Dependiendo de la configuración del CCI tendremos distintos modelos de conducción. No todas las disposiciones de las ruedas permiten un movimiento correcto Cuando disponemos de varias ruedas, el giro del robot se consigue modificando alguna de las propiedades del giro de las ruedas (velocidad, orientación, etc.)

21 Ejemplo de CCI

22 Modelos de conducción Vamos a detallar dos modelos de configuración de ruedas para robots móviles Conducción diferencial Conducción síncrona Existen más modelos Conducción dirigida: triciclo, biciclo Modelo de Ackerman (vehículos) Algunos modelos incorporan una rueda de castor que no afecta al cálculo

23 Conducción diferencial

24 Cinemática de la conducción diferencial L es la distancia entre los centros de las dos ruedas R es la distancia desde el punto medio entre las ruedas y el CCI vr y v l son las velocidades de la rueda derecha e izquierda, respectivamente En cada instante, R, vr y v l pueden ser distintas

25 Cinemática de la conducción diferencial (II) Suma y resta de estas dos ecuaciones Casos especiales: v = v R es infinito, el robot se desplaza en r l línea recta v = -v R es cero, el robot gira sin r l desplazarse

26 Cinemática de la conducción diferencial (III) Actualización de las coordenadas

27 Características de la conducción diferencial Es holonómica No es posible que el robot se desplace (sin girar) de manera perpendicular a los ejes de las ruedas Se suele utilizar una rueda castor para estabilidad Pequeñas variaciones en las velocidades de las ruedas (e incluso en el suelo) hacen que se produzcan errores en las trayectorias

28 Conducción síncrona

29 Cinemática de la conducción síncrona El CCI está siempre en el infinito, lo que simplifica el control: cambiando la orientación de las ruedas cambiamos la dirección

30 Características de la conducción síncrona Todas las ruedas giran a la vez Se suele utilizar dos motores, uno para el giro de las ruedas que producen el movimiento hacia delante y otro que hace que el robot gire También es holonómica No es necesario que el robot gire para cambiar de dirección, sólo giran las ruedas También le afecta problemas en el suelo, pero en menor medida que el diferencial

31 Modelos de representación para mapas El robot debe disponer de una representación interna del mundo por el que se mueve Para establecer qué partes del entorno no están ocupadas (espacio libre) Para reconocer regiones, localizaciones u objetos en dicho entorno Esta representación no debe ser exhaustiva, pero debe contener la suficiente información para que el robot no colisione

32 Mapas del entorno Contiene la posición de los obstáculos y otros objetos en el entorno Información de regiones no seguras o difíciles de atravesar Puede contener información de experiencias previas Puede ser utilizado para planificar tareas futuras

33 Representación de mapas Descomposición espacial Realiza una discretización del entorno No representa objetos sino el entorno en sí mismo Representación geométrica Usan líneas, polígonos, puntos, etc. Ahorran espacio en memoria Representación topológica Más semejante a la de los humanos No utiliza datos métricos, sino conectividad entre regiones: seguir el pasillo hasta encontrar la puerta y entonces girar a la derecha

34 Descomposición espacial Suele hacer uso de una malla de ocupación Cada elemento (celda) de esta malla es una discretización del entorno que representa el grado de ocupación (ocupado, libre, parcialmente ocupado) por un obstáculo del espacio correspondiente en el entorno El número de celdas a utilizar vendrá dado por el tamaño del entorno y por la discretización permitida (dependerá del tamaño del robot, entre otros factores) Tres posibilidades: uniforme, quadtrees y exacta

35 Descomposición uniforme El entorno se divide en un número regular de celdas, todas representando el mismo tamaño El valor de cada celda se puede calcular comprobando la cantidad de obstáculo que se encuentra en ella, tomando valores entre 0 (no obstáculo) y 1 (todo obstáculo)

36 Rejilla de descomposición uniforme

37 Descomposición mediante quadtrees En la representación anterior muchas celdas que son adyacentes tienen el mismo valor Podemos intentar subdividir el espacio de forma recursiva en trozos cada vez más pequeños, realizando la subdivisión si una celda no se encuentra uniformemente rellenada Dicha subdivisión se realiza partiendo una celda en cuatro celdas iguales Los quadtrees ahorran espacio si existe gran cantidad de espacio libre o los obstáculos son de gran tamaño

