26. PLANTA DE GAS NATURAL LICUADO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "26. PLANTA DE GAS NATURAL LICUADO"

Transcripción

1 26. PLANTA DE GAS NATURAL LICUADO 1. OBJETIVOS 1.1. Determinar los grados de libertad requeridos para especificar una columna de absorción o destilación y una bomba 1.2. Simular columnas de destilación o de absorción 1.3. Simular una planta que transforma dos corrientes de gas natural en varios productos hidrocarbonados enriquecidos en alguno de ellos 2. PROCESO ESTUDIADO En el proceso a simular a continuación se utiliza un tren de tres columnas separadoras que utilizan como materia prima dos corrientes con un cierto contenido de hidrocarburos saturados. En la primera se obtiene un gas natural de alto contenido en metano; en la segunda se obtienen dos productos en forma de vapor y líquido enriquecidos en etano y en la tercera se obtienen dos productos líquidos concentrados, el uno en propano y el otro en los hidrocarburos mas pesados. La primera columna es un absorbedor con rehervidor, la segunda es una columna de destilación con condensador parcial y la tercera es una columna con condensador total. La Figura 1 muestra el diagrama de flujo final de la planta descrita La primera columna o desmetanizadora es un absorbedor con rehervidor, dos alimentos y una carga calórica. El vapor producido es rico en metano y los fondos son bombeados a una segunda columna. Para C componentes y N etapas de equilibrio, los grados de libertad requeridos para una completa especificación en esta columna son N e i = 2 C + 2N + 10 (26.1) Si se especifican, completamente, la dos corrientes de alimentación los grados de libertad requeridos para el diseño están dados por N e i = 2 N + 6 (26.2) Por lo tanto, se requieren seis especificaciones si el simulador asigna 2N especificaciones por defecto. La bomba utilizada para impulsar los fondos, requiere de C + 4 especificaciones. Si se conocen las condiciones de la corriente de entrada, queda en definitiva un faltante de dos especificaciones. La segunda columna o desetanizadora y la tercera columna o despropanizadora requieren de nueve especificaciones, de acuerdo a lo planteado en la introducción de la Práctica 23.

2 La recuperación de líquidos del gas natural es muy común en el procesamiento de este. Tiene como propósito, usualmente: 1. Producir gas transportable ( libre de hidrocarburos pesados que puedan condensar en la tubería) 2. Producir un gas con especificaciones comerciales 3. Maximizar la recuperación de líquido (cuando los productos líquidos son mas valiosos que el gas) Figura 1. Planta de gas natural licuado 3. SIMULACION EN ESTADO ESTACIONARIO 1. Abra un nuevo caso y defina el siguiente paquete fluido a. Ecuación: Peng Robinson b. Componentes: N 2, CO 2, C 1 C 8 c. Unidades: Field 2. Instale las siguientes dos corrientes materiales Nombre: F1 F2 Temperatura: F F Presión: 330 psia 332 psia Flujo molar: 3575 lbmol/h 475 lbmol/h Composición (Fracción Mol) Nitrógeno: Dióxido de carbono: Metano: Etano: Propano: i-butano:

3 n-butano: i-pentano: n-pentano: n-hexano: n-heptano: n-octano: Instale la columna Desmetanizadora con el nombre T-100 seleccionando el icono de nombre Reboiled Absorber que aparece en la paleta de objetos, y por medio del asistente, conecte las corrientes como lo muestra la Figura 2. La corriente Qe conectada al plato cuatro es una corriente de energía con un flujo calórico de 2.0e +06 Btu/h Figura 2. Corrientes conectadas a la columna desmetanizadora 4. Presione el botón Next para abrir la página (2 de 4) siguiente e introduzca la siguiente información Top Stage Pressure Reboiler Pressure 330 psia 335 psia 5. Presione el botón Next para abrir la siguiente página (3 de 4) e introducir los siguientes estimativos opcionales de temperatura Optional Top Stage Temperature Estimate F Optional Reboiler Temperature Estimate F 171

4 6. Presione el botón Next para continuar. Para este caso, no se suministra información sobre la última página del asistente y, por lo tanto, presione el botón Done. HYSYS abrirá, entonces, la ventana de propiedades de la columna que se observará como lo muestra la Figura 3. Cuántas especificaciones se han introducido hasta ahora? Figura 3. Ventana de propiedades de la columna desmetanizadora 7. Haga clic sobre la página Monitor de la pestaña Design y observará por la banda roja, como se muestra en la Figura 4, que la columna no ha convergido. En el cuadro Degrees of Freedom se nota que hay cero grado de libertad porque la especificación Flujo del Producto de Tope o Ovhd Prod Rate se encuentra verificada como activa, pero no se le ha asignado un valor numérico 8. En la especificación Ovhd Prod Rate introduzca un valor de 2950 lbmol/h, señalándola como especificación activa y desactivando las otras, si lo están 9. Presione el botón Run, si es necesario, para que la simulación alcance su convergencia como se observa en la banda verde. Observe los perfiles de temperatura, presión y flujos a través de la columna. Cuánto es la fracción mol del metano en la corriente V? Aunque la columna convergió, no es práctico especificar flujos porque pueden resultar columnas que no pueden converger o que producen corrientes de productos con propiedades indeseables si cambian las condiciones del alimento. Una alternativa es especificar o concentraciones o recuperaciones de componentes para las corrientes de producto de la columna 172

5 Figura 4. Especificaciones de la columna desmetanizadora 10. Haga clic sobre la página Specs de la pestaña Design de la ventana de propiedades de la columna 11. Presione el botón Add en el grupo Column Specifications para crear una nueva especificación 12. Seleccione la opción Column Component Fractions que aparece dentro del grupo Column Specification Types en la ventana desplegada y presione el botón Add Specs que aparece en la parte inferior 13. Para introducir una especificación de 0.96 como fracción mol en la corriente de vapor que sale de la primera etapa de la columna, llene la ventana desplegada como lo muestra la Figura Elimine la ventana anterior. La página Specs muestra un valor de cero para los grados de libertad aunque se ha añadido otra especificación. Esto se debe a que la especificación se añadió como un estimativo y no como una especificación activa 15. Abra la página Monitor y desactive la especificación Ovhd Prod Rate y active la especificación Component Fraction creada. La columna debe converger observándose la página Monitor como se muestra en la Figura 6. Cuánto es el flujo del vapor de tope de la columna desmetanizadora? 173

6 Figura 5. Especificación de la fracción mol de metano en el vapor V. Figura 6. Monitor de las especificaciones de la columna desmetanizadora 16. Observe el comportamiento y desempeño de la columna desplegando las ventanas de las pestañas Parameters, Performance y Worksheet 17. Instale una bomba para impulsar los fondos de la columna desmetanizadora como alimento a la columna desetanizadora y especifíquela de la siguiente manera: 174

7 a. Pestaña Design Página Connections i. Name. P-100 ii. Inlet F3 iii. Outlet F4 iv. Energy W1 b. Pestaña Worksheet Página Conditions i. Corriente F4 1. Pressure 405 psia 18. Instale la columna desetanizadora, haciendo doble clic sobre el icono Distillation Column que se encuentra en la paleta de objetos. Esta columna opera a 2760 kpa, contiene 14 etapas de equilibrio y su objetivo es producir un producto de fondo que contenga etano en una relación de 0.01 con respecto al propano. Introduzca la siguiente información Connections Página 1 de 4 Name T-101 No. of Stages 14 Feed Stream / Stage F4 / 6 Condenser Type Partial Overhead Outlets V1, D1 Bottoms Liquid Outlet F5 Reboiler Energy Stream Qr1 Condenser Energy Stream Qc1 Pressure Profile Página 2 de 4 Condenser Pressure Condenser Pressure Drop Reboiler Pressure 395 psia 5 psi 405 psia Optional Estimates Página 3 de 4 Optional Condenser Temperature Estimate 25 F Optional Reboiler Temperature Estimate 200 F 19. Presione el botón Done en la página 4 y haga clic sobre la página Monitor de la ventana de propiedades de la columna e introduzca las siguientes especificaciones verificadas como activas. Overhead Vapour Rate Distillate Rate Reflux Ratio 700 lbmole / hr 0 kgmole / hr 2.5 (Molar) 175

8 20. Presione el botón Run para correr la columna. Cuánto es el flujo de etano y propano en la corriente de fondos de la columna desetanizadora? Cuánto es la relación de dichos flujos? Se cumple la relación deseada? 21. Abra la página Specs y presione el botón Add para crear una nueva especificación 22. Seleccione la opción Column Component Ratio como el tipo de especificación e introduzca la información que aparece en la Figura 7 Figura 7. Relación entre etano y propano en los fondos de la desetanizadora 23. En la página Monitor desactive la especificación Ovhd Vap Rate y active la especificación C2 / C3 creada. La simulación debe converger porque se ha especificado completamente. Cuánto es la concentración de etano y propano en la corriente de fondos de la desetanizadora? Cuánto es la relación entre sus flujos en dicha corriente? Se cumple la relación especificada 24. Observe el desempeño de la columna de destilación 25. Instale una válvula con el objeto de expandir la corriente de fondos de la columna desetanizadora antes de alimentarse a la columna despropanizadora. Especifique la válvula de la siguiente manera. a. Pestaña Design Página Connections i. Nombre VLV-100 ii. Entrada F5 iii. Salida F6 b. Pestaña Worksheet Página Conditions i. F6 245 psia 176

9 26. Instale la columna despropanizadora, haciendo doble clic sobre el icono Distillation Column que se encuentra en la paleta de objetos. Esta columna opera a 1520 kpa, contiene 24 etapas de equilibrio. Se buscan dos objetivos con esta columna. El primero es producir un producto de cabeza que no contenga mas del 1.5 % molar de i-c 4 y n-c 4, y el segundo es que la concentración de propano en el producto de fondo debe ser menor que 2 % molar. Introduzca la siguiente información Connections Página 1 de 4 Name T-102 No. of Stages 24 Feed Stream / Stage F6 / 11 Condenser Type Total Overhd Liquid Outlet D2 Bottoms Liquid Outlet F5 Reboiler Energy Stream Qr2 Condenser Energy Stream Qc2 Pressure Profile Página 2 de 4 Condenser Pressure Condenser Pressure Drop Reboiler Pressure 230 psia 5 psi 240 psia 27. Presione el botón Done y haga clic sobre la página Monitor de la ventana de propiedades de la columna e introduzca las siguientes especificaciones verificadas como activas. Distillate Rate Reflux Ratio 240 kgmole / hr 1.0 (Molar) 28. Presione el botón Run para correr la columna. Cuánto es la fracción molar de propano en las corrientes de tope y fondo de la columna despropanizadora? 29. Abra la página Specs y presione el botón Add para crear dos nuevas especificaciones. 30. Para especificar la composición de los butanos en el tope de la columna, seleccione la opción Column Component Fraction como el tipo de especificación e introduzca la información que aparece en la Figura Para especificar la concentración de propano en el fondo, seleccione la opción Column Component Fraction como el tipo de especificación e introduzca la información que aparece en la Figura

10 Figura 8. Fracción molar de butanos en el condensador de la despropanizadora Figura 9. Concentración de propano en el fondo de la despropanizadora 32. En la página Monitor desactive las especificaciones Distillate Rate y Reflux Ratio y active las especificaciones i-c4 + n-c3 y C3 creadas 33. Observe los resultados sobre el comportamiento de la columna después que la simulación haya convergido 178

24. COLUMNA DE DESTILACIÓN DESBUTANIZADORA

24. COLUMNA DE DESTILACIÓN DESBUTANIZADORA 24. COLUMNA DE DESTILACIÓN DESBUTANIZADORA 1. OBJETIVOS 1.1. Determinar los grados de libertad requeridos para especificar una columna de destilación con dos alimentos 1.2. Simular, en estado estacionario,

Más detalles

25. SEPARACION DE UNA MEZCLA PROPILENO-PROPANO

25. SEPARACION DE UNA MEZCLA PROPILENO-PROPANO 25. SEPARACION DE UNA MEZCLA PROPILENO-PROPANO 1. OBJETIVOS 1.1. Simular, en estado estacionario, una columna de destilación de una mezcla propileno propano construida mediante el botón Custom Column de

Más detalles

8. PROCESOS CON RECICLO

8. PROCESOS CON RECICLO 8. PROCESOS CON RECICLO 1. OBJETIVOS 1.1. Especificar una corriente a partir de las especificaciones de otra corriente 1.2. Utilizar el botón Reciclo para estimar las propiedades de una corriente de recirculación

Más detalles

27. PLANTA DE PRODUCCIÓN DE ETANOL

27. PLANTA DE PRODUCCIÓN DE ETANOL 27. PLANTA DE PRODUCCIÓN DE ETANOL 1. OBJETIVOS 1.1. Determinar los grados de libertad requeridos para una especificación completa de diversas columnas de absorción y destilación 1.2. Aplicar un modelo

Más detalles

4. DIVISORES, MEZCLADORES Y FRACCIONADORES

4. DIVISORES, MEZCLADORES Y FRACCIONADORES 4. DIVISORES, MEZCLADORES Y FRACCIONADORES 1. OBJETIVOS 1.1. Determinar las variables de diseño de un divisor, un mezclador y un fraccionador de corrientes 1.2. Simular el desempeño de un mezclador, un

Más detalles

14. PLANTA DE DESHIDRATACIÓN DE ETANOL

14. PLANTA DE DESHIDRATACIÓN DE ETANOL 14. PLANTA DE DESHIDRATACIÓN DE ETANOL 1. OBJETIVOS 1.1. Simular un proceso con dos paquetes fluidos 1.2. Utilizar el botón Sub-Flowsheet para simular una sección dentro de un proceso químico 1.3. Simular

Más detalles

5. CICLO DE REFRIGERACIÓN

5. CICLO DE REFRIGERACIÓN 5. CICLO DE REFRIGERACIÓN 1. OBJETIVOS 1.1. Determinar los grados de libertad en los elementos de un ciclo de refrigeración 1.2. Simular un ciclo de refrigeración 1.3. Determinar los requerimientos energéticos

Más detalles

9. COMPRESION DE UN GAS EN TRES ETAPAS

9. COMPRESION DE UN GAS EN TRES ETAPAS 9. COMPRESION DE UN GAS EN TRES ETAPAS 1. OBJETIVOS 1.1. Especificar una corriente a partir de las especificaciones de otra corriente 1.2. Utilizar el botón Reciclo para calcular una corriente de recirculación

Más detalles

16. BALANCES DE MATERIA

16. BALANCES DE MATERIA 16. BALANCES DE MATERIA 1. OBJETIVOS 1.1. Hacer un balance global de materia entre dos corrientes manteniendo constante el flujo de materia 1.2. Analizar las especificaciones de las corrientes balanceadas

Más detalles

13. REACTOR CSTR. X r

13. REACTOR CSTR. X r 13. REACTOR CSTR 1. OBJETIVOS 1.1. Definir paquetes fluidos que incluyan reacciones de tipo cinético 1.2. Determinar los grados de libertad requeridos para simular un reactor CSTR de tipo cinético 1.3.

Más detalles

23. COLUMNA DESPOJADORA DE AGUA ACIDA

23. COLUMNA DESPOJADORA DE AGUA ACIDA 23. COLUMNA DESPOJADORA DE AGUA ACIDA 1. OBJETIVOS 1.1. Simular, en estado estacionario, una columna de destilación rigurosa 1.2. Especificar una columna de destilación rigurosa para completar sus grados

Más detalles

20. PLANTA DE PRODUCCIÓN DE GAS DE SÍNTESIS

20. PLANTA DE PRODUCCIÓN DE GAS DE SÍNTESIS 20. PLANTA DE PRODUCCIÓN DE GAS DE SÍNTESIS 1. OBJETIVOS 1.1. Especificar una reacción de equilibrio 1.2. Construir conjuntos de reacciones y anexarlos a un paquete fluido 1.3. Simular una planta para

Más detalles

21. PLANTA DE ENFRIAMIENTO DE UN GAS

21. PLANTA DE ENFRIAMIENTO DE UN GAS 21. PLANTA DE ENFRIAMIENTO DE UN GAS 1. OBJETIVOS 1.1. Simular, en estado estacionario, una versión simplificada de una planta de enfriamiento de un mezcla de hidrocarburos gaseosa 1.2. Ajustar la temperatura

Más detalles

15. REACCION CATALITICA HETEROGENEA

15. REACCION CATALITICA HETEROGENEA 15. REACCION CATALITICA HETEROGENEA 1. OBJETIVOS 1.1. Especificar la cinética de una reacción catalítica heterogénea 1.2. Simular, en estado estacionario, un reactor PFR, con una reacción catalítica heterogénea

Más detalles

11. REACTOR DE CONVERSION

11. REACTOR DE CONVERSION 11. REACTOR DE CONVERSION 1. OBJETIVOS 1. Simular, en estado estacionario un reactor de conversión 2. Relacionar dos variables mediante la opción Set de HYSYS 3. Verificar los resultados obtenidos por

Más detalles

19. BALANCE GENERAL 1. OBJETIVOS

19. BALANCE GENERAL 1. OBJETIVOS 19. BALANCE GENERAL 1. OBJETIVOS 1.1. Calcular, mediante HYSYS, los flujos y las composiciones desconocidas en un mezclado entre dos corrientes. 1.2. Verificar los resultados reportados por HYSYS en cálculos

Más detalles

14. REACTOR PFR 1. OBJETIVOS

14. REACTOR PFR 1. OBJETIVOS 14. REACTOR PFR 1. OBJETIVOS 1.1. Definir paquetes fluidos que incluyan reacciones de tipo cinético 1.2. Determinar los grados de libertad requeridos para simular un reactor PFR de tipo cinético 1.3. Simular,

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 11: Uso de operaciones lógicas de HYSYS.

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 11: Uso de operaciones lógicas de HYSYS. UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 11: Uso de operaciones lógicas de HYSYS. 1. Introducción al uso de operaciones lógicas HYSYS dispone de varias

Más detalles

13. SISTEMA DE ENFRIAMIENTO

13. SISTEMA DE ENFRIAMIENTO 13. SISTEMA DE ENFRIAMIENTO 1. OBJETIVOS 1.1. Simular, en estado estacionario, un sistema de enfriamiento de una mezcla de hidrocarburos livianos a baja temperatura 1.2. Minimizar la suma de los productos

Más detalles

12. PROCESO DEL ETIL BENCENO

12. PROCESO DEL ETIL BENCENO 12. PROESO DEL ETIL BENENO 1. OBJETIVOS 1.1. Simular, en estado estacionario, el proceso de Síntesis del Etil Benceno a partir de Benceno y Etileno, asistido por HYSYS. 1.2. Analizar el sistema de reacción

Más detalles

11. PROCESO DE ALQUILACION

11. PROCESO DE ALQUILACION 11. PROCESO DE ALQUILACION 1. OBJETIVOS 1.1. Simular en estado estacionario, un proceso de Alquilación asistido por HYSYS. 1.2. Analizar sistemas de reacción con sistemas de separación en serie. 1.3. Analizar

Más detalles

6. DESTILACION AZEOTROPICA POR CAMBIO DE PRESIONES

6. DESTILACION AZEOTROPICA POR CAMBIO DE PRESIONES 6. DESTILACION AZEOTROPICA POR CAMBIO DE PRESIONES 1. OBJETIVOS 1.1. Simular la destilación azeotrópica de una mezcla de tetrahidrofurano y agua por cambio de presiones asistida por HYSYS 1.2. Analizar

Más detalles

Planta Deshidratadora/Regeneradora de TEG

Planta Deshidratadora/Regeneradora de TEG UNIVERSIDAD TECNOLÓGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química INTEGRACIÓN IV Año 2001 Trabajo Práctico Regularizador Nº 1 Planta Deshidratadora/Regeneradora de TEG La

Más detalles

9. REACTOR TUBULAR CON RECICLO LIQUIDO

9. REACTOR TUBULAR CON RECICLO LIQUIDO 9. REACTOR TUBULAR CON RECICLO LIQUIDO 1. OBJETIVOS 1.1. Simular el comportamiento de un reactor tubular con reciclo de líquido purificado mediante destilación, en estado estacionario, y asistido por HYSYS

Más detalles

8. DESTILACION AZEOTROPICA HETEROGENEA

8. DESTILACION AZEOTROPICA HETEROGENEA 8. DESTILACION AZEOTROPICA HETEROGENEA 1. OBJETIVOS 1.1. Simular, en estado estacionario, una columna de destilación azeotrópica heterogénea asistida por HYSYS 1.2. Simular, en estado dinámico, una columna

Más detalles

2. FUNCION DE TRANSFERENCIA

2. FUNCION DE TRANSFERENCIA 2. FUNCION DE TRANSFERENCIA 1. OBJETIVOS 1.1. Simular, en estado estacionario y dinámico, un proceso de mezclado asistido por HYSYS 1.2. Diseñar el tanque, las válvulas y la bomba instaladas para controlar

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 9: Diseño de columnas de destilación con HYSYS

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 9: Diseño de columnas de destilación con HYSYS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 9: Diseño de columnas de destilación con HYSYS Diseño básico una la torre de destilación Vamos a diseñar una

Más detalles

5. CONTROL DE UNA COLUMNA DESPROPANIZADORA

5. CONTROL DE UNA COLUMNA DESPROPANIZADORA 5. CONTROL DE UNA COLUMNA DESPROPANIZADORA 1. OBJETIVOS 1.1. Simular, en estado estacionario y dinámico, la operación de una columna de destilación simple 1.2. Estimar el tamaño el diámetro de una columna

Más detalles

3. Selección del paquete termodinámico de fluidos: Para las propiedades de los componentes se usará el paquete NRTL. Dar clic en Fluid Packages (figur

3. Selección del paquete termodinámico de fluidos: Para las propiedades de los componentes se usará el paquete NRTL. Dar clic en Fluid Packages (figur SIMULACION DE UNA EXTRACCION LIQUIDA Se realizará la extracción de una corriente de 1 kgmol/s de composición 60 % molar en agua y 40 % molar en acetona, usando 1 kgmol/s de metil isobutil cetona (pura)

Más detalles

b. Seleccionar los componentes: Add > Hysys (figura 3) Figura 3. Adición de los compuestos de la simulación. Buscar los componentes: ethane, propane,

b. Seleccionar los componentes: Add > Hysys (figura 3) Figura 3. Adición de los compuestos de la simulación. Buscar los componentes: ethane, propane, SIMLUACIÓN DE LA SEPARACIÓN DINÁMICA DE UNA MEZCLA DE HIDROCARBUROS (SINTONIZACIÓN DE CONTROLADORES MEDIANTE HYSYS) Se realizará la simulación dinámica del proceso descrito en la figura 1: Figura 1. Diagrama

Más detalles

2. CORRIENTES Y MEZCLAS

2. CORRIENTES Y MEZCLAS 2. CORRIENTES Y MEZCLAS 1. OBJETIVOS 1.1. Especificar corrientes de materia y energía para desarrollar una simulación de un proceso químico en HYSYS 1.2. Manejar algunas herramientas incluidas en el simulador

Más detalles

Buscar los componentes: CO, O 2, CO 2, N 2 ; se seleccionan y clic en Add (figura 2). Figura 2. Selección de los componentes. 3. Selección del paquete

Buscar los componentes: CO, O 2, CO 2, N 2 ; se seleccionan y clic en Add (figura 2). Figura 2. Selección de los componentes. 3. Selección del paquete CALOR DE COMBUSTIÓN Caso: Se quema por completo monóxido de carbono a 50 F y una presión de 2 atm con 50 % de aire en exceso que está a 1000 F. Los productos de la combustión salen de la cámara de combustión

Más detalles

ESTUDIO HIDRÁULICO DE LAS TORRES DE DESTILACIÓN DE LA PLANTA DE FRACCIONAMIENTO ULÉ (GLP2) BAJO EL ESCENARIO OPERACIONAL DEL CCO

ESTUDIO HIDRÁULICO DE LAS TORRES DE DESTILACIÓN DE LA PLANTA DE FRACCIONAMIENTO ULÉ (GLP2) BAJO EL ESCENARIO OPERACIONAL DEL CCO 2010 ESTUDIO HIDRÁULICO DE LAS TORRES DE DESTILACIÓN DE LA PLANTA DE FRACCIONAMIENTO ULÉ (GLP2) BAJO EL ESCENARIO OPERACIONAL DEL CCO Con la puesta en servicio del Complejo Criogénico de Occidente (CCO),

Más detalles

Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial

Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial PRÁCTICA No 5 LABORATORIO DE OPERACIONES UNITARIAS III Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial Facilitador: Ing. MSc. José Alexander Colina 1 SISTEMAS

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV

UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química Cátedra: Integración IV Tema: Aplicación del simulador HYSYS para desarrollar el modelo estacionario de una

Más detalles

8. REACTOR TUBULAR CON RECICLO GASEOSO

8. REACTOR TUBULAR CON RECICLO GASEOSO 8. REACTOR TUBULAR CON RECICLO GASEOSO 1. OBJETIVOS 1.1. Simular el comportamiento de un reactor tubular con reciclo de energía, en estado estacionario, y asistido por HYSYS 1.2. Analizar el efecto de

Más detalles

Aspen Plus Sesión de ayuda: Destilación

Aspen Plus Sesión de ayuda: Destilación Aspen Plus Sesión de ayuda: Destilación Opciones de destilación: Existen tres métodos en Aspen Plus a) DSTWU b) DISTL c) RADFRAC B1 DIST FEED BOTTOM DSTWU Este enfoque utiliza el método corto Winn-Underwood-Gilliland

Más detalles

Proyecto 5 de la asignatura de Modelado y Simulación de procesos químicos. Curso PRODUCCIÓN DE ÓXIDO DE ETILENO

Proyecto 5 de la asignatura de Modelado y Simulación de procesos químicos. Curso PRODUCCIÓN DE ÓXIDO DE ETILENO Proyecto 5 de la asignatura de Modelado y Simulación de procesos químicos. Curso 2006-2007 PRODUCCIÓN DE ÓXIDO DE ETILENO El óxido de etileno ha sido comercialmente fabricado mediante dos procesos claramente

Más detalles

3. PROPIEDADES DE CORRIENTES DE MATERIA

3. PROPIEDADES DE CORRIENTES DE MATERIA 3. PROPIEDADES DE CORRIENTES DE MATERIA 1. OBJETIVOS 1.1. Construir diagramas de propiedades de estado de una mezcla 1.2. Determinar las propiedades críticas de una mezcla 1.3. Estimar propiedades físicas,

Más detalles

EJERCICIO 4 INTERFASE DE USUARIO

EJERCICIO 4 INTERFASE DE USUARIO EJERCICIO 4 INTERFASE DE USUARIO Para mostrar el manejo de la interfase de, se preparará una simulación básica paso a paso. La secuencia general de pasos que se seguirá en este ejercicio es la misma que

Más detalles

10. PROCESO DE HIDRODESALQUILACIÓN

10. PROCESO DE HIDRODESALQUILACIÓN 10. PROCESO DE HIDRODESALQUILACIÓN 1. OBJETIVOS 1.1. Simular, en estado estacionario, el proceso de hidrodesalquilación del tolueno para producir benceno. 1.2. Simular el comportamiento de un reactor tubular

Más detalles

1. SINTONIZACION DE CONTROLADORES MEDIANTE HYSYS

1. SINTONIZACION DE CONTROLADORES MEDIANTE HYSYS 1. SINTONIZACION DE CONTROLADORES MEDIANTE HYSYS 1. OBJETIVOS 1.1. Simular, en estado estacionario y dinámico, la separación de fases adiabática de una mezcla de hidrocarburos 1.2. Diseñar el separador,

Más detalles

Aspen HYSYS. Tutorials and Applications

Aspen HYSYS. Tutorials and Applications Aspen HYSYS Tutorials and Applications CURSO BÁSICO DE SIMULACIÓN DE PROCESOS CON ASPEN HYSYS 2006 CONTENIDO: Modelos Termodinámicos, Componentes y Propiedades Paquete Fluido Corrientes y Mezclas Propiedades

Más detalles

En primer lugar colocaremos un separador Flash con las corrientes materiales de entrada y salida correspondientes.

En primer lugar colocaremos un separador Flash con las corrientes materiales de entrada y salida correspondientes. OBJETIVO Los objetivos de este caso son la selección del modelo termodinámico más adecuado para la mezcla de hidrocarburos a estudiar, el cálculo del aumento de presión mínimo necesario para conseguir

Más detalles

Figura 2. Selección de los componentes. 3. Selección del paquete termodinámico de fluidos: Para las propiedades de los componentes se usará el paquete

Figura 2. Selección de los componentes. 3. Selección del paquete termodinámico de fluidos: Para las propiedades de los componentes se usará el paquete TEMPERATURA ADIABÁTICA DE LLAMA Caso: Calcule la temperatura de flama teórica para CO gaseoso quemado a presión constante con 100% de aire en exceso, si los reactivos entran a 100 C y 1 atm. (Ejemplo 5.25

Más detalles

UNIVERSIDAD NACIONAL DE LA AMAZONÍA PERUANA FACULTAD DE INGENIERÍA QUÍMICA TESIS

UNIVERSIDAD NACIONAL DE LA AMAZONÍA PERUANA FACULTAD DE INGENIERÍA QUÍMICA TESIS UNIVERSIDAD NACIONAL DE LA AMAZONÍA PERUANA FACULTAD DE INGENIERÍA QUÍMICA TESIS SIMULACIÓN DE UNA COLUMNA DE DESTILACIÓN PARA LA SEPARACIÓN DE PROPANO-PROPILENO USANDO ASPEN HYSYS 8.0 Para optar el título

Más detalles

4. CONTROL DE UN REACTOR TUBULAR CON FLUJO TAPON

4. CONTROL DE UN REACTOR TUBULAR CON FLUJO TAPON 4. CONTROL DE UN REACTOR TUBULAR CON FLUJO TAPON 1. OBJETIVOS 1.1. Simular, en estado estacionario, un reactor tubular con flujo tapón exotérmico asistido por HYSYS 1.2. Analizar los cambios en las condiciones

Más detalles

ANALYSIS OF CONTROL STRATEGIES OF THE SECTION OF DEPROPANIZATION AT THE PETROCHEMICAL PLANT JOSÉ MARÍA MORELOS Y PAVÓN OF PEMEX

ANALYSIS OF CONTROL STRATEGIES OF THE SECTION OF DEPROPANIZATION AT THE PETROCHEMICAL PLANT JOSÉ MARÍA MORELOS Y PAVÓN OF PEMEX .. ANÁLISIS DE LAS ESTRATEGIAS DE CONTROL DE LA SECCIÓN DE DESPROPANIZACIÓN EN LA PLANTA PETROQUÍMICA JOSÉ MARÍA MORELOS Y PAVÓN DE PEMEX ANALYSIS OF CONTROL STRATEGIES OF THE SECTION OF DEPROPANIZATION

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

Para la separación se dispone de 3 columnas diseñadas para trabajar entre 1-20 bares y la relación de reflujo máxima 10.

Para la separación se dispone de 3 columnas diseñadas para trabajar entre 1-20 bares y la relación de reflujo máxima 10. OBJETIVO El objetivo es la separación de una mezcla de cuatro hidrocarburos en sus componentes individuales con una pureza superior al 98%. La corriente de alimentación se alimenta a 40ºC 20 bar, y su

Más detalles

A2.-HYSYS. Tal como se describió en el capítulo ocho los objetivos de esta tesis requieren del

A2.-HYSYS. Tal como se describió en el capítulo ocho los objetivos de esta tesis requieren del A2.-HYSYS Tal como se describió en el capítulo ocho los objetivos de esta tesis requieren del uso de un simulador. La función de este es proporcionar información acerca del caso de estudio práctico de

Más detalles

Diseño e Ingeniería de Procesos Dr. Martín Rivera Toledo

Diseño e Ingeniería de Procesos Dr. Martín Rivera Toledo Diseño e Ingeniería de Procesos Dr. Martín Rivera Toledo Tarea 4: Métodos heurísticos Francisco José Guerra Millán Adelwart Struck Garza Felipe Suberbie Rocha México D.F., 30 de octubre de 2008. Tarea

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS 1. Sistemas de bombeo Bomba centrífuga La operación

Más detalles

VI. Resultados. seleccionada, se propone un método basado en la simulación de estas columnas, utilizando

VI. Resultados. seleccionada, se propone un método basado en la simulación de estas columnas, utilizando VI. Resultados Para poder resolver el problema de diseño de los sistemas de tipo Petlyuk con la mezcla seleccionada, se propone un método basado en la simulación de estas columnas, utilizando el simulador

Más detalles

VII. PROCESO Análisis y Diagnóstico de la situación de la batería de separación.

VII. PROCESO Análisis y Diagnóstico de la situación de la batería de separación. VII. PROCESO. 7. 1 Análisis y Diagnóstico de la situación de la batería de separación. El sector estudiado cuenta con una Batería que se ubica en el Estado de Chiapas. Esta Batería ha estado en operación

Más detalles

Universidad Autónoma Metropolitana

Universidad Autónoma Metropolitana Universidad Autónoma Metropolitana Proyecto de Integración en Ingeniería Química Diseño y simulación del proceso de destilación para la purificación de óxido de etileno Axel Santín Chávez Matrícula: 209330014

Más detalles

Tabla 3. Corrientes 1-6 topología acíclica

Tabla 3. Corrientes 1-6 topología acíclica Capítulo 5. Resultados 5.1 Síntesis evolutiva y efecto de agua en el reactor 5.1.1 Topología acíclica Para comenzar a construir las topologías se hizo con una topología acíclica para conocer cuál es el

Más detalles

Práctica 3. Evaluación de columnas de destilación usando simulador de procesos

Práctica 3. Evaluación de columnas de destilación usando simulador de procesos Práctica 3. Evaluación de columnas de destilación usando simulador de procesos Facilitador: - Ing. Johemar Almera - - Ing. Zoraida Carrasquero - - Ing. Jhoanna Ramones - Ing. Ramón Quintero Reyes Punto

Más detalles

Conocimientos de Química Industrial, Termodinámica y Operaciones Unitarias.

Conocimientos de Química Industrial, Termodinámica y Operaciones Unitarias. 1. IDENTIFICACION. Materia: TECNOLOGIA DEL GAS NATURAL Códigos: SIRE: 6069 EIQ: IQ-ET44 Prelación: IQ-5027, IQ-5017 Ubicación: Electiva TPLU: 3-2-0-4 Condición: Electiva Departamento: Operaciones Unitarias

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Ejercicio propuesto 8.

Ejercicio propuesto 8. Ejercicio propuesto 8. (Marcilla Gomis; Tema 6) Se desea diseñar una columna de rectificación continua de pisos de campanas para obtener un destilado conteniendo 96% en moles de benceno y 4% de tolueno,

Más detalles

Adicionando corrientes Ingresando Corrientes desde la Paleta de Objetos: doble clic Stream Name

Adicionando corrientes Ingresando Corrientes desde la Paleta de Objetos: doble clic Stream Name La Paleta de Objetos se usa para seleccionar el equipo o el tipo de corriente que queremos introducir en el sistema de simulación. Para ocultar o hacer visible la paleta de objetos hay que pulsar F4 o

Más detalles

Química de Procesos QUI-025 Taller N 8

Química de Procesos QUI-025 Taller N 8 Universidad Técnica Federico Santa María Departamento de Química ICIPEV 10 de Enero de 2009 Química de Procesos QUI-025 Taller N 8 1. La reacción: 2A + 5B 3C + 6D, se efectúa en un reactor con 60% de conversión

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Departamento de Ingeniería Química. INTEGRACIÓN IV. Año: Trabajo práctico Nro.

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Departamento de Ingeniería Química. INTEGRACIÓN IV. Año: Trabajo práctico Nro. UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. INTEGRACIÓN IV Año: 2003 Trabajo práctico Nro. 8 Uso de Hysys. Simulación de un Proceso de Refinación de Petróleo.

Más detalles

El objetivo de este caso es estudiar los modelos termodinámicos que mejor se ajustan al sistema isobutano-n-butano.

El objetivo de este caso es estudiar los modelos termodinámicos que mejor se ajustan al sistema isobutano-n-butano. A OBJETIVO: El objetivo de este caso es estudiar los modelos termodinámicos que mejor se ajustan al sistema isobutano-n-butano. PROCEDIMIENTO: Para poder ver la bondad de los distintos modelos termodinámicos,

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 4: La conservación de la materia Procesos sin reacción química

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 4: La conservación de la materia Procesos sin reacción química 76.01 - INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I GUÍA DE TRABAJOS PRÁCTICOS MÓDULO 4: La conservación de la materia Procesos sin reacción química LA CONSERVACIÓN DE LA MATERIA - PROCESOS SIN REACCIÓN QUÍMICA

Más detalles

SIMULACIÓN Y DISEÑO DE PROCESOS INDUSTRIALES POR ORDENADOR Problemas a resolver con el programa FLASH

SIMULACIÓN Y DISEÑO DE PROCESOS INDUSTRIALES POR ORDENADOR Problemas a resolver con el programa FLASH SIMULACIÓN Y DISEÑO DE PROCESOS INDUSTRIALES POR ORDENADOR Problemas a resolver con el programa FLASH 1. Resuelve los siguientes cálculos de equilibrio. En todos los casos se debe determinar la temperatura,

Más detalles

EJERCITACIÓN PRÁCTICA CATEDRA PROCESOS INDUSTRIALES II 2014

EJERCITACIÓN PRÁCTICA CATEDRA PROCESOS INDUSTRIALES II 2014 EJERCITACIÓN PRÁCTICA CATEDRA PROCESOS INDUSTRIALES II 2014 Se proponen los siguientes casos de estudio. Se pretende en general resolver las problemáticas planteadas según las consignas propuestas en cada

Más detalles

Laboratorio de Captura de CO 2 del INEEL

Laboratorio de Captura de CO 2 del INEEL Laboratorio de Captura de CO 2 del INEEL Elvia María Palacios Lozano María Vita Peralta Martínez Jordán Pérez Sánchez Pablo René Díaz Herrera Alan Martín Zavala Guzmán* *alan.zavala@iie.org.mx Noviembre

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química INTEGRACIÓN IV

UNIVERSIDAD TECNOLÓGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química INTEGRACIÓN IV UNIVERSIDAD TECNOLÓGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química INTEGRACIÓN IV Año 001 Introducción al uso de Hysys Simulación en Estado Estacionario para la Ingeniería

Más detalles

El diseño de una columna de destilación térmicamente acoplada tipo Petlyuk no

El diseño de una columna de destilación térmicamente acoplada tipo Petlyuk no 6. MATERIALES Y MÉTODOS 6.1 Planteamiento del Problema El diseño de una columna de destilación térmicamente acoplada tipo Petlyuk no es una tarea sencilla, ya que existen muchos parámetros que deben ser

Más detalles

PROCESO QUIMICO ANALISIS ESTRUCTURAL

PROCESO QUIMICO ANALISIS ESTRUCTURAL PROCESO QUIMICO ANALISIS ESTRUCTURAL DIAGRAMA DE ENTRADAS Y SALIDAS I/O O = Función(I, Proceso) I: Fuerza Motriz para el Cambio Proceso: I O O I / Proceso PROCESO QUÍMICO DIAGRAMA DE ENTRADAS Y SALIDAS

Más detalles

Índice. 1. Inicio del Programa Datos Modelo Dinámico Control Operación Personalizada Excel

Índice. 1. Inicio del Programa Datos Modelo Dinámico Control Operación Personalizada Excel MANUAL DE USUARIO Índice 1. Inicio del Programa 3 2. Datos 5 3. Modelo Dinámico 7 4. Control 8 5. Operación Personalizada 9 6. Excel 10 7. Ayuda 11-2- 1. Inicio del Programa Requisitos: -MatLab 7.6 R2008a

Más detalles

SIMULACIÓN Y OPTIMIZACIÓN DE PROCESOS QUÍMICOS

SIMULACIÓN Y OPTIMIZACIÓN DE PROCESOS QUÍMICOS SIMULACIÓN Y OPTIMIZACIÓN DE PROCESOS QUÍMICOS GUÍA DE LA PRÁCTICA 2 Ángel L. Villanueva Perales Departamento de Ingeniería Química y Ambiental Universidad de Sevilla Marzo 2010 TABLA DE CONTENIDOS TABLA

Más detalles

1. ADMINISTRADOR BÁSICO DE LA SIMULACIÓN

1. ADMINISTRADOR BÁSICO DE LA SIMULACIÓN 1. ADMINISTRADOR BÁSICO DE LA SIMULACIÓN 1. OBJETIVOS 1.1. Seleccionar los elementos básicos requeridos para desarrollar la simulación de un proceso químico en HYSYS 1.2. Manejar algunas herramientas incluidas

Más detalles

Simulación de Procesos de Acondicionamiento del Gas Natural.

Simulación de Procesos de Acondicionamiento del Gas Natural. CONGRESO REGIONAL de ciencia y tecnología NOA 2002 Secretaría de Ciencia y Tecnología Universidad Nacional de Catamarca PRODUCCIONES CIENTÍFICAS. Sección: Ciencias de la Ingeniería, Agronomía y Tecnología.

Más detalles

ANÁLISIS DE LOS DIFERENTES DIAGRAMAS DE FLUJO DE PROCESO

ANÁLISIS DE LOS DIFERENTES DIAGRAMAS DE FLUJO DE PROCESO CAPITULO VI SIMULACIÓN PARA DEFINIR EL PROCESO Y LAS CONDICIONES MÁS ADECUADAS DE OPERACIÓN DE LA BATERÍA PUERTO CEIBA. PROBLEMÁTICA Con lo que respecta a la infraestructura para el manejo de la producción

Más detalles

Colección de problemas. Tecnología Química General.

Colección de problemas. Tecnología Química General. Colección de problemas. Tecnología Química General. Curso 2001/2002 Balance de materia en una unidad de proceso sin reacción. Problema 1 Una solución compuesta de 50% de etanol, 10% de metanol y 40% de

Más detalles

Balance de materia, con Reacción Química

Balance de materia, con Reacción Química Balance de materia, con Reacción Química Alejandra Sánchez B. 2012 Introducción: Hasta ahora hemos estudiado que la masa de cada compuesto se conserva. Esto es totalmente válido en aquellos sistemas en

Más detalles

Destilación - Método del polo de operación II. Problemas. Problemas de Operaciones Unitarias II Ingeniería Química 1

Destilación - Método del polo de operación II. Problemas. Problemas de Operaciones Unitarias II Ingeniería Química 1 Destilación - Método del polo de operación II Problemas PROBLEMA 1. A una columna de agotamiento como la indicada en la figura, ingresa una mezcla etanol/agua en su punto de burbuja, de composición 50

Más detalles

CLASE 10 BALANCE DE MASA CON REACCIONES QÚÍMICAS Y COMBUSTIÓN

CLASE 10 BALANCE DE MASA CON REACCIONES QÚÍMICAS Y COMBUSTIÓN CLASE 10 BALANCE DE MASA CON REACCIONES QÚÍMICAS Y COMBUSTIÓN Universidad de la Costa, C.U.C. Programa de Ingeniería Ambiental Asignatura: Diseño de Plantas Industriales PROFESOR: JORGE ENRIQUE CALDERÓN

Más detalles

3.3 Balance de materia en procesos reactivos

3.3 Balance de materia en procesos reactivos 1 Un conjunto de evaporadores opera en forma secuencial con el objeto de eliminar la humedad de una mezcla de sólidos en suspensión. alcular las corrientes, 5 y 7 (y sus composiciones) a fin de determinar

Más detalles

1 METODOLOGÍA. 1.1 Descripción del proceso. 1.2 Especificaciones técnicas Reacción

1 METODOLOGÍA. 1.1 Descripción del proceso. 1.2 Especificaciones técnicas Reacción 1 METODOLOGÍA 1.1 Descripción del proceso El proceso estudiado en este trabajo ha sido diseñado para producir aproximadamente 36.800 m3 / año de anhídrido Maleico al 98% de pureza n / n oxidando parcialmente

Más detalles

PRÁCTICA 1: Cálculo de propiedades y equilibrio con Aspen Plus

PRÁCTICA 1: Cálculo de propiedades y equilibrio con Aspen Plus PRÁCTICA 1: Cálculo de propiedades y equilibrio con Aspen Plus 1. Represente conjuntamente la presión de vapor del metano, etano, propano y acetileno (C 2 H 2 ) para el rango de temperaturas de -15 a 50

Más detalles

LEYES DE GASES IDEALES

LEYES DE GASES IDEALES LEYES DE GASES IDEALES PV= k1 Se mantiene Ctte T,n V= k2*t Se mantiene Ctte P,n LEYES DE GASES IDEALES Ecuación de Estado. Donde: P indica la presión del gas. V indica el volumen del gas. n es el número

Más detalles

Métodos para estimar la inversión de capital

Métodos para estimar la inversión de capital Métodos para estimar la inversión de capital osto de la inversión de capital permanente directa DPI : esto es la estimación del costo de compra del equipamiento requerido y el costo de su instalación en

Más detalles

Ing. Anibal García Toledo

Ing. Anibal García Toledo 1er Congreso y Exposición Abasto, Logística y Distribución de Hidrocarburos, Petrolíferos Y Petroquímicos Sustentabilidad Energética Tema: Integración de las Operaciones de Gas y Condensados en la Subdirección

Más detalles

TRABAJO FINAL DE SIMULACIÓN DE PROCESOS

TRABAJO FINAL DE SIMULACIÓN DE PROCESOS TRABAJO FINAL DE SIMULACIÓN DE PROCESOS Estructura: 1. Portada. Descripción breve del proceso a simular, con un diagrama de bloques y/o proceso 3. Pasos en la realización de la simulación, indicando los

Más detalles

MODELADO, SIMULACIÓN Y SINTESIS DE PROCESOS

MODELADO, SIMULACIÓN Y SINTESIS DE PROCESOS Curso de Postgrado de Actualización MODELADO, IMULACIÓN Y INTEI DE PROCEO. Benz, A. anta Cruz, N. cenna Centro de Aplicaciones Informáticas en el Modelado de Ingeniería UTN - Facultad Regional Rosario

Más detalles

Trabajo práctico: Uso de. Componentes Hipotéticos en HYSYS (2012)

Trabajo práctico: Uso de. Componentes Hipotéticos en HYSYS (2012) UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico: Uso de Componentes Hipotéticos en HYSYS (2012) Como pudo verse, Hysys dispone de una importante base de componentes

Más detalles

Estudio de la Combustión y distribución de flujo en una unidad de flare mediante técnicas de CFD

Estudio de la Combustión y distribución de flujo en una unidad de flare mediante técnicas de CFD Estudio de la Combustión y distribución de flujo en una unidad de flare mediante técnicas de CFD Mathieu Ichard (mathieu.ichard@ypf.com) Clarisa Mocciaro Agustín Marticorena Y-TEC (YPF Tecnología) PRESENTACIÓN

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 4: Estimación de propiedades termodinámicas y generación de curvas de equilibrio con HYSYS. Uso de Spreadsheets

Más detalles

DESTILACION DE MULTICOMPONENTES

DESTILACION DE MULTICOMPONENTES DESTILACION DE MULTICOMPONENTES Se desea separa un mezcla gaseosa de 100 moles por hora constituida por Comp. % molar F(mol/hr) C2 0.1% 0.1 CL C3 32.0% 32.0 CP C4 16.0% 16.0 C5 16.5% 16.5 C6 17.0% 17.0

Más detalles

En la ventana emergente (figura 3), se escoge el método de búsqueda: Begins with (por inicio del nombre), Contains (palabra contenida en el nombre) ó

En la ventana emergente (figura 3), se escoge el método de búsqueda: Begins with (por inicio del nombre), Contains (palabra contenida en el nombre) ó Diagrama de equilibrio con Aspen Plus 1. Abrir una simulación en blanco: File > New, seleccionar Blank Simulation y Créate (figura 1) 2. Selección de los componentes: Figura 1. Creación nueva simulación.

Más detalles

Escuela Universitaria de Energía y Minas Operaciones y Procesos PA 1ª. Práctica 1ª : Cálculo Balance de Materia

Escuela Universitaria de Energía y Minas Operaciones y Procesos PA 1ª. Práctica 1ª : Cálculo Balance de Materia Práctica 1ª : Cálculo Balance de Materia Usaremos como herramienta de calculo el programa de calculo Maxima, potente y de distribución gratuita En cualquier momento podemos consultar las pantallas de ayuda:

Más detalles

COMPORTAMIENTO DE SISTEMAS BINARIOS IDEALES EN UNA COLUMNA DE DESTILACION DISCONTINUA INVERTIDA. Manuel Otiniano C.

COMPORTAMIENTO DE SISTEMAS BINARIOS IDEALES EN UNA COLUMNA DE DESTILACION DISCONTINUA INVERTIDA. Manuel Otiniano C. COMPORTAMIENTO DE SISTEMAS BINARIOS IDEALES EN UNA COLUMNA DE DESTILACION DISCONTINUA INVERTIDA Manuel Otiniano C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. RESUMEN

Más detalles