Máster en comunicaciones. Clase 2. Modelos predictores.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Máster en comunicaciones. Clase 2. Modelos predictores."

Transcripción

1 Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de interés en un problema real. Además de las clásicas herramientas descriptivas que permiten ordenar, visualizar y resumir los datos, se plantea un modelo matemático que los datos permiten validar en el sentido de que si el comportamiento de los datos es coherente con la información que proporciona el modelo, este modelo se considerará adecuado con fines explicativos (tratan de comprender el funcionamiento del sistema en estudio) o predictores (tratan de reducir la incertidumbre que genera el comportamiento futuro del sistema adelantando, con un error, las ocurrencias futuras). El planteamiento anterior no deja de tener algunos problemas como la sobreexplotación de los datos ya que son utilizados tanto para estimar los parámetros del modelo como para validarlo, lo cual genera un sesgo que puede ser corregido utilizando distintos datos para la estimación y para la validación. Esto no es factible en cualquier tipo de estudios, especialmente en el campo de las ciencias sociales, pero sí en el campo de la ingeniería. En el tratamiento de series temporales el problema de la sobreexplotación de los datos juega un papel importante, mayor que en otras técnicas estadísticas. La razón estriba en que los modelos de series temporales son utilizados para la predicción por tanto aparecen, además de los errores de ajuste del modelo, los errores de predicción. Estos errores preferiblemente se obtienen con datos que no han sido utilizados en el ajuste del modelo puesto que, en otro caso, se adultera la información que proporcionan. Esta clase se centrará en distinguir la naturaleza de los distintos tipos de errores en la modelización con series temporales. Posteriormente, se presentarán medidas para discriminar entre las distintas técnicas de predicción basadas en series temporales. 2. Notación En este tema supondremos que tenemos una realización de tamaño N de una serie temporal. En concreto, disponemos de N datos que denotaremos {Y 1, Y 2,..., Y N } y que se utilizarán a efectos de ajuste del modelo. 1

2 Por otra parte, el modelo puede ser utilizado para predecir valores futuros de la serie en un horizonte de M unidades de tiempo tras el instante N, estas predicciones las denotaremos Ŷ N (M), donde implícitamente se indica que la predicción se ha construido a partir de un modelo ajustado con una realización de tamaño N de la serie en estudio. 3. Validación del ajuste: ruido blanco Para facilitar los contenidos de este punto, supondremos que nuestra técnica de predicción se basa en un modelo estadístico. Esto significa que cada valor de la serie se puede escribir: Y t = P t + ε t donde P t representa la parte determinista [o sistemática] y ε t la perturbación aleatoria, donde {ε t } es un ruido blanco. Se denomina ruido blanco gaussiano a una sucesión de variables aleatorias {ε t } incorreladas, con media cero y varianza constante que se distribuyen normalmente. Una sucesión de variables aleatorias que satisfaga las condiciones anteriores se denomina ruido blanco, más formalmente {ε t } es un ruido blanco cuando: 1. E[{ε t }] = 0, para cada t. 2. E[ε t ε t ] = 0, para cada t, t. 3. E[ε 2 t ] = σ 2, para cada t. 4. ε t N(0, σ 2 ), para cada t. También se denomina perturbación y en el campo de la ingeniería de telecomunicación es el ruido ideal en el sentido de que los ruidos de transmisión son inevitables y un ruido blanco permite que el sistema proporciones señales buenas. Las cuatro condiciones anteriores son, en general, las hipótesis básicas para validar un modelo de ajuste con series temporales. Observemos que el correlograma teórico de una serie que es ruido blanco está en blanco. Puesto que las variables que constituyen un ruido blanco son incorreladas entre sí. Desde le dominio de la frecuencia, Observa que dada una serie de perturbaciones podemos decidir si forman un ruido blanco si su correlograma muestral no sugiere lo contrario, esto es, si el correlograma muestral no 2

3 tiene barras que destaquen mucho. También se han desarrollado contrastes que son utilizados al efecto. Contraste de ruido blanco A partir de una realización de un proceso estocástico podemos determinar si es o no es un ruido blanco. Para ello utilizamos el contraste de Box-Ljung que consiste en contrastar si, conjuntamente, los k primeros coeficientes de autocorrelación son nulos. En esencia se plantea: H 0 : ρ 1 = ρ 2 = = ρ k = 0, H 1 : al menos uno no es nulo. (1) El estadístico de contraste, Q, se distribuye como una χ 2 con k grados de libertad: Q = N(N + 2) M h=1 1 N h r2 h Si este valor supera un nivel crítico (es un contraste de una cola), entonces no hay evidencia para aceptar H 0 y no consideraremos la hipótesis de ruido blanco. 4. Los errores en las técnicas de predicción Observemos que ε t es una variable aleatoria para cada t y se denomina muchas veces error del modelo, pero no descansa en él la precisión de una técnica de predicción, sino la validez teórica del modelo estadístico, puesto que las propiedades de ruido blanco recogen la idea de buen modelo, pero puede haber varios buenos modelos entre los que habrá que escoger el de mejor capacidad predictora. Es este último aspecto el que centra este apartado. Por otra parte, habrá que utilizar una técnica de ajuste para obtener los parámetros que determinan P t, por lo que finalmente tendremos ˆP t+m, que es el valor utilizado para obtener el pronóstico del valor de la serie en el instante t + m, Ŷt(t + m). La precisión de un método de predicción es un problema complicado. Tengamos en cuenta que estamos tratando de medir la aproximación a valores futuros desconocidos. Podemos seguir distintos criterios para seleccionar una técnica, en cualquier caso, el criterio escogido es determinante. Es imposible dar el mejorçriterio, nuestro objetivo es presentar en este punto los distintos factores que intervienen en la construcción de un criterio. El hecho de conocerlos nos permitirá defender nuestras predicciones de modo razonado. 3

4 A la hora de predecir podemos partir de dos planteamientos: 1.- Buscar un método de predicción que proporcione una serie ajustada lo más parecida posible a la serie tomada como muestra. 2.- Buscar un método de predicción que proporcione pronósticos que se aproximen lo mejor posible a los futuros valores que tomará la serie en estudio. Estos dos planteamientos pueden dar lugar a idénticas conclusiones, esto es, el método que mejor se ajusta a la serie es, a su vez, el que proporciona los pronósticos más próximos a los valores futuros desconocidos. Esto sólo puede sustentarse teóricamente en el caso de que se suponga que la serie en el futuro no tendrá alteraciones importantes, luego su comportamiento será similar al seguido en el pasado. Esta estabilidad en la serie lleva a la asunción de estacionariedad en la serie. Pero, como veremos, no tiene por qué ser así incluso si hay estacionariedad en la serie. En efecto, debemos tener en cuenta otro problema que consiste en decidir entre dos o más series cuál se aproxima más a una tomada como referencia. Cuando tengamos decidido el criterio, entonces podremos hablar de la mejor aproximación de modo preciso, pero siempre indicando el criterio bajo el cual hemos llegado a la selección del método. Es muy importante tener claro cuál es el planteamiento adoptado en un trabajo práctico, porque es en función del uso que estemos dando a la técnica de predicción que entenderemos de distinta manera el error y, por tanto, la precisión de una técnica de predicción. Observa el siguiente esquema: 4

5 Figura 1: errores de ajuste y de predicción En la esquema superior de la figura 1 el error se corresponde con los residuos. También se denominan errores de predicción con paso 1, puesto que resultan de restar a cada observación la predicción obtenida utilizando la información de la serie hasta el instante anterior. Son estos los errores que se utilizarán cuando el criterio de selección se base en la calidad del ajuste. En el esquema inferior de la figura 1, los errores de predicción son variables aleatorias, puesto que resultan de restar un valor no observado (variable aleatoria) con la correspondiente predicción obtenida utilizando la información de la serie hasta el último instante observado, N. Ahora bien, en muchos casos se reservan los h últimos datos de la serie y no son utilizados para realizar el ajuste del modelo. Posteriormente se calculan los errores de predicción restando a cada dato reservado la predicción que proporciona el modelo. Estos errores son utilizados para medir la capacidad de predicción del método y se denominan errores fuera de la muestra (out of sample). Una vez que hemos calculado los errores con ambos criterios, debemos obtener un error global que permita establecer un orden de prelación entre las técnicas utilizadas. De nuevo 5

6 nos encontramos que existe una gran variedad de medidas para obtener el error global (bien sea de ajuste o de predicción). En la figura 2 se presentan las que destacamos en este curso, donde el error e t puede ser el error de ajuste (residuo) o de predicción, según que la finalidad del estudio sea explicativa o predictora. Figura 2: medidas de error Existen otros criterios para valorar la calidad del ajuste, mucho más elaborados que los presentados en el cuadro anterior, pero que no permiten su generalización para valorar la capacidad predictora del modelo. Las medidas presentadas en la primera fila del cuadro dependen de las unidades de medida, por lo que no son útiles para comparar la precisión de un método cuando es utilizado con series de distinta naturaleza o con una misma serie en diferentes intervalos de tiempo. La medida MAPE es un error relativo, cada sumando del numerador representa el tanto por uno de desviación del pronóstico respecto al verdadero valor. Finalmente, la U-Theil compara el pronóstico realizado con el que realizaría el método ingenuo. Cuando toma valores próximos a 1, el método utilizado no difiere mucho del ingenuo, si es mayor que uno la técnica utilizada es peor que el método ingenuo y si es menor que uno, la técnica utilizada es mejor que el método ingenuo. 5. Ejercicios 1.- Ejercicio modelo: Dada una serie temporal pedir: 6

7 a) Construir la predicción ingenua, medias móviles más adecuadas, algún método algorítmico. b) Ajuste ARIMA c) Predicción d) Selección de modelos. 7

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Mínimos Cuadrados Generalizados

Mínimos Cuadrados Generalizados Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Econometría dinámica y financiera

Econometría dinámica y financiera Econometría dinámica y financiera Introducción a la econometría financiera. Modelos ARCH Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Introducción Los modelos que hemos visto son lineales

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Metodología Box-Jenkins Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es un resumen/modificación de la documentación elaborada

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

Curso de Predicción Económica y Empresarial Edición 2004

Curso de Predicción Económica y Empresarial  Edición 2004 Curso de Predicción Económica y Empresarial www.uam.es/predysim Edición 2004 UNIDAD 3: MODELOS ARIMA La identificación del modelo a partir de la fac y facp Tal y como se ha señalado, para identificar el

Más detalles

Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM)

Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM) Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM) Rosa María Domínguez Gijón Resumen este proyecto son el IPC y la acción de América

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Caso particular: Contraste de homocedasticidad

Caso particular: Contraste de homocedasticidad 36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Ejercicios resueltos

Ejercicios resueltos UNIDAD TEMÁTICA 7 CONTRASTE DE HIPÓTESIS ENUNCIADO 1 Se ha realizado una encuesta en una población mediante una muestra de 200 personas resultando 72 fumadores. (a Estima la proporción de fumadores así

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Pronóstico. Pronósticos. Factores Controlables. Porqué? Objetivo. Factores Incontrolables

Pronóstico. Pronósticos. Factores Controlables. Porqué? Objetivo. Factores Incontrolables 2 Pronóstico Pronósticos Es una estimación cuantitativa o cualitativa de uno o varios factores (variables) que conforman un evento futuro, con base en información actual o del pasado Administración de

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Comparación de dos métodos de aprendizaje sobre el mismo problema

Comparación de dos métodos de aprendizaje sobre el mismo problema Comparación de dos métodos de aprendizaje sobre el mismo problema Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Motivación 2.

Más detalles

07 Estimación puntual e introducción a la estadística inferencial

07 Estimación puntual e introducción a la estadística inferencial 07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Guía breve de análisis de series temporales unidimensionales con Gretl

Guía breve de análisis de series temporales unidimensionales con Gretl Guía breve de análisis de series temporales unidimensionales con Gretl 1. Pasos a seguir 1. Representación de la serie temporal (Variable Gráfico de series temporales). 2. Serie temporal no estacionaria

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

1) Características del diseño en un estudio de cohortes.

1) Características del diseño en un estudio de cohortes. Departamento de Estadística Universidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de cohortes CONCEPTOS CLAVE 1) Características del diseño en un estudio de cohortes. ) Elección del tamaño

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para VII. Pruebas de Hipótesis VII. Concepto de contraste de hipótesis Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Técnicas de Predicción Solución Examen Final

Técnicas de Predicción Solución Examen Final Técnicas de Predicción Solución Examen Final Administración y Dirección de Empresas 23 de Junio, 2008 Prof. Antoni Espasa Secciones 3h Nota: Todas las respuestas deben ser adecuadamente razonadas. Respuestas

Más detalles

Utilización de la MUESTRA TESTIGO en la medida del impacto de los cambios en la EPA en el primer trimestre de 2005.

Utilización de la MUESTRA TESTIGO en la medida del impacto de los cambios en la EPA en el primer trimestre de 2005. Utilización de la MUESTRA TESTIGO en la medida del impacto de los cambios en la en el primer trimestre de 2005. 1. Introducción. El objetivo de la MUESTRA TESTIGO es proporcionar una medida del impacto

Más detalles

Clase 3. Procesos estocásticos en Teoría de la señal.

Clase 3. Procesos estocásticos en Teoría de la señal. 1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................

Más detalles

Pronósticos Automáticos

Pronósticos Automáticos Pronósticos Automáticos Resumen El procedimiento de Pronósticos Automáticos esta diseñado para pronosticar valores futuros en datos de una serie de tiempo. Una serie de tiempo consiste en un conjunto de

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Metodología de la Investigación: Validez y Confiabilidad. Prof. Reinaldo Mayol Arnao

Metodología de la Investigación: Validez y Confiabilidad. Prof. Reinaldo Mayol Arnao Metodología de la Investigación: Validez y Confiabilidad Prof. Reinaldo Mayol Arnao Validez en varios momentos En esta presentación hablaremos sobre la medición de la validez en dos pasos críticos de la

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Análisis descriptivo con SPSS. Favio Murillo García

Análisis descriptivo con SPSS. Favio Murillo García Análisis descriptivo con SPSS Favio Murillo García Tablas de contingencia Cuando se trabaja con variables categóricas, los datos suelen organizarse en tablas de doble entrada en las que cada entrada representa

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Tema 7. Contrastes de Hipótesis

Tema 7. Contrastes de Hipótesis 7.1. Conceptos básicos Tema 7. Contrastes de Hipótesis Uno de los problemas comunes en inferencia consiste en contrastar una hipótesis estadística. Ejemplo: El fabricante de un determinado tipo de piezas

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES 1. Puntuaciones diferenciales y puntuaciones típicas 2. La curva normal 3. Cálculo de áreas bajo la curva normal 3.1. Caso 1: Cálculo del número

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado

Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado Estimación de la evolución de proyectos en el ámbito de la producción industrial mediante la parametrización de la curva S del coste acumulado Contenido Qué vamos a ver? Introducción Antecedentes Objetivos

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Estadísticas y distribuciones de muestreo

Estadísticas y distribuciones de muestreo Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

CORRELACION Y REGRESION

CORRELACION Y REGRESION CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Modelos multivariantes estacionarios: VAR(p). La dependencia temporal. La causalidad en el sentido de Granger. La estimación de los modelos VAR. Profesora:

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Séptima Entrega. New Workfile Daily (5 days week) 1:1:1991 a 2:16:1998. File Import Read Text Lotus Excel

Séptima Entrega. New Workfile Daily (5 days week) 1:1:1991 a 2:16:1998. File Import Read Text Lotus Excel Prácticas de la asignatura Series Temporales Séptima Entrega 1 Modelos de heterocedasticidad condicional A partir de la decada de los 80, muchos investigadores se han dedicado al estudio de modelos no

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles