7ª SESIÓN: Medidas de concentración

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "7ª SESIÓN: Medidas de concentración"

Transcripción

1 Curso ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr nombre y dos aelldos en la celda A. 5. Coar los sguentes datos: Producto Volumen de ventas en mllones de euros Número de emresas Lm. Inferor Lm. Sueror Calcular el índce de Gn ara las ventas del roducto. Los datos están ordenados ero de mayor a menor, en lugar de menor a mayor, or lo que el rmer aso será ordenarlos: 6.. Ordenar los datos de menor a mayor volumen de ventas. - Seleccone las cfras de volumen de ventas y del número de emresas, emezando or el límte nferor del ntervalo de ventas (or 2000) y termnando en el 30 (número de emresas). Son tres columnas de datos y queremos ordenar las tres juntas en funcón de los límtes nferores. - Seleccone del menú Datos la ocón Ordenar. - En Ordenar or, debe ndcar el códgo de la columna, "Lm. Inferor" y que ordene de manera Ascendente : S en lugar de Lm. Inferor aarece otra ndcacón, revse las ocones de S o No en El rango de datos tene fla de encabezamento, en la arte nferor de la ventana. S no es osble rectfcarlo aquí, cancele y revse la seleccón de datos realzada (s ndcase 2000, esta cfra la tomaría como título de la columna y no sería ordenada junto al resto). Una vez que todo sea correcto, ulse Acetar. 59

2 Práctcas de Estadístca con Excel Idoa Portlla - Unversdad de Navarra 6.2. Calcular, las frecuencas relatvas acumuladas (F.R.A.). Las F.R.A. odían obtenerse de dos formas (ver aartado 6 de la 4ª sesón). Recordamos a contnuacón ambas. Léalas y elja una ara sus cálculos: er. MÉTODO: - Calcule las F.R. como cocente entre las F.A. y el total de datos, multlcando or 00 ara obtener los datos en orcentaje. - Calcule la rmera F.R.A. escrbendo el sgno gual = y ulsando a la rmera F.R. - Calcule las F.R.A. restantes sumando a la F.R.A. anteror, la F.R. del ntervalo corresondente. 2º MÉTODO: - Calcule la rmera F.A.A. escrbendo el sgno gual = y ulsando a la rmera F.A. - Calcule las F.A.A. restantes sumando a la F.A.A. anteror la F.A. del ntervalo corresondente. - Calcule las F.R.A. como cocente entre las F.A.A. y el total de datos, multlcando or 00 ara obtener orcentajes Calcular q, las masas relatvas acumuladas (M.R.A.). - Calcule las marcas de clase, es decr, la suma del límte nferor y sueror del ntervalo, dvdda entre dos: MC = (Lm. Inferor + Lm. Sueror) / 2. - Calcule la masa de ventas multlcando cada valor de la varable (la marca de clase) or su F.A.: MC * F.A. - Calcule la masa total, es decr, la suma de la columna anteror. - Calcule q, las masas de ventas relatvas y acumuladas (M.R.A.). Puede segur dos rocedmentos, equvalentes a los ndcados en 6.2 ara las F.R.A. Lea ambos y elja uno, el msmo que ara calcular (ara que los resultados sean comarables): er. MÉTODO: - Calcule las masas relatvas (M.R.) como cocente entre cada masa y la total, multlcando or 00 ara obtener orcentajes. - Calcule la rmera masa relatva acumulada (M.R.A.) escrbendo el sgno gual = y ulsando a la rmera M.R. - Calcule las M.R.A. restantes sumando a la M.R.A. anteror, la M.R. del ntervalo corresondente. 2º MÉTODO: - Calcule la rmera masa acumulada (M.A.A.) escrbendo el sgno gual = y ulsando a la rmera masa (el rmer MC * F.A.). - Calcule las restantes masas acumuladas sumando a la M.A.A. anteror la masa del ntervalo corresondente. - Calcule las M.R.A. como cocente entre las M.A.A. y la total, multlcando or 00 ara obtener orcentajes Calcular el índce de Gn. Para calcular el índce de Gn ueden utlzarse tres fórmulas equvalentes: I G = n ( = n = q ) = n = A contnuacón se resentan los tres métodos, según la fórmula elegda. Calcule el índce medante las tres fórmulas obtenendo así el msmo resultado en tres celdas dstntas: n = n = q = n = n = q 60

3 Curso ª Sesón: Meddas de concentracón er. MÉTODO: - Calcule una nueva columna con las dferencas - q, menos la de los dos últmos Sume las dferencas - q (de la columna reva). - Sume las sn el últmo valor, el Índce de Gn: Dvda la suma de las dferencas -q entre el total anteror de la suma de las. 2º MÉTODO: - Sume las q sn el últmo valor, el Reste el total de las, sn el últmo valor (obtendo en el método anteror), y el total de q obtendo ahora. El resultado debe ser gual que el obtendo al sumar las dferencas - q. - Índce de Gn: Dvda la resta de los totales de y q sn los 00, entre la suma de sn el 00. 3er. MÉTODO: - Índce de Gn: Reste al valor el cocente entre la suma de q y la suma de sn los últmos valores (los 00). 7. Prearar los datos ara realzar la curva de Lorenz. La curva de Lorenz utlza los datos de y q. Vamos a coarlos en la oscón adecuada y añadr nformacón relevante ara oder realzar la curva. 7.. Coar los datos de q. Coe los datos de q en otro lugar de la hoja. Para ello: - Seleccone los números (todos, ncludo el 00). - Pulse Coar (menú Edcón ). - Seleccone una celda a artr de la cual quere egar los datos. - En el menú Edcón, vaya a Pegado esecal y marque la ocón de Valores en su ventana. S no lo hace así, Excel coará la fórmula, dando lugar a errores Coar los datos de. Coe los datos de a la derecha de los de q : - Seleccone los datos de (todos, ncludo el 00). - Pulse Coar (menú Edcón ). - Seleccone la celda a artr de la cual quere egar los datos, de tal manera que queden en la columna a la derecha de q y concdan ares de valores. - En el menú Edcón, vaya a Pegado esecal y marque la ocón de Valores en su ventana. Exlcacón: En una curva de Lorenz, q debe estar en el eje de abscsas (horzontal) y en el de ordenadas (vertcal). El gráfco que utlzaremos de Excel emlea los datos más a la zquerda ara el eje de abscsas (horzontal) y los de más a la derecha ara el de ordenadas (vertcal), or lo que q debe estar a la zquerda y a la derecha Añadr el valor cero ara el arranque del gráfco. Para que la curva de Lorenz arranque desde el unto (0,0) debemos añadr estos dos valores cero como rmera fla de datos. Por tanto, en las dos celdas encma de los rmeros datos de q y añada sendos ceros. Los datos quedarán como sgue: 6

4 Práctcas de Estadístca con Excel Idoa Portlla - Unversdad de Navarra q (MRA) (FRA) 0 0, ,5 0 47,5 28,75 72,5 47, Obtener la curva de Lorenz ara este roducto. 8.. Selecconar q y. Seleccone los valores de q y lstos ara ser utlzados en el gráfco Realzar el gráfco. Debe reetr los asos vstos en la 3ª ráctca, con las sguentes eculardades: Paso de 4: to de gráfco. De los tos de gráfcos, seleccone el gráfco de XY (Dsersón), el segundo, con untos y líneas. Paso 3 de 4: ocones de gráfco. - En Títulos cambe el título del gráfco or otro más convenente (ndcando el to de gráfco y el roducto de que se trata). - Ponga nombres a los dos ejes. - Qute la Leyenda (qute la marca en Mostrar leyenda ). 62

5 Curso ª Sesón: Meddas de concentracón 8.3. Correccones al gráfco. Ejes de 0 a 00: Los ejes deben tomar valores de 0 a 00 (no más). Para ello, sga los sguentes asos: - Haga doble clc sobre uno de los ejes. - En la ventana de Formato de ejes seleccone Escala. - Donde one Mínmo escrba 0 (s one un número dstnto) y donde one Máxmo, escrba Reta lo msmo con el otro eje. Además, s quere que ambos tengan guales marcas y valores, uede escrbr la msma undad en Undad mayor (0, 20 ) de manera que los cortes en ambos ejes sean guales: Gráfco cuadrado: La curva de Lorenz debe tener forma cuadrada ya que ambos ejes recogen orcentajes acumulados con valores de 0% a 00% y, or tanto, deberían ser guales (o lo más smlares osble). Para que así sea, uede otar or ajustar el tamaño de todo el cuadro del gráfco o el del roo gráfco, tras hacer un clc sobre él y selecconarlo. 9. Insertar texto en la hoja de cálculo ara resonder brevemente a las reguntas de teoría. Puede coarlas a contnuacón. Inserte el texto en la msma hoja de cálculo, tal y como se vo en las ráctcas anterores. 0. Imrmr en una sola hoja los resultados obtendos. Recuerde hacerlo desde Vsta relmnar y sn tener selecconado el gráfco. 63

6 Práctcas de Estadístca con Excel Idoa Portlla - Unversdad de Navarra EJERCICIO EXTRA: Coar los sguentes datos y calcular el índce de Gn ara las ventas de este segundo roducto. Producto 2 Volumen de ventas en mllones de euros Número de emresas Lm. Inferor Lm. Sueror Sga los msmos asos que ara el rmer roducto, aunque en este caso los datos ya están ordenados. Para aglzar los cálculos, elja uno de los métodos de cálculo ara las F.R.A., M.R.A. y el índce de Gn, aquel que mejor le resulte. 64

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Tema 7: MEDIDAS DE CONCENTRACIÓN

Tema 7: MEDIDAS DE CONCENTRACIÓN Introduccón a la Econometría. Conceto. Las meddas o índces de concentracón tenen como objetvo fundamental cuantfcar el grado de desgualdad en el rearto o dstrbucón de una magntud económca (rentas, negoco,

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

PID. Descripción y reglas heurísticas de Sintonización

PID. Descripción y reglas heurísticas de Sintonización Práctca 5 PID. Descrcón y reglas heurístcas de Sntonzacón 1. Introduccón El objetvo de esta ráctca es que el alumno se famlarce y rofundce en el conocmento de la estructura de control PID, rofusamente

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÓN

ESTADISTICA APLICADA A LA EDUCACIÓN UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA Deartamento de Economía Alcada ESCUELA UNVERSTARA DE ESTUDOS EMRESARALES DLOMATURA EN EMRESARALES ESTADÍSTCA Ejerccos Resueltos NÚMEROS ÍNDCES Curso 2006-2007 Deartamento de Economía Alcada Ejerccos Resueltos:

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL

EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA UIDIMESIOAL. Se realza un estudo en una cudad sobre la caacdad hotelera y se obtenen los sguentes resultados: Plazas L L ) [ + úmero de Hoteles n 0 0 0 0 0 0 60 60

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

BIOESTADISTICA ( ) Introducción a la regresión logística

BIOESTADISTICA ( ) Introducción a la regresión logística Deartamento de Estadístca Unversdad Carlos III de Madrd BIOESTADISTICA (55-0536) Introduccón a la regresón logístca. INTRODUCCIÓN La regresón logístca es un rocedmento cuanttatvo de gran utldad ara roblemas

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Análisis avanzado Bondad de ajuste Simulaciones

Análisis avanzado Bondad de ajuste Simulaciones Ejemlos Ejerccos Msceláneas Evaluacón Análss avanzado Bondad de ajuste Smulacones Bondad de ajuste. Intervalos de confanza. Muestras equeñas. Smulacones: método de Montecarlo. 3.1 Bondad del ajuste Volvendo

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

FÓRMULA PARA EL CÁLCULO DE LOS ÍNDICES DE PRECIOS ELEMENTALES EN LA ELABORACIÓN DE UN IPC

FÓRMULA PARA EL CÁLCULO DE LOS ÍNDICES DE PRECIOS ELEMENTALES EN LA ELABORACIÓN DE UN IPC FÓRMULA PARA EL CÁLCULO DE LOS ÍNDCES DE PRECOS ELEMENTALES EN LA ELABORACÓN DE UN PC RODRÍGUEZ FEJOÓ, Santago Deartamento de Métodos Cuanttatvos en E. y G. Unversdad de Las Palmas de Gran Canara correo-e:

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia GUÍA 5 Dego Lus Arstzábal R., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal de Colomba Roberto Fabán Retrepo A., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Tratamiento de datos experimentales. Teoría de errores

Tratamiento de datos experimentales. Teoría de errores Tratamento de datos expermentales. Teoría de errores. Apéndce II Tratamento de datos expermentales. Teoría de errores (Fuente: Práctcas de Laboratoro: Físca, Hernández et al., 005) El objetvo de la expermentacón

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN Introduccón a la estadístca, dstrbucones de frecuencas, gráfcos estadístcos, meddas de tendenca central, dspersón, poscón y forma, con ejemplos resueltos en Mcrosoft Excel JUAN CARLOS VERGARA SCHMALBACH

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos. ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

el blog de mate de aida CS I. Distribuciones de probabilidad. pág. 1

el blog de mate de aida CS I. Distribuciones de probabilidad. pág. 1 el blog de mate de ada CS I. Dstrbucones de robabldad. ág. EXPERIENTOS Y SUCESOS ALEATORIOS Eermento determnsta es aquel en que se uede redecr el resultado semre que se realce en las msmas condcones. (Ejemlo:

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Capítulo III Medidas de posición y de dispersión

Capítulo III Medidas de posición y de dispersión Capítulo III Meddas de poscón y de dspersón Introduccón Hasta ahora, para descrbr un conjunto de datos, se han empleado tablas y gráfcos. Estos son útles para dar rápdamente una vsón general del comportamento

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información. Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas

Más detalles

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Guatemala -(502) 2310 9494, El Salvador -(503) 2208 4102, Honduras -(504) 2516 1620 sales@cardigan.pro www.cardigantrading.com 1

Guatemala -(502) 2310 9494, El Salvador -(503) 2208 4102, Honduras -(504) 2516 1620 sales@cardigan.pro www.cardigantrading.com 1 sales@cardgan.pro www.cardgantradng.com 1 Temprecord Manual del usuaro Versón 5.21.x Este es el manual del usuaro para temprecord para software de Wndows y temperatura asocada y regstro de humedad. El

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

TEMA 5: SISTEMAS ARITMÉTICOS Y LÓGICOS.

TEMA 5: SISTEMAS ARITMÉTICOS Y LÓGICOS. TENOLOÍ DE OMUTDORES URSO 7/8 Inocente Sánchez udad TEM 5: SISTEMS RITMÉTIOS Y LÓIOS 5 Sumadores bnaros as todo se hace con sumas: sumas, restas, productos, oncepto de acarreo 5 Semsumador Half dder (H)

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO

EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO EL PODER DE MERCADO: EL MONOPOLIO Y EL MONOPSONIO El oder de mercado: el monoolo y el monosono. Introduccón. El eulbro de un monoolsta no dscrmnador 3. Pérdda de efcenca del monoolo 4. El monoolsta ue

Más detalles