38 Rejilla obtenida mediante quadtrees

39 Descomposición exacta Los quadtrees particionan las celdas en cuatro partes iguales Existe otra forma de realizar la descomposición que no tiene la restricción de los quadtrees, sino que permite dividir el espacio libre (sin obstáculos) en polígonos regulares No existe una forma única de obtener esta división

40 Rejilla obtenida mediante descomposición exacta

41 Representación geométrica Hacen uso de primitivas geométricas, puntos, líneas, polígonos, etc. almacenando sus coordenadas No necesitan tanta memoria para representar el mismo mapa Al trabajar con coordenadas permiten aplicar transformaciones sobre ellas (rotaciones, traslaciones, cálculo de intersecciones, etc.) Sin embargo, existen ciertas características de los objetos que no pueden ser representadas exactamente con este modelo, sino mediante una simplificación (sillas, papeleras, columnas, etc.)

42 Ejemplo de representación geométrica

43 Representación topológica Al contrario que las dos anteriores representaciones, no utiliza datos métricos: los datos métricos pueden ser fuente de error debido a los sensores Es una representación más cercana a la humana: sigue el pasillo hasta que encuentres un cruce, gira a la derecha y es la tercera puerta a la izquierda

44 Representación en forma de grafo Este tipo de representación realiza una abstracción del entorno en forma de grafo Los vértices del grafo son lugares distintivos del entorno: puertas, cruces de pasillo, columnas, etc. Las aristas del grafo indican conectividad entre los vértices: la puerta 2 se encuentra a la derecha del cruce

45 Ejemplo de representación topológica Escalera 1 Puerta principal Cruce pasillos Despacho 1 Despacho 2 Despacho 3 Despacho 4

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Geometría Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Geometría 2D y 3D Transformación de coordenadas Calibración de la cámara Álgebra necesaria

Más detalles

CINEMÁTICA DEL ROBOT

CINEMÁTICA DEL ROBOT CINEMÁTICA DEL ROBOT Cinemática Directa Cinemática Inversa Matriz Jacobiana 1 Problema cinemático del robot Cinemática del robot: Estudio de su movimiento con respecto a un sistema de referencia: Descripción

Más detalles

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería Clasificación de robots Introducción a la robótica Sesión 2: Locomoción Eric Rodríguez Peralta En la actualidad los más comunes son: Robots manipuladores Limitación para moverse en su entorno Robots móviles

Más detalles

ANALISIS CINEMATICO DIRECTO E INVERSO

ANALISIS CINEMATICO DIRECTO E INVERSO ANALISIS CINEMATICO DIRECTO E INVERSO Cinematica directa x=f(q) [x,y,z] Articulaciones Posicion de la Herramienta Cinematica Inversa q=f -1 (x) El analisis cinematico inverso nos permite calcular la posicion

Más detalles

Sistemas de Locomoción de robots móviles. Automatización y Robótica Industrial 5 Ing Industrial

Sistemas de Locomoción de robots móviles. Automatización y Robótica Industrial 5 Ing Industrial Sistemas de Locomoción de robots móviles Consideraciones de diseño Maniobrabilidad Controlabilidad Tracción Capacidad de subir pendientes Estabilidad Eficiencia Mantenimiento Impacto ambiental Consideraciones

Más detalles

Robots Autónomos. Depto. de Ciencia de la Computación e Inteligencia Artificial

Robots Autónomos. Depto. de Ciencia de la Computación e Inteligencia Artificial Robots Autónomos Depto. de Ciencia de la Computación e Inteligencia Artificial Contenido Problema del mapeado Mapeado 2D Mapeado 3D Introducción al SLAM Mapeado topológico Construcción de mapas: Descripción

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Noveno. Unidad de aprendizaje: Robótica Avanzada (L41087)

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Noveno. Unidad de aprendizaje: Robótica Avanzada (L41087) Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Noveno Unidad de aprendizaje: Robótica Avanzada (L41087) Unidad de Competencia: Unidad 2 TEMA: Entender los diferentes tipos de

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

ROBOTICA por OLLERO BATURONE Editorial Marcombo. Foreword Prólogo Prefacio del autor

ROBOTICA por OLLERO BATURONE Editorial Marcombo. Foreword Prólogo Prefacio del autor ROBOTICA por OLLERO BATURONE Editorial Marcombo Foreword Prólogo Prefacio del autor CAPÍTULO 1. Introducción 1.1. Robótica 1.2. Esquema general del sistema robot 1.3. Robots manipuladores 1.3.1. Sistema

Más detalles

Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES

Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES TEMA IV: ROBOTS MÓVILES 4.1 Introducción: Preliminares y Conceptos. 4.2 Características de los Robots Móviles. 4.3 Algoritmos de Planificación.

Más detalles

Tema 3: Transformaciones Geométricas

Tema 3: Transformaciones Geométricas J. Ribelles SIE020: Síntesis de Imagen y Animación Institute of New Imaging Technologies, Universitat Jaume I Contenido Introducción 1 Introducción 2 Traslación Escalado Rotación 3 4 5 6 Introducción Por

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω P r ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime Teoría

Más detalles

Control y programación de robots

Control y programación de robots Control y programación de robots 11. Solución cinemática inversa y directa de robots seriales 11.1 El alumno, tras recibir y estudiar esta clase, debe ser capaz de: Comprender el modelado de la cinemática

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

Visualización y Realismo: Problemas Capítulo 2

Visualización y Realismo: Problemas Capítulo 2 Visualización y Realismo: Problemas Capítulo 2 Carlos Ureña Almagro Curso 2011-12 1 Problema 2.1 Calcula los coeficientes de la ecuación implícita de la recta que pasa por los puntos p 0 y p 1 Y p 0 p

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática

diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática ALÁMBRICOS MODELADORES GEOMÉTRICOS SUPERFICIES SÓLIDOS poliédricas libres barridos instanciación y parametrización

Más detalles

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Introducción Consiste en determinar cual es la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas que se toma como referencia,

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Tema 3. Magnitudes escalares y vectoriales

Tema 3. Magnitudes escalares y vectoriales 1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

Introducción a la Robótica. L. Enrique Sucar INAOE

Introducción a la Robótica. L. Enrique Sucar INAOE Introducción a la Robótica L. Enrique Sucar INAOE Sesión 2: Locomoción Introducción a la Robótica L. Enrique Sucar Contenido Introducción Robots de Ruedas Configuraciones Cinemática Forma Robots de Patas

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

TEMA 4. Geometría, cinemática y dinámica

TEMA 4. Geometría, cinemática y dinámica TEMA 4. Geometría, cinemática y dinámica 76 Índice: Geometría, cinemática y dinámica Geometría oordenadas propias y del mundo Representación de la posición. Tipos de coordenadas Matrices de rotación Representación

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Sistema Robótico Cinemática Dinámica Planeamiento de Tareas Software Hardware Diseño Mecánico Actuadores Sistema de Control Sensores 2 Introducción Con el fin de controlar

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA ÍNDICE 1. La percepción del tiempo y el espacio 2. Descripción del movimiento 2.1. Instante e intervalo de tiempo 2.2. Posición

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos. Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena

Más detalles

Transformaciones. la cual el libro introduce en este capítulo. Si se traslada la gráfica de y 1 x 2 unidades hacia la derecha y 3 unidades

Transformaciones. la cual el libro introduce en este capítulo. Si se traslada la gráfica de y 1 x 2 unidades hacia la derecha y 3 unidades CAPÍTULO 8 Transformaciones Resumen de contenido En el Capítulo 8, los estudiantes continúan su trabajo con funciones, especialmente funciones no lineales a través del estudio adicional de las gráficas

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

Calcula el tiempo que demorará el segundo ciclista en alcanzar al primero y la distancia que recorrerá c/u, desde ese instante.

Calcula el tiempo que demorará el segundo ciclista en alcanzar al primero y la distancia que recorrerá c/u, desde ese instante. Prof. Graciela Slekis Riffel - La Academia PToros 1 EJERCICIOS DE CINEMATICA RESUELTOS 1) Transforma 72 Km / h en m / s 72 3,6 = 20 72 Km / h = 20 m / s 2) Transforma 5 m / s en Km / h 5 3,6 = 18 5 m /

Más detalles

Mosaicos regulares del plano

Mosaicos regulares del plano Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 behego@alumni.uv.es

Más detalles

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

1. Características del movimiento

1. Características del movimiento CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia

Más detalles

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt 1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

CINEMÁTICA. Cinemática del punto

CINEMÁTICA. Cinemática del punto CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

Conceptos de Robótica

Conceptos de Robótica Conceptos de Robótica Seminario de Modelo y Métodos Cuantitativos Teddy Alfaro O. Clasificación de Robot De acuerdo al grado de manejo que tiene una persona tras el robot, éste se puede clasificar como

Más detalles

CINEMÁTICA. Introducción

CINEMÁTICA. Introducción CINEMÁTICA 1- MAGNITUDES ESCALARES Y VECTORIALES. 2- CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOVIMIENTO. 3- CLASIFICACIÓN DE MOVIMIENTOS. Introducción La cinemática es una parte de la

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

Robótica Industrial. Robótica Industrial

Robótica Industrial. Robótica Industrial TEMA 4: CINEMÁTICA DEL ROBOT Ingeniería de Sistemas y Automática Control de Robots y Sistemas Sensoriales Robótica Industrial Robótica Industrial ISA.- Ingeniería de Sistemas y Automática Cinemática del

Más detalles

CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD 02. Roger Miranda Colorado

CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD 02. Roger Miranda Colorado CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD Roger Miranda Colorado de mayo de 6 Índice. RESPUESTAS DE EJERCICIOS UNIDAD . RESPUESTAS DE EJERCICIOS UNIDAD A continuación

Más detalles

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Carlos Alberto Edo Solera ÍNDICE: 1.- Rotaciones mediante cuaterniones 2.- Álgebra de cuaterniones. 3.- Cuaterniones con MatLab. 1.- Rotaciones

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

Modelos para la estimación bayesiana

Modelos para la estimación bayesiana Capítulo 4 Modelos para la estimación bayesiana El paradigma de estimación bayesiana para los robots móviles se basa en la definición probabilística de un modelo del entorno, un modelo de observación y

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos)

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) Para poder definir el movimiento, se necesitan tres factores: - El SISTEMA DE REFERENCIA es el punto

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia.

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia. Movimiento circular La trayectoria de un móvil sabemos que puede tener formas muy diversas. Hasta ahora hemos estudiado el caso más simple de trayectoria, la rectilínea. Ahora vamos a dar un paso más y

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Contenido. Prefacio... Acerca de los autores...

Contenido. Prefacio... Acerca de los autores... Contenido Prefacio... Acerca de los autores... xi xvi Capítulo 1. Introducción... 1 1.1. Antecedentes históricos... 2 1.2. Origen y desarrollo de la robótica... 8 1.3. Definición del Robot... 16 1.3.1.

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

Modelado Cinemático de la mano de Barrett

Modelado Cinemático de la mano de Barrett Modelado Cinemático de la mano de Barrett Informe Técnico Proyecto: DPI2008-02647 Autores: Juan Antonio Corrales Ramón Fernando Torres Medina Grupo de Automática, Robótica y Visión Artificial Departamento

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

CINEMÁTICA INVERSA DE ROBOTS INDUSTRIALES

CINEMÁTICA INVERSA DE ROBOTS INDUSTRIALES I EMETRE DE 00 CINEMÁTICA INVERA DE ROBOT INDUTRIALE GERMÁN ANDRÉ RAMO FUENTE * 1. Introducción El uso de robots en ambientes industriales, y más precisamente en procesos de manufactura, ha generado toda

Más detalles

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO EL MOVIMIENTO 1. MOVIMIENTO Y REPOSO. NECESIDAD DE UN SISTEMA DE REFERENCIA: El movimiento es un fenómeno físico que se define como todo cambio de lugar o posición en el espacio que experimentan los cuerpos

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos.

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos. Taller de lectura 3 : Cinemática Cinemática, es el estudio del movimiento sin atender a sus causas. Se entiende por movimiento, el cambio de posición de una partícula con relación al tiempo y a un punto

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

El movimiento Circular

El movimiento Circular El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido

6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido Capítulo 6 Aplicaciones 6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido Como hemos visto en secciones anteriores, una característica muy importante de los cuaternios es que con

Más detalles

I. Objetivo. II. Introducción.

I. Objetivo. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #1: Cinemática Rotacional: MCU y MCUA I. Objetivo. Estudiar el movimiento rotacional

Más detalles

CASO DE ESTUDIO. GENERACIÓN DE TRAYECTORIAS SEGURAS

CASO DE ESTUDIO. GENERACIÓN DE TRAYECTORIAS SEGURAS CASO DE ESTUDIO. GENERACIÓN DE TRAYECTORIAS SEGURAS Contenido 1. Objetivos:... 1 2. Interfaz:... 1 3. Estructura Ackermann... 1 4. Pure Pursuit... 2 5. Aplicación al VEGO... 4 6. Implementación software...

Más detalles

TEMA 2: EL MOVIMIENTO

TEMA 2: EL MOVIMIENTO TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es

Más detalles