Teorema Central del Límite (1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema Central del Límite (1)"

Transcripción

1 Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico respecto a todas las muestras de tamaño n que se podrían extraer se llama distribución muestral del estadístico. Determinar cómo aumenta la representatividad de una muestra al aumentar su tamaño. Se tiene una población de N observaciones a partir de la cual se extraen muestras, X i, cada una con n observaciones. El promedio de todas las muestras sería: Cómo se distribuyen los valores de las medias muestrales? Calcular el valor esperado y la varianza de. Usar las siguientes propiedades:

2 Ejercicio: Consideremos las observaciones 1, 3, 4, 5 y 12 y obténganse todas las muestras posibles de tamaño 2. Verificar si el valor medio de todas las medias muestrales es igual a la media de la población. Si no se conoce, se puede estimar a partir de la muestra, con lo cual: s = s/

3 Teorema Central del Límite (2) El TCL establece que, en el límite, cuando el tamaño de la muestra crece, la suma (o equivalentemente la media aritmética) de un conjunto de variables aleatorias tendrá una distribución Gaussiana, sin importar la distribución de la población de la cual provienen las observaciones. Nos permite usar estadísticos muestrales para hacer inferencias con respecto a los parámetros de la población sin tener información sobre la forma de la distribución de la población, excepto la que podamos obtener de la muestra. Si la distribución de X es Gaussiana:

4 Si la distribución de X es desconocida o no es Gaussiana: Este teorema explica la importancia de la distribución Gaussiana ya que aparece de manera natural asociada a cualquier distribución si consideramos la distribución de la media muestral o de la suma de realizaciones independientes. En particular, si un error de medición se puede considerar como la suma de muchas pequeñas perturbaciones independientes, el TCL implica que la distribución de sus valores es aproximadamente Normal. Si consideramos un número grande n de variables aleatorias independientes e idénticamente distribuidas, cada una con media µ y varianza finita σ 2, entonces la variable Y = n X n se distribuye aproximadamente como una Gaussiana con media µ Y = nµ y varianza σ 2 Y = nσ 2. Z n = X n nμ σ n

5 Estimadores Estimar un parámetro de un modelo probabilístico para la distribución de una variable X, consiste en obtener una aproximación de su valor con base en las observaciones. Definición. Cualquier estadístico diseñado para aproximar el valor de un parámetro Ө del modelo, se llama estimador puntual del parámetro. Un estimador es una variable aleatoria, e.d., su valor concreto depende de la muestra escogida. Propiedades deseables de un estimador: Estimador insesgado

6 Estimador consistente

7 Estimación por intervalos. Nos permite obtener una medida del error que pensamos cometer al estimar un parámetro. Intervalo de confianza para la media µ de una distribución Normal con varianza conocida

8 PRUEBAS DE HIPÓTESIS Una hipótesis estadística es una proposición acerca del valor de un parámetro en el modelo considerado. Pruebas Paramétricas y No Paramétricas Las pruebas paramétricas se llevan a cabo en situaciones en las que sabemos o asumimos que una distribución teórica particular es una representación apropiada para los datos y/o el estadístico de prueba. Las pruebas no-paramétricas se llevan a cabo sin la necesidad de hacer suposiciones acerca de la distribución paramétrica de los datos (si la hay). Las pruebas paramétricas consisten esencialmente en hacer inferencias respecto a los parámetros de alguna distribución particular, la cual podemos considerar que representa la naturaleza de los procesos físicos de interés subyacentes.

9 Un estadístico es una cantidad calculada a partir de un conjunto de datos. Los estadísticos muestrales están sujetos a variaciones de muestreo, es decir, también son variables aleatorias y su valor cambia de una muestra a otra. Las variaciones de los estadísticos muestrales pueden describirse usando distribuciones de probabilidad denominadas distribuciones muestrales. El concepto de distribución muestral es fundamental en todas las pruebas estadísticas ya que proporciona un modelo probabilístico que describe las frecuencias relativas de los valores posibles del estadístico de prueba.

10 Elementos de cualquier prueba de hipótesis 1) Identificar un estadístico de prueba (EP) apropiado, el cual será el objeto de la prueba. En las pruebas paramétricas el EP es con frecuencia un estimador muestral de algún parámetro de una distribución de probabilidad dada. 2) Definir una hipótesis nula (H 0 ). Define un marco de referencia lógico específico contra el cual se juzga al EP observado. Con frecuencia H 0 se formula de modo que esperamos rechazarla. 3) Definir una hipótesis alternativa (H A ). Con frecuencia H A es simplemente H 0 no es verdadera. 4) Obtener la distribución nula, que es la distribución muestral del EP si suponemos que H O es verdadera. Identificar la distribución nula es la parte crucial de la prueba de hipótesis. 5) Comparar el EP observado con la distribución nula. Si el EP cae en una región suficientemente improbable de la distribución nula, H 0 es rechazada. Si el EP cae dentro del rango ordinario de valores descritos por la distribución nula, el EP es considerado como consistente con H 0 y por consiguiente no se rechaza.

11 La región suficientemente improbable de la distribución nula (región crítica o región de rechazo) está definida por el nivel de la prueba, α (nivel de significación o de significancia). El nivel de confianza de la prueba es igual a 1 α. H 0 es rechazada si la probabilidad de ocurrencia del EP (p) (de acuerdo con la distribución nula) es menor o igual que el nivel de significancia α. Dicho nivel se elige de forma arbitraria antes de realizar los cálculos. El nivel más comúnmente utilizado es el del 5% (α = 0.05), pero también se acostumbran niveles del 10% (α = 0.1) o 1% (α = 0.01). El valor p de una prueba es la probabilidad específica de que el valor observado del EP ocurrirá. Entonces, H O se rechaza si el valor p es <= α. Si rechazamos H O a un nivel de confianza dado, también la rechazaremos para cualquier nivel de confianza menor. -z α/2 z α/2

12 NOTA: El aceptar (es decir, no rechazar) H 0 no significa necesariamente que ésta sea verdadera, sino solamente que no hay evidencia suficiente para rechazarla dada la información que se tiene.

13 Tipos de errores Error Tipo I probabilidad de rechazar H O dado que de hecho es verdadera (α). Error Tipo II probabilidad de aceptar H O cuando de hecho es falsa (β). Aunque nos gustaría minimizar las probabilidades de ambos errores, esto no es posible. Podemos prescribir α pero generalmente no se puede prescribir β ya que H A se define de forma más general que H 0 y no se conoce su distribución.

14 Pruebas unilaterales y bilaterales Una prueba estadística puede ser unilateral (de una cola, one-sided) o bilateral (de dos colas, two-sided). Esto depende de la naturaleza de la hipótesis que se va a probar. Las pruebas unilaterales son apropiadas si hay una razón a priori para esperar que las violaciones de la H 0 conducirán a valores del EP sobre un lado particular de la distribución nula. La H A se establece en términos de probar si el valor verdadero es mayor (o menor) que el valor de la H O. P (-z α < Z ) = P ( Z < z α ) = 1 - α -z α z α

15 Las pruebas bilaterales son apropiadas cuando tanto valores muy grandes como muy pequeños del EP son desfavorables para la H 0. Tales pruebas pertenecen a casos en los que la H A es muy general, como H A : H 0 no es verdadera o H A : μ μ 0. La región de rechazo consiste de ambos extremos de la distribución nula. En este caso las dos porciones de la región de rechazo están delimitadas de manera que la suma de sus probabilidades bajo la distribución nula sea igual al nivel α. Si el EP es mayor o menor que el valor crítico ±z1-α/2 entonces se rechaza la hipótesis nula. P (-z α/2 < Z < z α/2 ) = 1 - α -z α/2 z α/2

16 Prueba de hipótesis para la media µ de una distribución Normal con varianza conocida Hipótesis bilateral

17 Hipótesis unilateral

18 Pruebas de hipótesis e intervalos de confianza El intervalo de confianza alrededor de un estadístico muestral consiste de otros valores posibles del estadístico para los cuales la hipótesis nula no sería rechazada. Se usan típicamente para construir barras de error alrededor de estadísticos muestrales en una gráfica. Puede pensarse que los intervalos de confianza se construyen encontrando valores del Estadístico de Prueba que no caerían en la región de rechazo, es decir, es la operación inversa de la prueba de hipótesis.

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Esta proposición recibe el nombre de hipótesis

Esta proposición recibe el nombre de hipótesis Pruebas de hipótesis tesis. Refs: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua, Apuntes de Estadística, Dr. Pedro Juan Rodríguez Esquerdo, Departamento de Matemáticas,

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua En muchas situaciones cuando queremos sacar conclusiones sobre una muestra,

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS Autor: Clara Laguna 6.1 INTRODUCCIÓN En el tema anterior estudiamos cómo a partir de una muestra podemos obtener una estimación puntual o bien establecer

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis:

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis: El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis Definición 1.- Una hipótesis es una afirmación que está sujeta a verificación

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

EJERCICIOS DE PRUEBA DE HIPOTESIS

EJERCICIOS DE PRUEBA DE HIPOTESIS EJERCICIOS DE PRUEBA DE HIPOTESIS Protocolo 1. Identifique la aseveración original que se probará y exprésela en forma simbólica 1. 2. Dar la forma simbólica que debe ser verdad si la aseveración original

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para VII. Pruebas de Hipótesis VII. Concepto de contraste de hipótesis Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

DEFINICIONES BÁSICAS

DEFINICIONES BÁSICAS 1 CLASES DE ESTADÍSTICA II CLASE 14) INTRODUCCIÓN A LAS PRUEBAS DE HIPÓTESIS. A menudo el analista debe tomar decisiones acerca de la investigación que se está desarrollando. En ese proceso de toma de

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Es una proposición o supuesto sobre los parámetros de una o más poblaciones

Es una proposición o supuesto sobre los parámetros de una o más poblaciones HIPOTESIS ESTADISTICA Es una proposición o supuesto sobre los parámetros de una o más poblaciones http://www.itch.edu.mx/academic/industrial/estadistica1/cap02.html POR LUIS M. BAQUERO ROSAS, MBA JUNIO

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No. 5 Nombre: Prueba de hipótesis Contextualización En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso Práctico El objetivo de este ejercicio es analizar diferentes tipos de pruebas estadísticas en las

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5)

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5) Análisis Estadístico de Datos Climáticos Pruebas de Hipótesis (Wilks, cap. 5) 2015 PRUEBAS DE HIPÓTESIS (o pruebas de significación) Objetivo: A partir del análisis de una muestra de datos, decidir si

Más detalles

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN Modelo: Y =! 1 +! 2 X + u Hipótesis nula: Hipótesis alternativa H 1 :!!! 2 2 Ejemplo de modelo: p =! 1 +! 2 w + u Hipótesis nula: Hipótesis alternativa: H :!! 1 2 1. Como ilustración, consideremos un modelo

Más detalles

Objetivo: Comprender cómo se calculan los intervalos de confianza y determinar el tamaño ideal de una muetra

Objetivo: Comprender cómo se calculan los intervalos de confianza y determinar el tamaño ideal de una muetra PROBABILIDAD Y ESTADÍSTICA Sesión 8 (Hasta tema 7.5) 7. PRUEBA DE HIPÓTESIS 7.1 Errores tipo I y tipo II 7.2 Potencia de la prueba 7.3 Formulación de hipótesis estadística 7.4 Prueba de hipótesis para

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones.

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones. PRUEBAS DE HIPOTESIS La prueba de hipótesis es un procedimiento estadístico que comienza con una suposición que se hace con respecto a un parámetro de población, luego se recolectan datos de muestra, se

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística Introducción a la Inferencia Estadística Prof. Jose Jacobo Zubcoff Universidad de Alicante 2008 1 Introducción En este tema explicaremos los contrastes para la media de una población normal. e estudiarán

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE 6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE HIPÓTESIS. 6.1 INFERENCIA ESTADISTICA La estadística está dividida en descriptiva e inferencial donde La estadística Descriptiva se relaciona principalmente

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

CONTRASTES DE HIPÓTESIS

CONTRASTES DE HIPÓTESIS Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS M.Carmen Carollo Contrastes de hipótesis 1 Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS A partir de una o varias muestras nos proponemos

Más detalles

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE

Más detalles

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones.

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones. La prueba de hipótesis es un procedimiento estadístico que comienza con una suposición que se hace con respecto a un parámetro de población, luego se recolectan datos de muestra, se producen estadísticas

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Prueba de Hipótesis Estadísticas. Estadística Básica - Manuel Spínola 1

Prueba de Hipótesis Estadísticas. Estadística Básica - Manuel Spínola 1 Prueba de Hipótesis Estadísticas Estadística Básica - Manuel Spínola 1 ! El uso de la estadística es una parte del método científico, pero constituye una parte importante de nuestra investigación, especialmente

Más detalles

Contrastes de hipótesis estadísticas. Contrastes paramétricos

Contrastes de hipótesis estadísticas. Contrastes paramétricos Índice 7 Contrastes de hipótesis estadísticas. Contrastes paramétricos 7.1 7.1 Introducción.......................................... 7.1 7.2 Conceptos básicos...................................... 7.2

Más detalles

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA HIPOTESIS Y PRINCIPIOS Sabemos a quién y qué vamos a estudiar. Ahora hay que decidir cuántos individuos contendrá la muestra. Hipótesis nula (H o )

Más detalles

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma er. imposio Metodología eis igma Resumen Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Ejemplos de situaciones normales Ejemplos de situaciones no normales Resumen Implicaciones

Más detalles

Proyecto Tema 8: Tests de hipótesis. Resumen teórico

Proyecto  Tema 8: Tests de hipótesis. Resumen teórico Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 8: Tests de hipótesis Resumen teórico Tests de hipótesis Concepto de test de hipótesis Un test de hipótesis (o

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

PRUEBA DE HIPÓTESIS. Juan José Hernández Ocaña

PRUEBA DE HIPÓTESIS. Juan José Hernández Ocaña PRUEBA DE HIPÓTESIS Juan José Hernández Ocaña jujo386@hotmail.com Una hipótesis es una afirmación o una suposición, sobre un parámetro de la población En cambio una prueba de hipótesis es un procedimiento

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Hipótesis Alternativa H 1 : ϑ Θ 1

Hipótesis Alternativa H 1 : ϑ Θ 1 INFERENCIA ESTADÍSTICA Tema 3.3: Contrastes de signicación Objetivos Dominar el esquema conceptual y el lenguaje propios de los contrastes de hipótesis. Construir contrastes de hipótesis para los parámetros

Más detalles

1) Características del diseño en un estudio de cohortes.

1) Características del diseño en un estudio de cohortes. Departamento de Estadística Universidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de cohortes CONCEPTOS CLAVE 1) Características del diseño en un estudio de cohortes. ) Elección del tamaño

Más detalles

Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase.

Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase. Cómo introducir Prueba de Hipótesis para una media, utilizando experimentos en el salón de clase. M. C. Blanca Evelia Flores Soto. Dpto. de Matemáticas Universidad de Sonora Introducción. Actividad desarrollada

Más detalles

Contraste de hipótesis paramétricas

Contraste de hipótesis paramétricas Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Estadística Clase 5. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 5. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 2011 Clase 5 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri 1. Test de Hipótesis Clase 5 1. Test de Hipótesis: Método del intervalo de confianza

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Introducción al Tema 6. Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral.

Introducción al Tema 6. Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral. Introducción al Tema 6 1 Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral. Esta θ en el intervalo de confianza? Tema 6. Contraste de hipótesis

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala Decisión estadística. Contraste de hipótesis Nota.- Cuando tratábamos la estimación de parámetros, intentábamos obtener un valor o un intervalo de valores que constituyesen la mejor estimación del parámetro

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

2 Pruebas de hipótesis paramétricas

2 Pruebas de hipótesis paramétricas Pruebas de hipótesis paramétricas. La hipótesis nula y la hipótesis alterna Al intentar alcanzar una decisión, es útil hacer hipótesis (o conjeturas) sobre la población aplicada. Tales hipótesis, que pueden

Más detalles