INECUACIONES Y VALOR ABSOLUTO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INECUACIONES Y VALOR ABSOLUTO"

Transcripción

1 INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f. x 1 = x g. x + 3 = 1 x. Encuentre el conjunto solución de cada una de las siguientes inecuaciones: 7x a. < x b. c. x 3x + 1 > 0 x x x < x x Encuentre el conjunto solución de cada una de las siguientes inecuaciones: a. x < 3 b. x > 3 c. x 1 d. x + < x + 3 e. f. x x 1 x + x 5 x 1 g. 1 x < x h. 1 x > x 1 i. j. k. l. 1 3 x x 1 7 x < 3 x + 1 x 0 x + 8 x x 3 x

2 INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: de 3 m. x 3 + x 1 x x n. o. p. 4x 4x 1 6x 5 x + 3 x 3 > 3 < 1 x 1 0 0x 5x + 1 q. < x + 3 < 4 r. 3 > x x s. (x + )x + + 3x 0 t. 3x < x Encuentre el conjunto solución de cada una de las siguientes inecuaciones: a. x 3x 5 < x + 6 b. x + 1 x c. 4 x + x d. x + 1 > x + x 9 e. x 1 x x 1 f. (x )(x 6) + x 4 g. x x x + 1 x h. (x + )x + + 3x 0 i. x + 1 > x + x 9 j. (x + 1)(x 1) x 3 0 k. (x + )x + x 4 l. 4 x x 1 x 3 1 x m. x + 1 x x 1

3 INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 3 de 3 R E S P U E S T A S 1.a. 1/3, 3 b. ( )/, ( 3 13)/ c. 6, 1 d. 1, 3 e. 9, 3 f. ( 1 + 5)/, (1 + 5)/ g. No tiene solución.a. [ 1,4) b. (,0) (1, ) c. (, 5) (0, ) 3.a. (-1,5) b. (-,-1] [5, ) c. [- 3, 3] d. (-5/, ) e. (-,-1] [1-,1+ ] [3, ) f. [-1+ 7, ] g. (1/3, ) h. R-{1} i. R j. (-,-5) (1, ) k. R-{-8} l. R-{0} m. (-,1] [1, 3/] [3/, ) n. (-3/,1/) (1,) o. ((1-37)/6,0) (0,(1+ 37)/6) p. (-,-1] q. (-1,1) (5,7) r. (-,-4) (4/5, ) s. (-,(-7+ 35)/) t. (1/4,3/) 4.a. (-11/3,1/) (1, ) b. (-,-1/] c. d. (3,6) e. [0, ] f. [,6] g. [-1/,-1/5] [1/3, ) h. (-,(-7+ 33)/) i. (3,6) j. [1-,(6-15)/3] [1+,3) (3,(6+ 15)/3]

4 PLANO CARTESIANO Y LÍNEA RECTA U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Un cuadrado de lado igual a a, tiene su centro en el origen y sus lados son paralelos a los ejes coordenados. Halle las coordenadas de sus cuatro vértices. Rta: (a,a); (-a,a); (-a,-a); (a,-a). Los vértices de un triángulo rectángulo son los puntos (1,-), (4,-), (4,). Determine las longitudes de los catetos y después calcule el área del triángulo y la longitud de la hipotenusa. Rta: 6, 5 3. Halle la distancia del origen al punto (a,b). Rta: a + b 4. Dos de los vértices de un triángulo equilátero son los puntos (-1,1) y (3,1). Halle las coordenadas del tércer vértice. Rta:(1,1 + 3); (1,1 3) 5. Halle el perímetro del cuadrilátero cuyos vértices son (-3,-1), (0,3), (3,4), (4,-1). Rta: Demuestre que los puntos (-,-1), (,), (5,-), son los vértices de un triángulo isósceles. 7. Demuestre que los puntos (,-), (-8,4), (5,3) son los vértices de un triángulo rectángulo y halle su área. Rta: Demuestre que los tres puntos (1,1), (-3,-), (,-1) son colineales, es decir, que están sobre una misma línea recta. 9. Demuestre que los puntos (0,1), (3,5), (7,), (4,-) son los vértices de un cuadrado. 10. Uno de los extremos de un segmento de longitud 5 es el punto (3,-). Si la abscisa del otro extremo es 6, halle su ordenada. Rta:, Uno de los puntos extremos de un segmento es el punto (7,8) y su punto medio es (4,3). Halle el otro extremo. Rta: (1,-) 1. Una recta pasa por los dos puntos (-,-3), (4,1). Si un punto de abscisa 10 pertenece a la recta, cuál es su ordenada? Rta: Demuestre que los puntos (1,6), (9,-), (-5,-4) son los vértices de un triángulo. 14. Demuestre que el punto (1,-) es colineal con los puntos (-5,1) y (7,-5) y que equidista de ellos.

5 PLANO CARTESIANO Y LÍNEA RECTA U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: de Halle la ecuación de la recta que pasa por el punto A(1,5) y tiene de pendiente. Rta: x-y+3=0 16. Halle la ecuación de la recta que pasa por el punto A(-6,-3) y tiene un ángulo de inclinación de 45. Rta: x-y+3=0 17. Halle la ecuación de la recta cuya pendiente es 3 y cuya intersección con el eje Y es. Rta: 3x+y+=0 18. Los vértices de un cuadrilátero son A(0,0), B(,4), C(6,7), D(8,0). Halle las ecuaciones de sus lados. Rta: x-y=0, 3x-4y+10=0, 7x+y-56=0, y=0 19. Una recta pasa por el punto A(7,8) y es paralela a la recta que pasa por C(-,) y D(3,-4). Halle su ecuación. Rta: 6x+5y-8=0 0. Halle la ecuación de la recta cuya pendiente es 4 y que pasa por el punto de intersección de las rectas x+y-8=0 y 3x-y+9=0. Rta: 4x+y-10=0 1. Dado el triángulo cuyos vértices son A(-,1), B(4,7) y C(6,-3): a. Halle las ecuaciones de sus lados. Rta: x-y+3=0, 5x+y-7=0, x+y=0 b. Halle la ecuación de la recta que pasa por el vértice A y es paralela al lado opuesto BC. Rta: 5x+y+9=0. Las coordenadas de un punto P son (,6) y la ecuación de una recta l es 4x+3y=1. Halle la distancia del punto P a la recta l. Rta: 14/5 3. El punto P de ordenada 10 está sobre la recta cuya pendiente es 3 y que pasa por el punto A(7,-). Calcule la abscisa de P. Rta: Determine el valor de los coeficientes A y B de la ecuación Ax-By+4=0 de una recta, si debe pasar por los puntos C(-3,1) y D(1,6). Rta: A=0/19, B=16/19 5. Halle la ecuación de la recta, que es perpendicular a la recta 3x-4y+11=0 y pasa por el punto (-1,-3). Rta: 4x+3y+13=0 6. Halle el valor de k para que la recta kx+(k-1)y-18=0 sea paralela a la recta 4x+3y+7=0. Rta: 4

6 PLANO CARTESIANO Y LÍNEA RECTA U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 3 de 3 7. En las ecuaciones ax+(-b)y-3=0 y (a-1)x+by+15=0 halle los valores de a y b para que representen rectas que pasan por el punto (,-3). Rta: a=4, b=7 8. Halle la distancia de la recta 4x-5y+10=0 al punto P(,-3). Rta: Halle la distancia comprendida entre las rectas paralelas 3x-4y+8=0 y 6x-8y+9=0. Rta: Halle la posición relativa de las rectas 7x-13y+35=0, 3y+54x-43=0. Rta: secantes 31. Una recta pasa por los puntos M(x,3) y N(7,-1). Si su pendiente es 4/5, determine el valor de x. Rta: 3. Se tiene el triángulo formado por los puntos A(1,6), B(-5,-) y C(8,1). Determine: a. Su perímetro. Rta: b. Su área. Rta: 43 π 33. Una recta tiene inclinación 3 y pasa por el punto A(,1). Otra recta tiene inclinación π 6 y pasa por el punto B(-,-3). Determine el punto común a ambas. 34. Se dan los puntos A(,1), B(-,3) y C(-4,-1). Halle la ecuación de la recta que pasa por el punto medio de AB y es perpendicular a la que pasa por B y C. 35. Dado el triángulo cuyos vértices son A(-,1), B(4,7) y C(6,-3): a. Halle las ecuaciones de sus lados. Rta: x-y+3=0, 5x+y-7=0, x+y=0 b. Halle la ecuación de la recta que pasa por el vértice A y es paralela al lado opuesto BC. Rta: 5x+y+9=0 c. Halle las ecuaciones de las medianas y las coordenadas de su punto de intersección. Rta: (8/3,5/3) d. Halle las ecuaciones de las mediatrices de los lados y las coordenadas de su punto de intersección. Rta: (10/3,5/3) e. Halle las ecuaciones de las alturas y su punto de intersección. Rta: (4/3,5/3) 36. Los vértices de un triángulo son (1,1), (4,7) y (6,3). Demuestre que el baricentro, el circuncentro y el ortocentro son colineales. 37. Halle la ecuación de la bisectriz del ángulo agudo formado por las rectas de ecuaciones dadas por x-y-4=0 y 4x-y-4=0. Rta: ( )x ( )y = 0

7 SECCIONES CÓNICAS U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 5 1. Los extremos de un diámetro de una circunferencia son los puntos A(,3) y B(-4,5). Halle la ecuación de la curva. Rta. (x + 1) + (y 4) = 10. Halle la ecuación de la circunferencia cuyo centro es el punto C(7,-6) y que pasa por el punto A(,). Rta: (x 7) + (y + 6) = Halle la ecuación de la circunferencia de centro C(,-4) y que es tangente al eje Y. Rta. (x ) + (y + 4) = 4 4. La ecuación de una circunferencia es (x 3) + (y + 4) = 36. Demuestre que el punto A(,-5) es interior a la circunferencia y que el punto B(-4,1) es exterior. 5. Halle la ecuación de la circunferencia de radio 5 y cuyo centro es el punto de intersección de las rectas 3x-y-4=0, x+7y+9=0. Rta. (x 6) + (y + 3) = 5 6. La ecuación de una circunferencia es (x + ) + (y 3) = 5. Halle la ecuación de la tangente a la circunferencia que pasa por el punto (3,3). Rta. x+y-9=0, x-y+3=0. 7. Halle la longitud de la circunferencia cuya ecuación es 8. Demuestre que las circunferencias son tangentes. x + y + 4x + 6y 3 = 0 y 5x + 5y + 30x 0y 6 = 0. Rta. 3π x + y 8x 10y + 5 = 0 9. Una circunferencia de radio 5 pasa por los puntos (0,) y (7,3). Halle su ecuación. Rta. (x 4) + (y + 1) = 5, (x 3) + (y 6) = Determine el valor de la constante k para que la recta x+3y+k=0 sea tangente a la circunferencia x + y + 6x + 4y = 0. Rta. k= -1, Determine las ecuaciones de las rectas tangentes a (7,-1). x + y = 5 que pasan por el punto 1. Halle la ecuación y la excentricidad de la elipse que tiene su centro en el origen, uno de 14 sus vértices en el punto (0,-7) y pasa por el punto ( 5, ). Rta. 3 x y = 1, e = 10 7

8 SECCIONES CÓNICAS U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: de Halle la ecuación de la elipse cuyos vértices son los puntos (4,0),(-4,0) y cuyos focos son los puntos (3,0),(-3,0). Rta. x y = Los vértices de una elipse son los puntos (1,1) y (7,1) y su excentricidad es 1/3. Halle la ecuación de la elipse, las coordenadas de sus focos y las longitudes de sus ejes mayor y menor y de cada lado recto. (x 4) (y 1) 9 8 Rta. + = 1; focos (5,1),(3,1); 6, 4, 16/ El centro de una elipse es el punto (-,-1) y uno de sus vértices es el punto (3,-1). Si la longitud de cada lado recto es 4, halle la ecuación de la elipse, su excentricidad y las coordenadas de sus focos. Rta. (x+ ) (y+ 1) = 1, e =, focos ( + 15, 1),( 15, 1) 16. Halle las ecuaciones de las tangentes trazadas del punto (3,-1) a la elipse x + 3y + x y 5 = 0. Rta. x + y = 0, 9x 191y 18 = Determine la ecuación de la elipse que tiene centro en (4,-1), uno de los focos está en (1,-1) y pasa por (8,0). Rta. (x 4) (y + 1) = La ecuación de una familia de elipses es elemento de la familia que pasa por los puntos (,3) y (5,1). Rta. 4x + 9y 16x 18y 11 = 0. 4x + 9y + ax + by 11 = 0. Halle la ecuación del 19. La ecuación de una familia de elipses es kx + 4y + 6x 8y 5 = 0. Halle las ecuaciones 1 de aquellos elementos de la familia que tienen una excentricidad igual a. Rta. 3x + 4y + 6x 8y 5 = 0; 16x + 1y + 18x 4y 15 = 0 0. Los vértices de una hipérbola son (0,4) y (0,-4) y su excentricidad es igual a 3/. Halle la ecuación de la hipérbola y las coordenadas de sus focos. Rta. (0,-6) y x Si k es un número cualquiera diferente de cero, demuestre que la ecuación representa una familia de hipérbolas de excentricidad igual a. = 1 focos (0,6), 3x 3y = k. Halle y trace las ecuaciones de las asíntotas de la hipérbola 4x 5y = 7. Rta. x 5y = 0, x + 5y = 0.

9 SECCIONES CÓNICAS U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 3 de 5 3. Halle los puntos de intersección de la recta x 9y + 1 = 0 con las asíntotas de la hipérbola 3 4x 9y = 11. Rta. (3,) (,1) 4. Halle las coordenadas de los vértices y focos, y la excentricidad de la hipérbola que es conjugada a la que tiene por ecuación 9x 4y = 36. Rta. Vértices (0,3),(0,-3); focos (0, 13), (0, 13), e = El centro de una hipérbola es el punto (4,5) y uno de sus focos es (8,5). Si la excentricidad de la hipérbola es, halle su ecuación. 6. Demuestre que la elipse x + 3y = 6 y la hipérbola x 3y = 3tienen los mismos focos. 7. Determine todos los elementos de las siguientes hipérbolas y construya su gráfica: a. 4x 9y + 3x + 36y + 64 = 0 b. c. d. x 4y x + 1 = 0 9x 4y + 54x + 16y + 9 = 0 3x y + 30x + 78 = 0 8. Halle la ecuación de la parábola de vértice en el origen y directriz la recta y 5 = 0. Rta. x = 0y 9. Halle la ecuación de la parábola cuyos vértices y focos son los puntos ( 4,3) y ( 1,3), respectivamente y la ecuación de su directriz. Rta. (y 3) = 1(x + 4); x = Determine todos los elementos de las siguientes parábolas y construya su gráfica: a. 4y 48x 0y 71 = 0 b. c. 9x + 4x + 7y + 16 = 0 4x + 48y + 1x 159 = La ecuación de una familia de parábolas es de la familia que pasa por los dos puntos (,8) y ( 1,5). Rta. y = ax + bx. Halle la ecuación del elemento y = 3x x 3. Halle la distancia entre el centro de la elipse de la circunferencia 3x + 3y + 1x + 4 3y + 1 = 0. Rta x + 9y 150x + 54y + 81 = 0 y el centro 33. Diga si x y = 4y x + 9y = 9 son cónicas homofocales (tienen focos iguales). Rta. Si

10 SECCIONES CÓNICAS U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 4 de Encuentre la ecuación de la hipérbola cuyos focos están en los vértices de la elipse 7x + 11y = 77 y cuyos vértices son los focos de dicha elipse. Rta. 7x 4y = Dibuje la región limitada por las curvas indicadas: y = x 4, y = x x = y, x = y y = x + 1, y = x + 1, y = x y = x + 8x 7, y = x 4. y = 4 x, y = x +, x =, x = 3. x = 16 y, x = 6y. x = (y + 1) 1, x = 1 y + 1. x 16 + y 9 = 1, x + y = 1. y = x 1 + 3, y = 4(x 1). y = x, y = 8 x, 4x y + 1 = 0. y = x + 4, x = y. 3 y x = 6, y = x, y + x = 0. (x ) y = 1 ; y = x + ; x = x x y = x + 1 ; y = + 1 ; y = x y = (x ), y = x x = y, 4(8 x) = y y = x , y = 0, x = 8, x = y 1 + x ; x + y 1 ; (x 1) + (y 1) y x = 6 ; y = x ; y + x = Primer cuadrante ; x + y 3 ; x y ; y x x x = 1 y ; x = 1 (y 1) ; y = + ; y = 0 x = y ; x = y ; y = x

11 SECCIONES CÓNICAS U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 5 de Dibuje las siguientes curvas: (x ) + (y 1) = 4 1 y 3 1 y = (x + ) 0 y x + y = 1 1 y y = (x ) 0 y 1 x y = 4 x y 3 = 0 x 4 y x = y 3 3 x + y = 16y 60 8 y 10 x = y 4 0 y y + 4 = x 4 y 0 16(x + ) + (y 4) = 16 x 1 x y = 4 x y 3 = 0 x 4 y x = y x + y = = y 1 x 0 x 1 x = 0 1 y 1 y x + 1 = 0 0 < x 1 = y x 0 x 3 (x 3) (y ) + = 1 0 x 3, y = x (y 1) 1 1 x 0

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

PROF: Jesús Macho Martínez

PROF: Jesús Macho Martínez DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad. PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

Geometría Analítica Enero 2016

Geometría Analítica Enero 2016 Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos

Más detalles

Club de Matemáticas CBTis 149. clubmate149.com

Club de Matemáticas CBTis 149. clubmate149.com PROGRAMA DE MATEMATICAS III (Geometría Analítica) Con este curso se inicia el estudio de la geometría analítica, rama de las Matemáticas cuyos inicios se remontan a la segunda mitad del siglo XVII con

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

Temario de Matemáticas V (1500)

Temario de Matemáticas V (1500) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO SECRETARÍA GENERAL DIRECCIÓN GENERAL DE INCORPORACIÓN Y REVALIDACIÓN DE ESTUDIOS Temario de Matemáticas V (1500) Plan ENP - 1996 TEMARIO MATEMÁTICAS V ( 1500 ) A

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

LUGARES GEOMÉTRICOS. CÓNICAS

LUGARES GEOMÉTRICOS. CÓNICAS 9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

Matemáticas III. Geometría analítica

Matemáticas III. Geometría analítica Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA.

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 2. Hoja 1 Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. 1. Un solar de forma triangular tiene dos lados de longitudes 140,5 m y 170,6 m, y el

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso:

Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: CIRCUNFERENCIA Una circunferencia es el lugar geométrico de los puntos del plano

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

EJERCICIOS DE GEOMETRÍA RESUELTOS

EJERCICIOS DE GEOMETRÍA RESUELTOS EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte

Más detalles

BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad. 3. Complete la tabla de verdad poniendo los operadores lógicos correspondientes

BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad. 3. Complete la tabla de verdad poniendo los operadores lógicos correspondientes BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad Desarrolle la tabla de verdad 1 (p q) r 2 [(p q) p] q 3 Complete la tabla de verdad poniendo los operadores lógicos correspondientes (p

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

Fecha: 29/10/2013 MATEMÁTICAS

Fecha: 29/10/2013 MATEMÁTICAS Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

Coordinadora de academia: M. en C. Elsa Frias Silver

Coordinadora de academia: M. en C. Elsa Frias Silver UNIVERSIDAD DE LONDRES PREPARATORIA ACADEMIA FISICO-MATEMÁTICAS GUIA -MATEMÁTICAS V 5º año. Plan : 96 Clave materia : 1500 Clave UNAM : 144 Ciclo : 011-01 Profres: I.Q. JESÚS BELMONT GÓMEZ y ELIZABETH

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos)

CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos) Ejercicio nº 1.- Escribe la ecuación de la circunferencia con centro en el punto (, 3) que es tangente a la recta 3 4 + 5 = 0. El radio, R, de la circunferencia

Más detalles