Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A"

Transcripción

1 OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga lleva 100 g de cacao, 20 g de ata y 15 g de azúcar y se vede a 1 3 euros la uidad E u día, la pastelería sólo dispoe de 30 kg de cacao, 8 kg de ata y 10 5 kg de azúcar Sabiedo que vede todo lo que elabora, calcule cuátas trufas de cada tipo debe elaborarse ese día, para maimizar los igresos, y determie dichos igresos = Número de trufas dulces y = Número de trufas amargas Fució Objetivo F(,y) = y (Vede la trufa dulce a 1 y la trufa amarga a 1 3 ) Restriccioes: Trufa dulce Trufa amarga Catidad Cacao kg Nata kg Azúcar kg Cacao (hay 20 kg): trufa dulce 0 02 kg y trufa amarga 0 1 kg y 30 Nata (hay 8 kg): trufa dulce 0 02 kg y trufa amarga 0 02 kg y 8 Azúcar (hay 10 5 kg): trufa dulce 0 03 kg y trufa amarga kg y 10 5 Se elabora algua trufa dulce y algua trufa amarga 0 e y 0 Las desigualdades y 30; y 8; y 10 5; 0; y 0, las trasformamos e igualdades, y ya sus gráficas so rectas, y = 30; y = 8; y = 10 5; = 0; y = 0 Para que os sea más fácil dibujar las rectas (co dos valores es suficiete), despejamos las y y teemos y = ; y = ; y = ; = 0; y = 0 Represetamos gráficamete las rectas que verifica estas igualdades, y el recito coveo limitado por las iecuacioes, que será la regió factible; e el cual estará los bordes del recito delimitado por las iecuacioes dadas Calculamos los vértices del recito coveo, resolviedo las ecuacioes las rectas de dos e dos De = 0 e y = 0, teemos el puto de corte es A(0,0) De y = 0 e y = , teemos = 350, y el puto de corte es B(350,0) De = e y = , teemos = -+400, es decir = 300, y el puto de corte es C(300,100) De y = e y = ; teemos = -2/10+300, es decir = , por tato 1000 = 8, luego = 125 e y = 275, y el puto de corte es D(125,275) De = 0 e y = , teemos el puto de corte es E(0,300) 1

2 Vemos que el polígoo tiee por vértices los putos: A(0,0), B(350,0), C(300,100), D(125,275) y E(0,300) Calculemos el máimo de la fució F(,y) = + 1 3y e dicha regió El Teorema Fudametal de la Programació Lieal afirma que su máimo y míimo absoluto está e la regió acotada, y que estos etremos debe estar situados e algú vértice del recito, por lo que evaluamos F e los putos ateriores A(0,0), B(350,0), C(300,100), D(125,275) y E(0,300) E el caso de que coicida e dos vértices cosecutivos la solució es todo el segmeto que los ue F(0,0) = (0) + 1 3(0) =0; F(350,0) = (350) + 1 3(0) = 350; F(300,100) = (300) + 1 3(100) = 430; F(125,275) = (125) + 1 3(275) = 482 5; F(0,300) = (0) + 1 3(300) = 390; Teiedo e cueta lo aterior vemos que el máimo absoluto de la fució F e la regió es (el valor mayor e los vértices) y se alcaza e el vértice D(125,275), es decir el máimo igreso es de y se alcaza elaborado 125 trufas dulces y 275 trufas amargas EJERCICIO 2_A Calcule las derivadas de las siguietes fucioes (o es ecesario simplificar el resultado) : 3-1 (0 75 putos) f() = - (5 - ) (0 75 putos) g() = ( 2 1)L() c) (0 75 putos) h() = 2 5 d) (0 75 putos) i() = ( 3 6)( 2 + 1) 3 Calcule las derivadas de las siguietes fucioes (o es ecesario simplificar el resultado) : 3-1 f() = - (5 - ) g() = ( 2 1)L() c) h() = 2 5 d) i() = ( 3 6) ( 2 + 1) 3 Recordamos alguas derivadas y reglas de derivació Tambié la ecuació de la recta tagete / f() f '()g() - f()g'() ( f()+g()) = f ()+g (); = ; ((f() k ) = kf() k-1 f (); ( k ) = k k-1 ; (k) = 0; 2 g() (g()) (l(f()) = f'() f() ; (af() ) = a f() l( f () 3-1 f() = - (5 - ) 3 - (3-1) f '() = - 2(5 - )(5-2) = - 2(5 - )(5-2) g() = ( 2 1)L() g () = 2 L() + ( 2-1) 1 2 = 2 L() c) h() = 2 5 h () = 2 5 l(2) 5 = 5 l(2) 2 5 d) i() = ( 3 6) ( 2 + 1) 3 d) i () = (3 2 6) ( 2 + 1) 3 + ( 3 6) 3 ( 2 + 1) 2 (2) EJERCICIO 3_A Parte I Cosideramos el eperimeto aleatorio de lazar dos dados distitos y aotar el producto de sus putuacioes (1 puto) Cuál es la probabilidad de que dicho producto sea igual a 6? (1 puto) Si sabemos que el producto ha sido 4, cuál es la probabilidad de que haya salido los dos dados co la misma putuació? Cosideramos el eperimeto aleatorio de lazar dos dados distitos y aotar el producto de sus putuacioes Cuál es la probabilidad de que dicho producto sea igual a 6? Sea i - j el suceso salir e u dado el º i y e el otro el º j 2

3 Sabemos que al lazar u dos dados distitos los resultados posibles so 66 = 36 Para que el producto sea 6, los casos posibles so: 1-6, 6 1, 2 3 y 3 2 Nº de casos favorables Sabemos que p(a) = Nº de casos posibles Me pide p(el producto de los os Casos favorables sea 6 ) = = 4/36 = 1/9 Casos posibles Si sabemos que el producto ha sido 4, cuál es la probabilidad de que haya salido los dos dados co la misma putuació? Para que el producto sea 4, los casos posibles so: 1-4, 4 1 y 2 2 Me pide p(el producto ha sido 4, igual putuació ) = Casos favorables Casos posibles = 1/3 EJERCICIO 3_A Parte II Dada la població de elemetos {3, 4, 5, 8}, se pretede seleccioar ua muestra de tamaño 2, mediate muestreo aleatorio co reemplazamieto (0 5 putos) Escriba todas las muestras posibles (0 75 putos) Calcule la variaza de la població c) (0 75 putos) Calcule la variaza de las medias muestrales Dada la població de elemetos {3, 4, 5, 8}, se pretede seleccioar ua muestra de tamaño 2, mediate muestreo aleatorio co reemplazamieto Escriba todas las muestras posibles Calcule la variaza de la població Calcule la variaza de las medias muestrales (, ( y (c) Població {3, 4, 5, 8} Muestras posibles = {3-3, 3-4, 3-5, 3-8; 4-3, 4-4, 4-5, 4-8; 5-3, 5-4, 5-5, 5-8; 8-3, 8-4, 8-5, 8-8} Hay 16 muestras de tamaño = 2 Media de la població = µ = ( )/4 = 5 Variaza de la població = σ 2 = Σ(elemetos - µ) 2 /4 = (1/4) [(3-5) 2 + (4-5) 2 + (5-5) 2 + (8-5) 2 ] = = (1/4) ( ) = 14/4 = 3 5 Sabemos que la media poblacioal µ es igual a la media muestral µ, y que la desviació típica muestral σ coicide co la desviació típica poblacioal dividido por la raíz cuadrada del tamaño de la muestra, es σ decir σ = Por tato la variazas verifica 2 σx = σ 2 / = 3 5/2 = 1 75, es decir la variaza de las muestras es σ 2 X =1 75 EJERCICIO 1_B OPCIÓN B (3 putos) De ua matriz A se sabe que su seguda fila es (-1 2) y su seguda columa es Halle los restates elemetos de A sabiedo que A= De ua matriz A se sabe que su seguda fila es (-1 2) y su seguda columa es

4 Halle los restates elemetos de A sabiedo que A = Sabemos que para multiplicar matrices el º de columas de la 1ª debe de coicidir co el º de filas de la a b 2ª, por tato A tiee que ser de orde 32, es decir A = c d e f a 1 Como la seguda fila es (-1 2) y su seguda columa es teemos A = -1 2 e Como A = a , teemos -1 2 = , es decir a+e = 0-1 e -3 2a+e Igualado miembro a miembro teemos: a+e-1 = a+e = 0 Restado teemos a + 1 = 0, de dode a = -1 y e = 2, y la matriz pedida es A = EJERCICIO 2_B De ua fució f se sabe que su fució derivada es f () = (1 5 putos) Estudie la mootoía y la curvatura de f (1 5 putos) Sabiedo que la gráfica de f pasa por (0,1), calcule la ecuació de la recta tagete e dicho puto De ua fució f se sabe que su fució derivada es f () = Estudie la mootoía y la curvatura de f Sabemos que la mootoía es el estudio de la primera derivada f () = De f () = = 0 = = 0, de dode las solucioes so = 1 y = 2, que será los posibles etremos relativos Como f (0) = 3(0) 2 9(0) + 6 = 6 > 0, f es estrictamete creciete ( ) e (-,1) Como f (1 5) = 3(1 5) 2 9(1 5) + 6 = < 0, f es estrictamete decreciete ( ) e (1,2) Como f (3) = 3(3) 2 9(3) + 6 = 6 > 0, f es estrictamete creciete ( ) e (2,+ ) Por defiició e = 1 hay u máimo relativo Por defiició e = 2 hay u míimo relativo Sabemos que la curvatura es el estudio de la seguda derivada f () f () = , f () = 6 9 De f () = 0, teemos 6-9 = 0, luego = 3/2 = 1 5, que es u posible puto de ifleió Como f (0) = 6(0) - 9 = - 9 < 0, f() es cócava ( ) e (-,1 5) Como f (2) = 6(2) - 9 = 3 > 0, f() es covea ( ) e (1 5,+ ) Por defiició = 1 5 es u puto de ifleió Sabiedo que la gráfica de f pasa por (0,1), calcule la ecuació de la recta tagete e dicho puto La recta tagete e = 0 es y f(0) = f (0) ( (0)) Me dice que f(0) = 1 (pasa por el puto (0,1) ) De f () = teemos f (0) = 6, y la recta tagete pedida es y 1 = 6 (), es decir y = EJERCICIO 3_B Parte I 4

5 E ua ciudad, el 40% de sus habitates lee el diario A, el 25% lee el diario B y el 50% lee al meos uo de los dos diarios (0 5 putos) Los sucesos leer el diario A y leer el diario B so idepedietes? (0 5 putos) Etre los que lee el diario A, qué porcetaje lee tambié el diario B? c) (0 5 putos) Etre los que lee, al meos, u diario qué porcetaje lee los dos? d) (0 5 putos) Etre los que o lee el diario A, qué porcetaje lee el diario B? E ua ciudad, el 40% de sus habitates lee el diario A, el 25% lee el diario B y el 50% lee al meos uo de los dos diarios Los sucesos leer el diario A y leer el diario B so idepedietes? Sea los sucesos A y B los sucesos leer el diario A y leer el diario B respectivamete El problema os dice que p(a) = 40% = 0 4, p(b) = 25% = 0 25 y p(a ó B) = p(a B) = 50% = 0 5 ( ) Sabemos que p(a B) = p(a) + p(b) - p(a B); p(a/b) = p A B ; p(a y ob) = p(a B C ) = p(a) - p(a B); A p(b) y B so idepedietes si p(a B) = p(a) p(b); p(a C B C ) = {Ley de Morga} = p(a B) C = {suceso cotrario} = 1 - p(a B) Me pide ver si A y B so idepedietes, es decir si p(a B) = p(a) p(b) De p(a B) = p(a) + p(b) - p(a B) teemos 0 5 = p(a B), luego p(a B) = 0 15 Como p(a B) = 0 15 p(a) p(b) = = 0 1, los sucesos A y B o so idepedietes Etre los que lee el diario A, qué porcetaje lee tambié el diario B? p(a B) Me pide e porcetaje p(b/a) = = 0 15/ 0 4 = = 37 5 % p(a) c) Etre los que lee, al meos, u diario qué porcetaje lee los dos? Mirado la figura (diagrama de Ve) se observa que: (A B) (A B) = (A B) p((a B) (A B)) p(a B) Me pide e porcetaje p(a B/A B) = = p(a B) p(a B) d) Etre los que o lee el diario A, qué porcetaje lee el diario B? = 0 15/0 5 = 0 3 = 30 % Me pide e porcetaje p(b/a C ) = = % C p(b A ) C p(a ) = p(b) - p(a B) 1 - p(a) = ( /(1-0 4) = 1/6 = = EJERCICIO 3_B Parte II El úmero de horas semaales que los estudiates de Bachillerato de ua ciudad dedica al deporte se distribuye segú ua ley Normal de media 8 y variaza 7 29 (0 5 putos) Para muestras de tamaño 36, idique cuál es la distribució de las medias muestrales (1 5 putos) Cuál es la probabilidad de que la media de ua muestra de tamaño 36 esté compredida etre 7 82 y 8 36 horas? 5

6 σ Sabemos que para la media poblacioal μ, el estimador MEDIA MUESTRAL X, sigue ua N(μ, ), y σ σ geeralmete escribimos X N(µ, ) o X N(µ, ) Trabajamos e ua ormal N(0,1), para lo cual teemos que tipificar la variable e la distribució muestral de medias, es decir Z = X µ σ / El úmero de horas semaales que los estudiates de Bachillerato de ua ciudad dedica al deporte se distribuye segú ua ley Normal de media 8 y variaza 7 29 Para muestras de tamaño 36, idique cuál es la distribució de las medias muestrales Datos del problema: Distribució de la població N(µ,σ) = N(8, σ); µ = 8; σ 2 = 7 29; σ = 2 7; = 36 σ 2'7 La distribució de las medias muestrales es X N(µ, ) = N(8, ) = N(8, 0 45) 36 Cuál es la probabilidad de que la media de ua muestra de tamaño 36 esté compredida etre 7 82 y 8 36 horas? Me está pidiedo la probabilidad p(7 82 X 8 36) Luego p(7 82 X 8 36) = {tipificamos} = p( 7'82-8 Z 8'36-8 ) = p(- 0 4 Z 0 8) = 0'45 0'45 = p(z 0 8) - p(z - 0 4) = p(z 0 8) - (1 - p(z 0 4)) = {Mirado e la tabla} = ( ) = =

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

OPCIÓN A EJERCICIO 1_A 1 0 2

OPCIÓN A EJERCICIO 1_A 1 0 2 IES Fco Ayala de Graada Sobrates de 007 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 0 - Sea las matrices A, B - 1 0 5 (1 5 putos) Calcule B.B t - A.A t (1 5 putos) Halle la matriz

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 006 (Modelo 1 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua impreta local edita periódicos y revistas. Para cada periódico ecesita u cartucho de

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 005 (Modelo 1) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( 5 putos) Resuelva el siguiete sistema y clasifíquelo atediedo al úmero de solucioes: x + y + z = 0 x +

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2015 MODELO 3 OPCIÓN A EJERCICIO 1 (A) 8-4 1 2 Sea las matrices A = -1 2, B = 1 2 2-1 -1 2, C = 12 8. -8 4 (0 5 putos) Calcule A 2. (1 7 putos) Resuelva

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fc Ayala de Graada Sbrates de 004 (Mdel 6) Slucies Germá-Jesús Rubi Lua OPCIÓN A EJERCICIO 1_A (1 put) Dibuje la regió del pla defiida pr las siguietes iecuacies: x 3y -13; x + 3y 17, x + y 11; y 0.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO IES Fco Ayala de Graada Juio de 016 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 016 MODELO OPCIÓN A EJERCICIO 1 (A) Las filas de la matriz P idica los respectivos

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Hacia la universidad Probabilidad y estadística

Hacia la universidad Probabilidad y estadística Hacia la uiversidad Probabilidad y estadística OPCIÓN. Se laza u dado cargado cuyas caras co úmeros múltiplos de tres tiee triple probabilidad de salir que cada ua de las otras. Halla la probabilidad de

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

IES Fco Ayala de Granada Junio de 2015 (Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2015 MODELO 4

IES Fco Ayala de Granada Junio de 2015 (Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2015 MODELO 4 IES Fco Ayala de Graada Juio de 015 (Modelo 4) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 015 MODELO 4 OPCIÓN A EJERCICIO 1 (A) ( 5 putos) Co motivo de su iauguració,

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A IES Fco Ayala de Graada Sobrates de 01 (Septiembre Modelo ) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 01 (COMÚN MODELO 3) OPCIÓN A EJERCICIO 1_A ( 5 putos) U empresario

Más detalles

IES Fco Ayala de Granada Modelo 6 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 6 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 2015 OPCIÓN A SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 015 OPCIÓN A EJERCICIO 1 (A) 1 (1 5 putos) Resuelva la ecuació matricial 1 X + 1-1 0 = I. 0 1 a b (1 puto) Dadas las matrices M = y A =, calcule los

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

IES Fco Ayala de Granada Junio de 2011 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 011 (COMÚN MODELO) OPCIÓN A EJERCICIO 1_A -5 Sea las matrices A = 1-3, B = 3-1 0 1 1, C = 1 3-1 5 3. a) (1 puto) Calcule A B.C t. b) (1 5 putos) Resuelva la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles