Curso Curso

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Curso"

Transcripción

1

2 Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R, el radio de la circunferencia inscrita en el triángulo mixtiĺıneo OMB.

3 Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R, el radio de la circunferencia inscrita en el triángulo mixtiĺıneo OMB.

4 En el ACD, En el OCD, AD = (R x) = x + de donde, operando, (R + x) x. ( (R + x) x R), R Rx + x = x + R + Rx R R + Rx + R, R R + Rx = R + 4Rx, R + Rx = R + 4x, 4R + 8Rx = R + 8Rx + 16x, 3R = 16x, 3 x = 4 R.

5 Problema 85. Se señalan sobre una circunferencia n puntos de tal modo que al trazar todas las cuerdas posibles que los unen de dos en dos no haya tres cuerdas concurrentes. En cuántas regiones queda dividido el círculo por estas cuerdas?

6 Problema 85. Se señalan sobre una circunferencia n puntos de tal modo que al trazar todas las cuerdas posibles que los unen de dos en dos no haya tres cuerdas concurrentes. En cuántas regiones queda dividido el círculo por estas cuerdas? Para n =, 3, 4, 5 puntos resultan = 1, 4 =, 8 = 3, 16 = 4 regiones, pero para n = 6 sólo resultan 31 regiones y no 3 (el problema de la región perdida). Dentro del círculo quedan determinados ( n 4) puntos de intersección de cuerdas (cada punto interior queda determinado por dos cuerdas que pasan por dos parejas de puntos distintos de la circunferencia, es decir, queda determinado por cuatro puntos distintos de la circunferencia).

7 El número de segmentos rectiĺıneos interiores es igual al número de cuerdas, ( n ), más dos veces el número de puntos interiores de intersección de cuerdas (esto se puede probar por inducción sobre el número de cuerdas). En el grafo que forma la circunferencia con las cuerdas, se cumple Regiones interiores + Vértices = Aristas + 1, luego el número de regiones es [( ) ( ) ] n n + + n [( ) ] n + n = ( ) n + ( ) n. 4

8 Problema 86. Si a, b y c son los lados de un triángulo, demuestra que a b + c a + b c + a b + c a + b c 3.

9 Problema 86. Si a, b y c son los lados de un triángulo, demuestra que a b + c a + b c + a b + c a + b c 3. Haciendo los cambios x = b + c a, y = a + c b, z = a + b c, (los números x, y, z son positivos por la desigualdad triangular) la desigualdad se reescribe y + z x + z + x y + x + y z 3 o equivalentemente, ( x y + y ) ( y + x z + z ) ( z + y x + x ) 6. z

10 Para probar esta última desigualdad recordemos que si u y v son dos números reales positivos, entonces se verifica u v + v u, con igualdad si y sólo si u = v. Luego en la desigualdad original la igualdad se alcanza solamente para un triángulo equilátero.

11 Problema 87. Sea ABC un triángulo, y sea P un punto en su interior. Se denotan respectivamente por D, E y F los pies de las perpendiculares por P a las rectas BC, CA y AB, y supongamos que se cumple AP + PD = BP + PE = CP + PF. Si se denotan por I A, I B, I C los exincentros (centros de las circunferencias tangentes a un lado y a las prolongaciones de los otros dos lados) del triángulo ABC, probar que P es el circuncentro del triángulo I A I B I C.

12 Solución 1. Sea a = BC, b = CA, c = AB, y p = a+b+c. Por la hipótesis es BD = BP PD = AP PE = AE ; por tanto, BD = AE.

13 De forma análoga resulta CE = BF y AF = CD. Como BD + DC = a, CE + EA = b y AF + FB = c, obtenemos que BD = AE = p c, CE = BF = p a, y AF = CD = p b, lo que implica que D, E y F son los puntos de tangencia de las circunferencias exinscritas con los lados BC, CA, y AB, respectivamente. En particular, D está en la recta PI A, y análogamente resulta para E y F. I C I A I B B AB I C P PI C B = ABI B = B PI A BC I B BC = BI A P = B PI C I A es isósceles de lados iguales I C P = I A P. De forma análoga se prueba que I B P = I A P. Por lo tanto P es el circuncentro.

14 Solución. Como I A I B es la bisectriz exterior de C es BCI A = π C, de forma análoga ABI C = π B y CAI B = π A I A = π C + π B = π A I B = π B, I C = π C. La bisectriz interior I A A es perpendicular a la bisectriz exterior I B I C ; por tanto I A A es la altura por I A del triángulo I A I B I C. Además, I C I A A = π AI C I A = C y DI AC = π BCI A = C. Por tanto, I a D es la imagen de la altura I A A en la simetría de eje la bisectriz interior de I B I A I C. Se sigue que I A D pasa por el circuncentro del I A I B I C. De forma análoga I B E, I C F pasan por el circuncentro.

15 Problema 88. Los puntos M de la recta x = 1 se transforman en los M, tales que O, M, M están alineados y OM OM = 4. Se pide: 1 Determinar el lugar geométrico de los puntos M. Hallar el par de puntos M, M correspondientes en la transformación, tales que M sea el punto medio del segmento OM.

16 La transformación es una inversión de centro O y potencia 4, de circunferencia de puntos dobles la circunferencia de centro O y radio. La transformada de la recta x = 1 es la circunferencia que pasa por A, O y B, de centro (, 0) y radio, de ecuación (x ) + y = 4.

17 Los puntos M que verifican que M es el punto medio de OM estarán en la recta homotética de x = 1 en la homotecia de centro O y razón, que es la recta x = ; como además tienen que estar en la circunferencia (x ) + y = 4, resolviendo el sistema resulta M = (1, 1), M = (, ) y N = (1, 1), N = (, ).

18 Problema 89. Sean a, b, c > 0. Probar que a b + c + b c + a + c a + b 3 (desigualdad de Nesbitt).

19 Problema 89. Sean a, b, c > 0. Probar que a b + c + b c + a + c a + b 3 (desigualdad de Nesbitt). Solución 1. Lema 1. Sean x, y números positivos y a, b reales. Se tiene a x + b y (a+b) x+y : (a y + b x)(x + y) xy(a + b) a xy + b x + a y + b xy a xy + abxy + b xy (bx ay) 0

20 Lema. Sean x, y, z números positivos y a, b, c reales. Se tiene a x + b y + c z (a+b+c) x+y+z : a x + b y + c z (a + b) x + y + c z Las dos desigualdades se deducen del lema 1. Por el lema tenemos (a + b + c) x + y + z a a(b + c) + b b(c + a) + c (a + b + c) c(a + b) (ab + ac + bc) = = 1 + a + b + c (ab + ac + bc) Por Cauchy-Schwarz es a + b + c ab + ac + bc, por lo tanto 1 + a + b + c (ab + ac + bc) = 3

21 Solución. Equivalentemente, es decir, a b + c b c + a c a + b + 1 9, ( 1 (a + b + c) a + b + 1 b + c + 1 ) 9 c + a. Pero esto resulta de la desigualdad entre medias armónica y geométrica: 3 1 a+b + 1 b+c + 1 c+a b + c + c + a + a + b 3 = (a + b + c). 3

22 Problema 90. Sean a, b, c las longitudes de los lados de un triángulo ABC, R el radio de la circunferencia circunscrita, O el circuncentro, G el baricentro y H el ortocentro. Probar: 1 Los puntos H, G y O están alineados (recta de Euler), y HG = GO. OH = 9R (a + b + c ).

23 Problema 90. Sean a, b, c las longitudes de los lados de un triángulo ABC, R el radio de la circunferencia circunscrita, O el circuncentro, G el baricentro y H el ortocentro. Probar: 1. 1 Los puntos H, G y O están alineados (recta de Euler), y HG = GO. OH = 9R (a + b + c ).

24 Sean A, B y C los puntos medios de los lados del ABC. El A B C es semejante al ABC con razón de semejanza 1/. Las mediatrices del ABC son alturas del A B C, así que el punto O es ortocentro del A B C. De ahí resulta que AH = OA. Además sabemos que AG = GA y que las rectas AD y OA son paralelas (por ser ambas perpendiculares a BC). Luego HAG = OA G, los triángulos HAG y OA G son entonces semejantes, HG = GO, y también se tiene AGH = A GO, lo que demuestra que los tres puntos O, G y H están alineados.

25 . Por el teorema de Stewart aplicado al AOA dividido por la ceviana OG, se tiene AA (OG + AG GA ) = AO GA + OA AG. Pero aquí, OG = 1 9 OH por el apartado anterior, AG = 3 AA, GA = 1 3 AA y OA = R.

26 Se sustituye todo, se divide por AA y queda OH + AA = 3R + 6 OA. Por el teorema de Pitágoras en el OA B, se tiene OA = R (a/), luego OH + AA = 3R + 6R 3a. Finalmente, AA = 1 4 (b + c a ) (por la ley del paralelogramo), luego OH = 9R (a + b + c ).

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas Geometría Problemas de Semejanza Olimpiada de Matemáticas en Tamaulipas 1. Problemas Antes de comenzar con los problemas, es conveniente recordar o asegurarse que los olímpicos tienen presentes el tema

Más detalles

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I Almería, 3 de noviembre de 2017 David Crespo Casteleiro Índice de la sesión 1. Porqué hay que prepararse para unas Olimpiadas? 2. Resultados de gran utilidad.

Más detalles

Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd

Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd TRIÁNGULOS RECTAS Y PUNTOS NOTABLES Las rectas notables del triángulo son altura, mediatriz, mediana y bisectriz. Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

Bueno, los dejo para que se entretengan y perdón por la demora de los problemas. Se les quiere y éxito. Angel El Chino Márquez.

Bueno, los dejo para que se entretengan y perdón por la demora de los problemas. Se les quiere y éxito. Angel El Chino Márquez. Holis mijo s. Aquí están la tarea larga (ni tanto) de geometría. Los problemas son de lo que han visto con la maestra Claudia y conmigo, aunque algunos sí le tienen que pensar algo. Los problemas que les

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

FICHA DE TRABAJO Nº 18

FICHA DE TRABAJO Nº 18 FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

Unidad 4Transformaciones geométricas

Unidad 4Transformaciones geométricas 4.1. Dados los puntos A, B y C sobre una recta r, de manera que AB = 20 mm y BC = 20 mm, determina sobre r el punto D para que la razón doble (ABCD) = 19/14. 1. Por los puntos A y B de la recta r se trazan

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

IV Torneo Matemático Triangular Aragón La Rioja Navarra Tudela, 11 de marzo de 2017

IV Torneo Matemático Triangular Aragón La Rioja Navarra Tudela, 11 de marzo de 2017 IV Torneo Matemático Triangular Tudela, 11 de marzo de 017 lgunos usos de simetrías y reflexiones con la bisectriz como referencia IV Torneo Triangular 017 Índice Resultados conocidos Definiciones básicas

Más detalles

SOLUCIONES PRIMER NIVEL

SOLUCIONES PRIMER NIVEL SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:

Más detalles

sen a + b c) Expresa las sumas del segundo miembro como productos y concluye que se cumple que a + b

sen a + b c) Expresa las sumas del segundo miembro como productos y concluye que se cumple que a + b NOTA: Todos los ejercicios con asterisco (*) deberán ser entregados antes del 3 de enero del 0. Ejercicio Calcula los lados y ángulos que faltan, el área y los radios de la inscrita y circunscrita en los

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

Miguel-Ángel Pérez García-Ortega

Miguel-Ángel Pérez García-Ortega Problema 890. (Propuesto por Philippe Fondanaiche) Sea ABC un triángulo. La circunferencia inscrita de centro I es tangente a los lados BC, CA y AB en los puntos A 1, B 1 y C 1, respectivamente. La circunferencia

Más detalles

Líneas notables de un triángulo

Líneas notables de un triángulo Líneas notables de un triángulo Los cuatro grupos de líneas notables más importantes que se trabajan en los triángulos son las siguientes: Medianas: segmentos que unen los puntos medios de cada lado con

Más detalles

PUNTOS NOTABLES DE UN TRIÁNGULO

PUNTOS NOTABLES DE UN TRIÁNGULO PUNTOS NOTABLES DE UN TRIÁNGULO 1. CIRCUNCENTRO. Cualquier punto de la mediatriz de un lado de un triángulo equidista de los vértices que definen dicho lado. Luego si llamamos O al punto de intersección

Más detalles

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS 11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d

Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d Circunferencias 6 Halla, en cada caso, el lugar geométrico de los puntos del plano cuya distancia al punto A es d. a) A(, ) y d = b) A(, ) y d = 1 c) A(, ) y d = 1 d) A( 1, ) y d = X = (x, y) punto genérico

Más detalles

ALGUNAS RELACIONES PARA RECORDAR:

ALGUNAS RELACIONES PARA RECORDAR: ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre

Más detalles

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I Unidad 8. Geometría analítica BACHILLERATO Matemáticas I Determina si los puntos A(, ), B (, ) y C (, ) están alineados. AB (, ) (, ) (, ) BC (, ) (, ) ( 8, ) Las coordenadas de AB y BC son proporcionales,

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º REPASO SOBRE TRIÁNGULOS Clasificación de los triángulos Por sus lados Propiedad La suma de los ángulos de un triángulo vale 180º A + B + C = 180 Los ángulos

Más detalles

1. Indicar para cada una de las proposiciones, si son verdaderas o falsas, justificando su determinación. + 1 = 1

1. Indicar para cada una de las proposiciones, si son verdaderas o falsas, justificando su determinación. + 1 = 1 10.7 EJERCICIOS PROPUESTOS. 1. Indicar para cada una de las proposiciones, si son verdaderas o falsas, justificando su determinación. 1.1 Si a = c, entonces, necesariamente a = c y b = d b d 1.2 Siempre

Más detalles

Relaciones geométricas IES BELLAVISTA

Relaciones geométricas IES BELLAVISTA Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

FIGURAS GEOMETRICAS PLANAS

FIGURAS GEOMETRICAS PLANAS UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

Problemas de geometría afín

Problemas de geometría afín Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema

Más detalles

EJERCICIOS de RECTAS

EJERCICIOS de RECTAS EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur (1, 2), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

La Geometría del triángulo TEMA 3

La Geometría del triángulo TEMA 3 La Geometría del triángulo TEMA 3 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) Los puntos notables de un triángulo son: Circuncentro Incentro Baricentro Ortocentro Circuncentro

Más detalles

Tema 5 Proporcionalidad y escalas

Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media

Más detalles

Seminario de problemas. Curso Soluciones hoja 5

Seminario de problemas. Curso Soluciones hoja 5 Seminario de problemas. Curso 017-18. Soluciones hoja 5 33. Hallar todos los triángulos rectángulos cuyos lados vienen dados por números enteros y tales que el número que indica su área es igual al que

Más detalles

Seminario de problemas. Curso Hoja 14

Seminario de problemas. Curso Hoja 14 Seminario de problemas. Curso 2015-16. Hoja 14 79. (a) Prueba que en cualquier conjunto de 27 números impares distintos, todos ellos menores que 100, habrá dos que sumen 102. (b) Cuántos conjuntos de 26

Más detalles

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( )

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( ) Examen de Geometría analítica del plano Curso 05/6 Ejercicio. a) Halla los dos vectores unitarios que son ortogonales al vector w = ( 3, ) w = 3, ; un vector perpendicular a w será u =,3, puesto que u

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

Geometría Moderna II

Geometría Moderna II Ma. Guadalupe Lucio Gómez Maqueo Facultad de Ciencias, UNAM Geometría Moderna II Estas notas se desarrollaron para cubrir los temas del programa de Geometría Moderna II que se imparte en la Facultad de

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º. MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono

Más detalles

Potencia de un Punto

Potencia de un Punto 1 Potencia de un Punto Luis F. Cáceres Ph.D UPR-Mayagüez Propiedad 1. Las cuerdas AB y CD se cortan en P, entonces P A P B = P C P D. Demostración. El P AC = BCD pues abren el mismo arco y AP C = BP D

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

Curso Curso

Curso Curso Problema 16. Hace 10 años las edades de Ximena, Yolanda y Zoe estaban en la relación 1 : 2 : 5. Hoy las edades de Ximena y Yolanda están en la relación 6 : 7. Cuál es la edad actual de Zoe? Problema 16.

Más detalles

Triángulo equilátero conocida su altura con el cartabón. Sobre una recta, r, se sitúa el punto, B.

Triángulo equilátero conocida su altura con el cartabón. Sobre una recta, r, se sitúa el punto, B. Elementos geométricos / Triángulo 31 Triángulo equilátero conocida su altura con el cartabón Sobre una recta, r, se sitúa el punto, B. Se traza por el punto, B, la recta perpendicular a la recta, r, y

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a? ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En

Más detalles

Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016

Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Repartido 2 Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Actividad 1 Recordando al teorema de la bisectriz interior demostrado en clase, podemos decir que en el siguiente triángulo T(ABC)

Más detalles

Problemas de entrenamiento

Problemas de entrenamiento Problemas de entrenamiento Revista Tzaloa, año 1, número Problema E1-6. (Principiante) Considera 50 puntos en el plano tales que no hay tres colineales. Cada uno de estos puntos se pinta usando uno de

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

Cuadriláteros - Áreas cuadrangulares

Cuadriláteros - Áreas cuadrangulares 3A Cuadriláteros - Áreas cuadrangulares EJERCICIOS PROPUESTOS 1. En un rombo de lado 6 cm, uno de sus ángulos mide 60º. Calcula la longitud de la diagonal menor. A. 6 cm C. 4 cm B. 5 cm D. 3 cm. En un

Más detalles

EXAMEN DE ADMISION 2008 GEOMETRÍA

EXAMEN DE ADMISION 2008 GEOMETRÍA EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar EXAMEN DE ADMISION 008 GEOMETRÍA 1. La distancia entre los puntos P1 (, -8) y P (3, 5) es: a) 13 b) 3 c) 3 d) 170 e) 170

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Seminario de problemas Curso Hoja 17. Soluciones

Seminario de problemas Curso Hoja 17. Soluciones Seminario de problemas Curso 2016-17. Hoja 17. Soluciones 105. Dos aristas opuestas de un tetraedro, de longitudes a y b, son perpendiculares. La distancia entre ambas aristas, es decir, la mínima distancia

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son

Más detalles

Perpendicularidad y paralelismo (1)

Perpendicularidad y paralelismo (1) Halla la mediatriz del segmento AB. Traza la recta perpendicular a la recta r por el punto A. Traza la perpendicular a la recta r desde el punto A. Cuál es la distancia del punto A a la recta r? Dibuja

Más detalles

Curvas definidas por puntos notables de triángulos isósceles inscritos en una circunferencia

Curvas definidas por puntos notables de triángulos isósceles inscritos en una circunferencia Curvas definidas por puntos notables de triángulos isósceles inscritos en una circunferencia PROBLEMA 4 X(1): Incentro 4 X(2): Barirentro 5 X(3): Circuncentro 5 X(4): Ortocentro 5 X(5): Centro de la circunferencia

Más detalles

Triángulos isósceles y equiláteros. Construcción

Triángulos isósceles y equiláteros. Construcción Triángulos isósceles y equiláteros Construcción Podemos construir un triángulo equilátero usando la regla y el compás. Las series de dibujos de abajo nos muestran las diferentes etapas de su construcción.

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

Unidad 8 Lugares geométricos. Cónicas

Unidad 8 Lugares geométricos. Cónicas Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola

Más detalles

Potencia y eje radical Carmela Acevedo

Potencia y eje radical Carmela Acevedo Potencia y eje radical Carmela Acevedo Potencia Definición: La potencia de un punto P respecto a una circunferencia Γ es el producto P A P B, donde A y B son los puntos de corte de una recta secante a

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula: Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8

Más detalles

2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:

2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: TRABAJO DE RECUPERACIÓN DE GEOMETRÍA de 3º ESO 1ª.- Calcula el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: a) b) 2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:

Más detalles

TEMA 5 GEOMETRÍA ANALÍTICA

TEMA 5 GEOMETRÍA ANALÍTICA TEMA 5 GEOMETRÍA ANALÍTICA Ecuación general de la recta. Una recta queda determinada por un vector que tenga su dirección (llamado vector director) y un punto que pertenezca a esa recta. Tipos de ecuaciones

Más detalles

Clasificación de polígonos según sus lados

Clasificación de polígonos según sus lados POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Geometría. Elaborado por: Jeff Maynard Guillén. Eliminatoria III

Geometría. Elaborado por: Jeff Maynard Guillén. Eliminatoria III Geometría Elaborado por: Jeff Maynard Guillén Eliminatoria III Mayo, 011 Geometría Definición Un paralelogramo es una figura ABCD con cuatro lados, los segmentos AB, BC, CD y DA tales que los pares de

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Curso Curso

Curso Curso Problema 77. Se considera un triángulo equilátero de lado 1 y centro O, y vértices A, B y C. Un rayo luminoso parte de O, se refleja una vez en cada uno de los tres lados, AB, AC y BC (en el orden dado)

Más detalles

Unidad Didáctica 8. Dibujo Geométrico

Unidad Didáctica 8. Dibujo Geométrico Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l.

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l. UNIDAD 3 LA RECTA SU ECUACIÓN CARTESIANA OBJETIVOS ESPECÍFICOS. Al término de la unidad, el alumno: Conocerá las distintas formas de representación de la recta e identificará cuál de ellas conviene usar.

Más detalles

1. Ángulos en la circunferencia

1. Ángulos en la circunferencia 1. Ángulos en la circunferencia Ángulo central. Es el que tiene el vértice en el centro de la circunferencia. Se identifica con el arco, de modo que escribiremos α = Figura 1: Ángulo central, inscrito

Más detalles

Conjugados Armónicos

Conjugados Armónicos Conjugados Armónicos Sofía Taylor Febrero 2011 1 Puntos Conjugados Armónicos Sean A y B dos puntos en el plano. Sea C un punto en el segmento AB y D uno sobre la prolongación de AB tal que: donde k es

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problemas de fases nacionales e internacionales 1.- (China 1993). Dado el paralelogramo ABCD, se consideran dos puntos E, F sobre la diagonal AC e interiores al paralelogramo. Demostrar que si existe una

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Haciendo geometría a partir de los sangaku

Haciendo geometría a partir de los sangaku Haciendo geometría a partir de los sangaku Martha Cecilia Mosquera 1 Universidad Distrital Francisco José de Caldas Teoria Sangaku Los típicos problemas Sangaku: los problemas sangakus normalmente implican

Más detalles

Teoremas de Ceva y Menelao

Teoremas de Ceva y Menelao Teoremas de Ceva y Menelao Entrenamiento #9 para 4 a etapa 12-14 de agosto de 2016 Por: Fernando y Argel Resumen Bienvenidos sean de nuevo a Geometría, el área con mayor cantidad de temas en la Olimpiada.

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Seminario de problemas. Curso 204-5. Hoja 9 57. Se pincha aleatoriamente un punto P en el interior de un triángulo equilátero ABC. Cuál es la probabilidad de que los segmentos P A, P B y P C sean los lados

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes

Más detalles

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Soluciones 1º Nivel 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en la circunferencia, como indica la figura. Solución: Por la propiedad

Más detalles