1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES"

Transcripción

1 1º BACHILLERATO - MATEMÁTICAS CCSS - TEMA 1 NÚMEROS REALES ˆ PÁGINA 4, EJERCICIO 68 Una habitación con forma de ortoedro de base cuadrada y altura la mitad del lado de la base se pintó en tres días. Se pintaron las cuatro paredes y el techo. En el primer día se pintó la tercera parte de la supercie; en el segundo, la mitad de lo que quedaba, y en el tercero los 15 m que faltaban para acabar el trabajo. a) Calcula la supercie total de la habitación y la supercie que se hizo cada día. b) Calcula las medidas de cada una de las paredes y el volumen con la precisión que consideres adecuada. Sea el lado de la base l, y la altura del ortoedro l. S = 4 l l + l l = 3 l 1º día = 3l 3 = l ; queda 3l l = l º día = l = l ; queda l l = l 3º día = l = 15 a) El 1º día se pintaron 15 m, el º día también 15 m y el 3º día otros 15 m. La supercie total es, pues, de 45 m. b) Cada pared tendrá una medida de m. El volumen total será V = l l l = , 05 m 3. ˆ PÁGINA 4, EJERCICIO 69 La corporación municipal de un Ayuntamiento cuyo municipio cuenta con 600 habitantes de edades comprendidas entre 16 y 0 años ha realizado una encuesta sobre las actividades culturales que interesan a dicho segmento de población. Sabiendo que el 81' % contestó que le interesaba el cine y que el 14, % contestó que no le interesaban las conferencias de divulgación cientíca, calcula el número de personas que contestaron la encuesta. Los tantos por cien se pueden escribir: 81 81% = %, y = Así, pasando a tanto por uno tenemos 9 11 y = Reduciendo a común denominador tendremos 58 y De esto se puede deducir, ya que aparecen números enteros, que son 58 las personas que contestaron la encuesta. ˆ PÁGINA 4, EJERCICIO 70 El área de un cuadrado mide 10'5 m. Calcula, aproimando a los decímetros: a) La diagonal del cuadrado. b) El área del círculo inscrito. c) El área del círculo circunscrito. A = 10 5 m = l = 10 5 m m a) D = l + l = D 4 5 m b) r = l. Así, A = π r 8 1 m c) r = D = A 16 1 m ˆ PÁGINA 4, EJERCICIO 71 Se quiere vallar el perímetro de un campo rectangular del que se sabe que uno de sus lados mide el triple que el otro y que su diagonal es de 50 m. Calcula el precio que hay que pagar si cada metro de valla cuesta 15 euros. Epresa el resultado en forma de radical y después aproima a los céntimos de euro. 1

2 + (3) = 50 = 10 = 500 = = 50 = = 50 P = = Así, el precio será de ˆ PÁGINA 4, EJERCICIO 7 Una empresa elabora latas de conserva con forma cilíndrica de dimensiones 5 cm de radio de la base y 10 cm de altura. Tras un estudio de mercado, decide cambiar la forma de las latas: serán ortoedros de base cuadrada y de altura el doble que el lado de la base. ¾Cuáles serán las dimensiones de la nueva forma si la capacidad debe ser la misma? Tenemos un cilindro de altura 10 cm y radio de la base 5 cm, y un ortoedro de altura l y lado de la base l. V c = π 5 10 = 50π; V o = l l l = l 3 Así, V c = V o = l 3 = 50π = l = 3 15π 7 3 cm. ˆ PÁGINA 4, EJERCICIO 73 El radio de una circunferencia se ha medido con un error menor de 0'1 cm, obteniéndose 10' cm. a) Calcula los valores máimo y mínimo de la longitud de dicha circunferencia, así como del área del círculo limitado por la misma. b) Calcula los valores máimo y mínimo de la longitud que se recorrerá al dar eactamente 5000 vueltas. Utiliza la aproimación de π que consideres adecuada de acuerdo con los datos del problema. Dado que disponemos de calculadora, y con el n de minimizar el error cometido, podemos hacer los cálculos de π con su valor eacto gracias a ella. Si no disponemos de ninguna, o queremos de cualquier manera utilizar una aproimación, deberemos hacerlo con un decimal signicativo, ya que es la misma utilizada para medir el radio. a) El radio está entre 10'1 y 10'3 cm. Como la longitud de la circunferencia se calcula como l = πr, estará entre l inf = π 10 1 y l sup = π 10 3, es decir entre l inf = 63 4 y l sup = 64, 7 cm. Igualmente, el área, que es A = π r, estará entre A inf = π 10 1 = 30 4 y A sup = π 10 3 = cm. b) Entre 5000 l inf 3170 y 5000 l sup = 335 m. ˆ PÁGINA 4, EJERCICIO 74 Una empresa cobra por el alquiler de una furgoneta 80 diarios. Otra empresa cobra por el mismo alquiler 60 al día, pero a esta cantidad se le deben añadir 00 independientemente del tiempo que se contrate. ¾A partir de cuántos días es más económica la segunda empresa? Escribe la solución en forma de desigualdad y de intervalo. f 1 () = 80; f () = Así, 80 = = 0 = 00 = = 10 Solución: < 10 o (10, + ). ˆ PÁGINA 4, EJERCICIO 75 Una entidad bancaria cambia euros por dólares cobrando además del valor correspondiente a dichos dólares, una comisión que depende de la cantidad que se quiere cambiar según la tabla siguiente: Cantidad de dólares que se compran Comisión en euros Menos o igual que Entre 00 y Entre 500 y Más o igual que

3 Se sabe que por comprar 300$ se han debido pagar 4'54. a) Calcula, con cuatro cifras decimales signicativas, el precio del dólar en euros y el precio del euro en dólares sin tener en cuenta la comisión. b) Calcula los dólares que se han conseguido si se han pagado 750. c) Calcula los euros que se deberían pagar por 150 dólares. d) Calcula los euros que se deberían pagar por 1400 dólares. ¾Y si se compraran en siete paquetes de 00 dólares? a) = 1 54 sin comisión 1$ = = ; 1 = = $ son los factores de conversión. b) = 736 sin comisión = = c) = = = pagaremos, incluida la comisión. d) = = = pagaremos, incluida la comisión = = = pagaremos por cada paquete de 00$. Los siete paquetes costarán = ˆ PÁGINA 4, EJERCICIO 76 Al medir la altura de una persona de 180 cm se ha obtenido 178 cm. Al medir la altura de un edicio de 39 m se ha obtenido 40 m. Calcula los errores absoluto y relativo de cada medida e indica razonadamente cuál de las dos es más precisa. Caso 1: E A = / / = cm; E R = 180 = Caso : E A = / / = 100 cm; E R = = Por tanto, es más precisa la primera aproimación, puesto que tiene un menor error relativo. ˆ PÁGINA 4, EJERCICIO 77 La diagonal de un cubo mide eactamente 1'5 cm. Halla la supercie del cubo aproimando su diagonal por 1'5 cm. Calcula el error relativo cometido. D = 1 5 d = l D = l + l = 3l Usando aproimación: 1 5 = 3l = l = S = 6l = 3 15 cm Sin usarla: 1 5 = 3l = l = S = 6l = 3, E A = /S S / = ; E R = E A S = ˆ PÁGINA 4, EJERCICIO 78 Calcula la medida de la diagonal de un paralelepípedo cuyos lados miden 10, 8 y 5 cm, respectivamente. ¾Qué tipo de número es el resultado? Aproima el resultado redondeando a dos decimales y calcula los errores absoluto y relativo. d = = = 18 D = = = 3 I = E A = / / = E R = E A

4 ˆ PÁGINA 4, EJERCICIO 79 Un parque cuadrado tiene 50 m de lado. Dos personas pasean a la misma velocidad, una por el perímetro del cuadrado y la otra recorriendo una diagonal. Si parten simultáneamente de la misma esquina del parque, ¾volverán a encontrarse? Las dos personas solo pueden volver a encontrarse en alguno de los dos puntos marcados en la gura. d = = 5000 m I; l = 50 = l = 100 m Q Así, una persona siempre habrá recorrido una distancia irracional al llegar a uno de esos dos puntos, mientras que la otra persona siempre habrá recorrido una distancia racional. Por tanto, esas distancias no podrán ser iguales y las dos personas nunca volverán a encontrarse. ˆ PÁGINA 5, EJERCICIO 80 Un determinado tipo de protozoo tiene un diámetro de 10 5 m. Calcula cuántos protozoos habría que situar, uno a continuación de otro, para alcanzar una longitud de 1 cm m = 10 7 cm = = protones ˆ PÁGINA 5, EJERCICIO 81 Sabiendo que la velocidad de la luz es de km/s, calcula el tiempo que tardaría en llegar a la Tierra la luz emitida por una hipotética estrella que se encontrara a km de distancia. Epresa el resultado con la precisión que consideres adecuada. 1 segundo km km = = = = segundos = 666 minutos y 40 segundos = 11 horas 6 minutos y 40 segundos ˆ PÁGINA 5, EJERCICIO 8 Se llama unidad astronómica (UA) a la distancia media que separa la Tierra del Sol, que equivale a km. a) Sabiendo que el 1 de enero la distancia en kilómetros entre la Tierra y el Sol es de km, eprésala en unidades astronómicas. b) Sabiendo que la distancia media entre Júpiter y el Sol es de 5' UA, eprésala en km. a) 1 UA km km = = UA b) = km 4

5 ˆ PÁGINA 5, EJERCICIO 83 El diámetro de una molécula de agua mide aproimadamente m. a) Calcula el volumen de una molécula de agua suponiendo que su forma es aproimadamente esférica. Epresa el resultado en notación cientíca. b) Calcula el número de moléculas de agua que hay en una gota de 3 mm de diámetro, epresando el resultado en notación cientíca. d = = r = m a) V m = 4 3 πr3 = 4 3 π (1 5) m 3 = m 3 = mm 3 b) V g = 4 3 π (1 5) mm 3 V g V m = = = 10 1 moléculas ˆ PÁGINA 5, EJERCICIO 84 Se quiere hallar el área y el perímetro de un terreno con forma de trapecio rectángulo. Para ello se miden las bases, y se obtiene como resultado 85' y 11'3 m, respectivamente. La longitud del lado perpendicular a las bases se conoce previamente y con una precisión mayor: es de 48'76 m. Calcula, con la precisión adecuada, las medidas deseadas. El trapecio encierra en su interior un triángulo rectángulo, con el que comparte el lado desconocido y la altura 48'76. El otro cateto mide = 7 1 m. = m P = = m A = ( ) = m 5

ACTIVIDADES INICIALES. 23 f) 1 h) 5 3. a) 2 (3 2 6) (10 3) (5 2 3) 2 (3 12) 7 (5 6) 2 ( 9) 7 ( 1) EJERCICIOS PROPUESTOS. b) 2.

ACTIVIDADES INICIALES. 23 f) 1 h) 5 3. a) 2 (3 2 6) (10 3) (5 2 3) 2 (3 12) 7 (5 6) 2 ( 9) 7 ( 1) EJERCICIOS PROPUESTOS. b) 2. Solucionario Números reales ACTIVIDADES INICIALES.I. Indica a qué conjuntos numéricos pertenecen los números siguientes. a) c), e) g) b) d) f) h) a) Z c) Q e) Q g) Q b) R d) R f) N h) Q.II Realiza las

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Los números reales. Potencias, radicales y logaritmos Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado

Más detalles

Los números reales. 1. Números racionales e irracionales

Los números reales. 1. Números racionales e irracionales Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado de cm de lado. Expresa de forma exacta el lado, x, de un cuadrado de cm de área. P I E N S A Y C A L C U

Más detalles

Tema 15. Perímetros y áreas

Tema 15. Perímetros y áreas Matemáticas Ejercicios 1º ESO BLOQUE V: GEOMETRÍA Tema 15. Perímetros y áreas 1. Expresa en metros: a) 2000 mm b) 2 hm c) 1 dm e) 0,1 km c) 50 dam 2 d) 0,02 km 2 2. Transforma las siguientes unidades:

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas:

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas: Plantear y resolver los siguientes problemas: 1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, determinar el área de cada porción. 2) Determine el área de cada una de las

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Aproximación y errores Expresa con un número adecuado de cifras significativas: a) Audiencia de un programa de televisión: 07 9 espectadores. b) Tamaño de un virus: 0,007 mm. c)

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607 EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

15 Figuras y cuerpos

15 Figuras y cuerpos 15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números? TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se

Más detalles

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5.

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5. PÁGINA 9 Entrénate 1 a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? 2; 1,7; ; 4, 2; ),75; ) π; 2 5 b) Expresa como fracción aquellos que sea posible. c)

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:

Más detalles

FÓRMULAS - FIGURAS PLANAS

FÓRMULAS - FIGURAS PLANAS SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO

EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO EJERCICIOS-RECUPERACIÓN ESTIVAL DE MATEMÁTICAS 1º ESO A continuación te presentamos una serie de ejercicios que deberás realizar y presentar obligatoriamente a tu profesor/a el día del examen. Puedes consultar

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B

EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B ) Clasifica los siguientes números como naturales, enteros, racionales e irracionales,

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

Los números reales. 1. Números racionales e irracionales

Los números reales. 1. Números racionales e irracionales Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado de cm de lado. Expresa de forma exacta el lado, x, de un cuadrado de cm de área. P I E N S A Y C A L C U

Más detalles

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno.

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno. GUÍA DE EJERCICIOS Nº 4 Contenidos: Lenguaje algebraico: Utiliza letras para representar números desconocidos Evaluación de expresiones algebraicas: Hallar el valor numérico de una expresión 1. En cada

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

(26)2x(3x 4) (1 3x)$(1 +x) = 2

(26)2x(3x 4) (1 3x)$(1 +x) = 2 Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 212 Recorta en cartulina cada una de estas figuras y sujétalas en palillos de dientes. Sosteniendo el palillo entre los dedos y soplando en el lateral, qué ves en cada caso? Triángulo ono

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 36

1Soluciones a los ejercicios y problemas PÁGINA 36 PÁGINA 6 Pág. P RACTICA Números reales a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? ;,7; ;, ; ),7; ) π; b)expresa como fracción aquellos que sea posible.

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

IES CINCO VILLAS TEMA 2 NUMEROS Y UTILIDADES 2 Página 1

IES CINCO VILLAS TEMA 2 NUMEROS Y UTILIDADES 2 Página 1 EJERCICIOS RESUELTOS MÍNIMOS TEMA 2 Ejercicio nº 1.- a) Ordena de menor a mayor los números: 12,51 ; 12,51 ; 12,5 ; 12,511 b) Representa en la recta los siguientes números: 0, ; 1,6 ; 1,5 ; 2,25 a) 12,51

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

Cuadernillo de Actividades Matemática

Cuadernillo de Actividades Matemática Cuadernillo de Actividades Matemática Ingreso a primer año de la Educación Secundaria para escuelas sobredemandadas Noviembre 2009 Ingreso 2010 Encuentro presencial no evaluativo En este espacio podrás:

Más detalles

Efa Moratalaz PCPI - Matemáticas GEOMETRÍA PLANA

Efa Moratalaz PCPI - Matemáticas GEOMETRÍA PLANA GEOMETRÍA PLANA Geometría Plana Ficha 1 (Ejercicios Cuadrado) Área de un cuadrado: Perímetro de un cuadrado: 1) Halla el perímetro y el área de un cuadrado de 3 m de lado. 2) Halla el perímetro y el área

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

Ejercicios adicionales de geometría 2

Ejercicios adicionales de geometría 2 matemática iii - ciu geometría 0 Ejercicios adicionales de geometría 2 Ángulos 1. Dos ángulos suplementarios se diferencian en 40 grados. Podrías hallarlos? 2. Dos ángulos son complementarios y uno es

Más detalles

6 Potencias. y raíz cuadrada. 1. Potencias. Completa la siguiente tabla en tu cuaderno: Solución: Carné calculista 3 708,41 : 75 C = 49,44; R = 0,41

6 Potencias. y raíz cuadrada. 1. Potencias. Completa la siguiente tabla en tu cuaderno: Solución: Carné calculista 3 708,41 : 75 C = 49,44; R = 0,41 6 Potencias y raíz cuadrada 1. Potencias Completa la siguiente tabla en tu cuaderno: P I E N S A Y C A L C U L A 1 2 3 4 6 7 8 9 10 1 4 49 1 2 3 4 6 7 8 9 10 1 4 9 16 2 36 49 64 81 100 Carné calculista

Más detalles

Números racionales e irracionales

Números racionales e irracionales Números racionales e irracionales. Divisibilidad Calcula mentalmente: a) M.C.D. (, 8) b) M.C.D. (, 8) c) M.C.D. (, 9, ) d) m.c.m. (, ) e) m.c.m. (, 9) f ) m.c.m. (,, ) P I E N S A Y C A L C U L A a) b)

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero.

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero. º E.S.O. MATEMÁTICAS I.E.S. LOSADA EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: 10-11 Fecha de entrega: Viernes. 1 de enero. Fecha de examen: Viernes 1 de enero. Alumno/a:. Grupo:

Más detalles

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 2. Opera usando las propiedades de las potencias: a) ( 5) 4 ( 2)

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

NÚMEROS DECIMALES y NÚMEROS RACIONALES.

NÚMEROS DECIMALES y NÚMEROS RACIONALES. NÚMEROS DECIMALES y NÚMEROS RACIONALES. RECORDAR: Llamamos: 0' décima, 0' 0 centésima, 0' 00 milésima, 0 00 000 0' 000 diezmilésima,... 0000 limitados decimales exactos 0,5 Tipos de decimales decimales

Más detalles

Instituto Plancarte de Querétaro A.C. Sección Secundaria Ciclo escolar Florencio Rosas Nº 1 Col. Cimatario, C.P TEL.

Instituto Plancarte de Querétaro A.C. Sección Secundaria Ciclo escolar Florencio Rosas Nº 1 Col. Cimatario, C.P TEL. GUÍA DE ESTUDIOS 1º BIMESTRE MATEMÁTICAS 1 Nombre del estudiante: Grupo: Fecha: Resuelve correctamente cada situación planteada, usando lápiz para los procedimientos y tinta negra para los resultados.

Más detalles

1. Descompón cada uno de estos números. 2. Escribe cómo se leen estos números. 3. Compara y escribe el signo < o > según corresponda. 4. Calcula.

1. Descompón cada uno de estos números. 2. Escribe cómo se leen estos números. 3. Compara y escribe el signo < o > según corresponda. 4. Calcula. Trabajo de recuperación del área de matemáticas de 6º de primaria. 1. Descompón cada uno de estos números. 8.603.058 39.090.001 410.901.100 639.000.072 2. Escribe cómo se leen estos números. 10.196.364

Más detalles

6. Potencias y raíz cuadrada

6. Potencias y raíz cuadrada 47 6. Potencias y raíz cuadrada 1. POTENCIAS Completa la siguiente tabla en tu cuaderno: 1 2 3 4 5 6 7 8 9 10 1 4 49 1 2 3 4 5 6 7 8 9 10 1 4 9 16 25 36 49 64 81 100 a) 5 600 b) 0,00795 11. Tenemos una

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS

DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa. TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

Matemática 3 Colegio N 11 B. Juárez

Matemática 3 Colegio N 11 B. Juárez Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

a) 25 b) 81 c) d) 8 e) 16 f) 8 g) 16 Solución: Calcula: a) 33 2 b) 2,5 2 c) 0,7 3 d) 1,2 3 Solución: Solución:

a) 25 b) 81 c) d) 8 e) 16 f) 8 g) 16 Solución: Calcula: a) 33 2 b) 2,5 2 c) 0,7 3 d) 1,2 3 Solución: Solución: Potencias y raíces. Potencias de exponente entero Calcula mentalmente las siguientes potencias: a) 5 2 b) 4 c) 0 6 d) ( 2) e) ( 2) 4 f) 2 g) 2 4 a) 25 b) 8 c) 000 000 d) 8 e) 6 f) 8 g) 6 P I E N S A Y

Más detalles

Identificando las variables en una fórmula dada

Identificando las variables en una fórmula dada Bitácora del Estudiante Identificando las variables en una fórmula dada Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El depósito de agua de Valle Coney está construido como

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles