Curva de Lorenz e Indice de Gini Curva de Lorenz

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curva de Lorenz e Indice de Gini Curva de Lorenz"

Transcripción

1 Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También es útil para comparar una distribución con relación a alguna distribución base (referencia), por ejemplo observado contra frecuencias esperadas. Ejemplo POBLACION INGRESO Grupo Porcentaj e (decil) Porcentaje Acumulado Porcentaj e Porcentaje Acumulado Los mas ricos Los mas pobres Gráfico de los Datos de la Tabla Source: Griffith & Amrhein Source: Griffith and Amrhein 1

2 Interpretación de la Diagonal Cuándo la proporción de observaciones en cada quartil para la distribución 1 es igual a la proporción de observaciones en cada quartil para la distribución 2, los valores trazan una línea recta que forma una diagonal (por ejemplo. % población). Es decir, las distribuciones son proporcionalmente iguales. Interpretación de la Curva de Lorenz La curva de Lorenz es el resultado de cuando las proporciones difieren. El grado de la curvatura nos dice cuan diferentes las dos distribuciones son. El grado de la diferencia se puede medir directamente del gráfico: es la distancia vertical entre la diagonal y la curva de Lorenz. Como Crear la Curva Lorenz 1. Calcule la frecuencia relativa para cada variable - es decir el porcentaje del total. 2. Sitúe las observaciones de acuerdo a la proporción de las variables - es decir Y/X. 3. Construya una tabla de frecuencias acumuladas para cada variable de las observaciones clasificadas. 4. Trace las frecuencias relativas acumulativas y la diagonal. Otro Ejemplo Empleo de las Herramientas Maquinarias vs. Industria Automovilística Datos Originales X Y Region A Region B Region C 10 8 Region D 10 5 Region E Region F Procedimiento para la Curva de Lorenz 1. Rank by Ratio 2. Conversión a Porcentajes 3. Acumulado Y/X X% Y% Cx Cy D B F C E A

3 Rango de la Curva de Lorenz En el caso más extremo, el 100 por ciento de la primera distribución se asocia con el 0 por ciento de la segunda distribución. Es decir, cuándo una variable es presente la otra está ausente. En este caso la curva de Lorenz sigue el eje X hacia la derecha del gráfico, es decir, tomando la forma de un triángulo. El rango se encuentra entre 0% y 100% El Coeficiente o Indice de Gini El Coeficiente de Gini es una medida de resumen que captura la desviación mostrada en la curva de Lorenz. Se aplica a: VARIABLES QUE SIGNIFICAN UN RECURSO QUE SE DISTRIBUYE ENTRE UNOS ELEMENTOS EJEMPLOS DE VARIABLES RENTA PRODUCCIÓN SALARIO HERENCIA Uso: MEDIR SI LA DISTRIBUCIÓN TOTAL DEL RECURSO ENTRE LOS ELEMENTOS ES EQUITATIVA O NO Será equitativa si se reparte de forma equilibrada entre todos los elementos No será equitativa cuando unos pocos elementos acaparen la mayor parte del recurso Compara: LAS PROPORCIONES DE RECURSO REPARTIDAS HASTA UNA CANTIDAD (Qi) CON LAS PROPORCIONES DE INDIVIDUOS QUE SE LO HAN REPARTIDO HASTA ESA CANTIDAD (Pi) Obtención de Qi y Pi Las medidas de forma permiten conocer que forma tiene la curva que representa la serie de datos de la muestra. En concreto, podemos estudiar las siguientes características de la curva: 3

4 a) Concentración: mide si los valores de la variable están más o menos uniformemente repartidos a lo largo de la muestra. b) Asimetría: mide si la curva tiene una forma simétrica, es decir, si respecto al centro de la misma (centro de simetría) los segmentos de curva que quedan a derecha e izquierda son similares. c) Curtosis: mide si los valores de la distribución están más o menos concentrados alrededor de los valores medios de la muestra. a) Concentración Para medir el nivel de concentración de una distribucón de frecuencia se pueden utilizar distintos indicadores, entre ellos el Indice de Gini. Este índice se calcula aplicando la siguiente fórmula: Σ (pi - qi) IG = Σ pi (i toma valores entre 1 y n-1) En donde pi mide el porcentaje de individuos de la muestra que presentan un valor igual o inferior al de xi. n1 + n2 + n ni pi = x 100 Mientras que qi se calcula aplicando la siguiente fórmula: n (X1*n1) + (X2*n2) (Xi*ni) qi = x 100 (X1*n1) + (X2*n2) (Xn*nn) El Índice Gini (IG) puede tomar valores entre 0 y 1: IG = 0: concentración mínima. La muestra está uniformemente repartida a lo largo de todo su rango. IG = 1: concentración máxima. Un sólo valor de la muestra acumula el 100% de los resultados. Interpretación El coeficiente de Gini a menudo es referido como un índice de desigualdad dado que mide el grado de asociación entre dos variables: Coeficiente de variables de asociación geográfica. Coeficiente de mercadotecnia Concentración de la Población Coeficiente del área de localización Segregación Residencial Tendencia del Genero en el Empleo 4

5 Limitaciones del Coeficiente de Gini Debe ser capaz de expresar los datos como una frecuencia. No puede tener los valores negativos de los datos. No pueden estudiar las variables espaciales continuas - es decir, usted necesita las categorías. El valor de G depende de la distribución base (por ejemplo. Área). Como la base aumenta el valor de G (Gini) desde el cero. Definición delas fronteras espaciales: Se superpone (sensible a la definición de la frontera), el nuevo arreglo (insensible a la distribución entre áreas). Trazo de la Probabilidad Normal Prueba de la normalidad: El trazo o ploteo observó la probabilidad acumulada contra la probabilidad acumulada esperada (derivada de la tabla normal). En Resumen: El coeficiente Gini data de 1912, y mide el grado en que la distribución del ingreso se desvia de una distribución proporcional (igualitaria aunque algunos autores dicen equitativa). 5

6 Se basa en la curva de Lorenz. En el semieje de las abscisas se indica la población en percentiles o quintiles o porcentajes (desde los mas pobres a los mas ricos). En el semieje positivo de las ordenadas se colocan los porcentajes de la renta de 0 a 100, en fracciones de 20. Si marcamos con un punto la relación población - ingreso, obtenemos la curva de Lorenz. Una distribución igualitaria seria: al 20% de la población le corresponde el 20% del ingreso, al 40% el 40% de los ingresos. Lo cual daría una recta con pendiente de 45 grados. En la realidad se obtiene una curva cuya concavidad mira hacia el semieje positivo de las ordenadas (el segmento de la torta que le corresponde a los ricos es proporcionalmente mas grande). El coeficiente de Gini indica la relación entre el área bajo la curva teórica (un triangulo) y el área bajo la curva de Lorenz. Va entre 0 y 1, valores teóricos. El valor 0 correspondería a una distribución igualitaria y el 1 a una distribución en la situación de desigualdad absoluta (el hogar mas rico se lleva todo y el resto nada). Ejemplo: vamos a calcular el Índice Gini de una serie de datos con los sueldos de los empleados de una empresa (millones pesetas). Sueldos Empleados (Frecuencias absolutas) Frecuencias relativas (Miles de Pesos) Simple Acumulada Simple Acumulada 3, ,0% 25,0% 4, ,0% 55,0% 6, ,0% 75,0% 8, ,5% 87,5% 10, ,5% 95,0% 15, ,5% 97,5% 20, ,5% 100,0% Calculamos los valores que necesitamos para aplicar la fórmula del Índice de Gini: Xi ni Σ ni pi Xi * ni Σ Xi * ni qi pi - qi 3, ,0 35,0 35,0 14,1 10,9 4, ,0 54,0 89,0 36,0 19,0 6, ,0 48,0 137,0 55,4 19,6 8, ,5 40,0 177,0 71,6 15,9 10, ,0 30,0 207,0 83,8 11,2 15, ,5 15,0 222,0 89,8 7,7 25, ,0 25,0 247,0 100,0 0 Σ pi (entre 1 y n-1) = 435,0 x Σ (pi - qi) (entre 1 y n-1 ) = 84,3 Por lo tanto: IG = 84,3 / 435,0 = 0,19 Un Índice Gini de 0,19 indica que la muestra está bastante uniformemente repartida, es decir, su nivel de concentración no es excesivamente alto. Ejemplo: Ahora vamos a analizar nuevamente la muestra anterior, pero considerando que hay más personal de la empresa que cobra el sueldo máximo, lo que conlleva mayor concentración de renta en unas pocas personas. 6

7 Sueldos Empleados (Frecuencias absolutas) Frecuencias relativas (Miles de Pesos) Simple Acumulada Simple Acumulada 3, ,0% 25,0% 4, ,0% 50,0% 6, ,0% 70,0% 8, ,5% 82,5% 10, ,5% 90,0% 15, ,0% 90,0% 20, ,0% 100,0% En este caso obtendríamos los siguientes datos: Xi ni Σ ni pi Xi * ni Σ Xi * ni qi pi - qi 3, , ,7 13,26 4, , ,8 23,15 6, , ,0 27,05 8, , ,4 26,12 10, , ,4 23,56 15, , ,4 23,56 25, , ,0 0,00 El Índice Gini sería: Σ pi (entre 1 y n-1) = 407,5 x Σ (pi - qi) (entre 1 y n-1 ) = 136,69 IG = 136,69 / 407,5 = 0,34 El Índice Gini se ha elevado considerablemente, reflejando la mayor concentración de rentas que hemos comentado. A continuación un ejemplo para Datos Agrupados: Frecuencia marca x i n i u i qi = (u i /u n ) 100 pi = (Ni/n) 100 p i - q i L i-1 - L i x i n i N i ,48 8,85 7, ,38 36,54 21, ,33 60,38 25, ,95 78,85 21, ,95 86,15 18, ,62 89,23 15, ,33 94,62 9, ,08 97,31 5, ,55 99,23 1, ,00 100,00 0, Σ x i n i= u n= Σ pi= 651,15 Σ (pi - qi)= 125,48 El Índice Gini sería: IG = 125,48 / 651,15 = 0,19 7

La Curva de Lorenz y el Índice de Gini

La Curva de Lorenz y el Índice de Gini 1 La Curva de Lorenz y el Índice de Gini La Curva de Lorenz Un análisis de la distribución de recursos por quintil (el concepto de quintil se discute brevemente en las últimas dos lecciones del Módulo

Más detalles

3. INDICADORES RELATIVOS A LA DISTRIBUCIÓN DEL INGRESO

3. INDICADORES RELATIVOS A LA DISTRIBUCIÓN DEL INGRESO COEFICIENTE DE GINI Extraído de: MANUAL DE ECONOMÍA Autor: Dr. Gustavo Demarco págs 187 a 193 3. INDICADORES RELATIVOS A LA DISTRIBUCIÓN DEL INGRESO Cuando tratamos de medir las características de la distribución

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

La medición de la desigualdad económica

La medición de la desigualdad económica La medición de la desigualdad económica La medida de desigualdad económica mas comúnmente utilizada es la distribución del ingreso percibido por las personas durante un periodo determinado de tiempo generalmente

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

ANÁLISIS DE DATOS UNIDIMENSIONALES

ANÁLISIS DE DATOS UNIDIMENSIONALES ANÁLISIS DE DATOS UNIDIMENSIONALES TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS MEDIDAS DE POSICIÓN MEDIDAS DE TENDENCIA CENTRAL MEDIA ARITMÉTICA OTRAS MEDIAS: GEOMÉTRICA.ARMÓNICA.MEDIA GENERAL MEDIANA

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- mungerovich@fisica.edu.uy DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Medidas de Distribución

Medidas de Distribución Medidas de Distribución Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013

Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013 SIMPOSIO Encuesta Nacional de Ingresos y Gastos de los Hogares Desigualdad de ingresos en Costa Rica a la luz de las ENIGH 2004 y 2013 Andrés Fernández Arauz Marzo 2015 Introducción INEC (2014): la desigualdad

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Contenido. Pobreza. Distribución del ingreso y Desigualdad. PET, PEI, PEA en condiciones de pobreza. Resumen de Indicadores.

Contenido. Pobreza. Distribución del ingreso y Desigualdad. PET, PEI, PEA en condiciones de pobreza. Resumen de Indicadores. Contenido 1 Pobreza 2 Distribución del ingreso y Desigualdad 3 PET, PEI, PEA en condiciones de pobreza 4 Resumen de Indicadores 5 PIB y Pobreza POBREZA 1 Antecedentes 2 3 4 5 6 7 Síntesis Metodológica

Más detalles

5.2 Representaciones gráficas

5.2 Representaciones gráficas 5.2 Representaciones gráficas 5.2.1 Histogramas Un histograma es una gráfica de una distribución de frecuencias; en el eje horizontal de un sistema coordenado rectangular se representan los puntos que

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

ECUACIÓN GENERAL DE LA RECTA

ECUACIÓN GENERAL DE LA RECTA ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

UNIDAD 7 Trazo de curvas

UNIDAD 7 Trazo de curvas UNIDAD 7 Trazo de curvas El trazo de curvas se emplea en la construcción de vías para conectar dos líneas de diferente dirección o pendiente. Estas curvas son circulares y verticales. CURVAS CIRCULARES:

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

, con 0 x 1, representa la igualdad perfecta en la distribución de los ingresos. Esto es que cualquier punto de la línea indicaría que el

, con 0 x 1, representa la igualdad perfecta en la distribución de los ingresos. Esto es que cualquier punto de la línea indicaría que el Función de Lorenz Decimos que una función continua siguientes condiciones: R L :, es de Lorenz si satisface las ) ) L, L L, para todo x, La función de Lorenz se utiliza para modelar la distribución de

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN Cuando se analiza un conjunto de datos, normalmente muestran una tendencia a agruparse o aglomerarse alrededor de un punto central. Para describir ese conjunto

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Son valores numéricos que localizan e informan sobre los valores medios de una serie o conjunto de datos, se les considera como indicadores debido a que resumen la información

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Estadística Descriptiva. SESIÓN 7 Medidas de centralización

Estadística Descriptiva. SESIÓN 7 Medidas de centralización Estadística Descriptiva SESIÓN 7 Medidas de centralización Contextualización de la sesión 7 A través de las sesiones anteriores has aprendido los conceptos básicos de la Estadística, los tipos de datos

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

3.2. Equidad. 3.2. Equidad

3.2. Equidad. 3.2. Equidad Equidad en el contexto de sanidad significa que la distribución de servicios sanitarios (o la satisfacción de la demanda por servicios sanitarios) no depende de la capacidad de pago. La Equidad constituye

Más detalles

PRÁCTICAS DE POLÍTICA ECONÓMICA I (GRUPO MÑN) TEMA 9, REDISTRIBUCIÓN DE LA RENTA Noemi Padrón Fumero (006/07)

PRÁCTICAS DE POLÍTICA ECONÓMICA I (GRUPO MÑN) TEMA 9, REDISTRIBUCIÓN DE LA RENTA Noemi Padrón Fumero (006/07) PRÁCTICAS DE POLÍTICA ECONÓMICA I (GRUPO MÑN) TEMA 9, REDISTRIBUCIÓN DE LA RENTA Noemi Padrón Fumero (006/07) 1. Según el Informe sobre Desarrollo Humano del año 2005, en determinados países la desigualdad

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

3.2. Equidad. Equidad vertical tratamiento desigual para desiguales tiene que ver con el carácter progresivo en la financiación de la sanidad.

3.2. Equidad. Equidad vertical tratamiento desigual para desiguales tiene que ver con el carácter progresivo en la financiación de la sanidad. Equidad en el contexto de sanidad significa que la distribución de servicios sanitarios (o la satisfacción de la demanda por servicios sanitarios) no depende de la capacidad de pago. La Equidad constituye

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Tablas de frecuencias con datos agrupados

Tablas de frecuencias con datos agrupados Tablas de frecuencias con datos agrupados Cuando los valores de la variable son muchos, conviene agrupar los datos en intervalos o clases para así realizar un mejor análisis e interpretación de ellos.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

TRATAMIENTO DE PUNTAJES

TRATAMIENTO DE PUNTAJES TRATAMIENTO DE PUNTAJES Andrés Antivilo B. Paola Contreras O. Jorge Hernández M. UNIDAD DE ESTUDIOS E INVESTIGACIÓN Santiago, 2015 [Escriba texto] TABLA DE CONTENIDO TRATAMIENTO DE LOS PUNTAJES... 4 1.1.

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 3 Nombre: Estadística descriptiva: medidas numéricas. Objetivo Al término de la sesión el estudiante calculará

Más detalles

La distribución del ingreso en la Ciudad de Buenos Aires. 4to. trimestre 2013

La distribución del ingreso en la Ciudad de Buenos Aires. 4to. trimestre 2013 La distribución del ingreso en la Ciudad de Buenos Aires. 4to. trimestre 2013 Informe de resultados 759 Septiembre de 2014 2014 - Año de las letras argentinas R.I. 9000-2482 759 R.I. 9000-2482 La distribución

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

Bioestadística para Reumatólogos

Bioestadística para Reumatólogos Bioestadística para Reumatólogos Xavier Barber Vallés Mabel Sánchez Barrioluengo Colaboradores - Umh Todos los datos que se muestran son ficticios Tablas 2x2: Riesgos Relativos y Odds ratio En cada sociedad

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles