ESTADÍSTICA SEMANA 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA SEMANA 3"

Transcripción

1 ESTADÍSTICA SEMANA 3

2 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO... 4 FÓRMULA PARA DATOS NO AGRUPADOS... 4 FÓRMULA PARA DATOS AGRUPADOS O TABULADOS... 5 LA MODA... 6 EJEMPLO DATOS NO AGRUPADOS... 6 CÁLCULO MODA PARA DATOS AGRUPADOS O TABULADOS... 7 LA MEDIANA FÓRMULA PARA DATOS NO AGRUPADOS FÓRMULA PARA DATOS AGRUPADOS LA MEDIA GEOMÉTRICA FÓRMULA PARA DATOS NO AGRUPADOS FÓRMULA PARA DATOS AGRUPADOS LA MEDIA ARMÓNICA ASIMETRÍA CURTOSIS COMENTARIO FINAL REFERENCIAS

3 MEDIDAS DESCRIPTIVAS APRENDIZAJES ESPERADOS El objetivo de este tema es conocer y aplicar los conceptos relacionados con las diferentes medidas descriptivas de posición y la aplicación e interpretación para datos no agrupados y para datos agrupados. DEFINICIÓN MEDIDA DESCRIPTIVA Sean X 1, X 2,, X n, n observaciones de una variable X. Se dirá que g es una medida descriptiva si g es una función de las observaciones (X 1, X 2,, X n ) (Pagano, 2011). Ejemplos: MEDIDAS DE POSICIÓN Las medidas de posición son el resultado de una observación o una función de las observaciones y tiene como objetivo mostrar el comportamiento de la variable de acuerdo a lo observado en ella. Las más conocidas y utilizadas, son las medidas de tendencia central y los percentiles (Pagano, 2011). 3

4 MEDIDAS DE TENDENCIA CENTRAL Tienen como objetivo determinar dónde se concentran los datos (cuál es el centro de un histograma de frecuencias absolutas o frecuencias relativas). Entre las medidas de tendencia central que se presentarán están: la media aritmética, la moda, la mediana y los percentiles. Antes de comenzar es importante considerar la diferencia entre dos conceptos: datos agrupados o tabulados y datos no agrupados. MEDIA ARITMÉTICA O PROMEDIO La medida de posición más usada es el promedio, que se define como una medida central que relaciona el valor de una variable con su frecuencia relativa de presentación. Corresponde a la media aritmética y se calcula de la siguiente forma, en el caso en que se presenten los datos no agrupados: FÓRMULA PARA DATOS NO AGRUPADOS Ejemplo: Considérese una muestra de 20 alumnos de una universidad. Cuál será el promedio (media aritmética) de sus edades?: Claramente los datos están no agrupados, pues no se encuentran en una tabla de distribución de frecuencias Solución: Por lo tanto el promedio de edad es de 20,4 años. 4

5 FÓRMULA PARA DATOS AGRUPADOS O TABULADOS En el caso de que los datos presentados para el análisis se encuentren en una tabla de frecuencias con m clases, el valor de la media aritmética (promedio) es: Donde m es el número de clases, X i es la marca de clase, n i es la frecuencia absoluta, f i es la frecuencia relativa y n es el número de observaciones Ejemplo 1: Considérese la muestra de las estaturas (en centímetros) de 20 alumnos de la universidad, pero agrupados en una tabla como se muestra a continuación: Por lo tanto el promedio de estaturas es de 174,3 centímetros Ejemplo 2: Considérese la muestra de los ingresos (en miles de $) de 26 obreros de una empresa, agrupados en la siguiente tabla de distribución de frecuencias: 5

6 Por lo tanto, el promedio de ingresos es aproximadamente $ LA MODA Esta se define como el valor observado con mayor frecuencia. Además, puede existir más de un valor con igual número de frecuencia, por lo tanto, se tendría una distribución con varias modas (Pagano, 2011). A continuación se revisarán las fórmulas para los casos donde los datos se encuentran no agrupados y para datos agrupados. EJEMPLO DATOS NO AGRUPADOS No tiene fórmula, pues solo se debe identificar el valor que más se repite dentro de una distribución. Ejemplo: Considérese la siguiente muestra correspondiente al número de hijos de 24 mujeres. 6

7 CÁLCULO MODA PARA DATOS AGRUPADOS O TABULADOS Para calcular la moda en datos agrupados, es decir cuando los datos están presentados en tablas de frecuencias, primero se debe ubicar el tramo o intervalo donde se encuentra la clase con mayor frecuencia absoluta y se utiliza la siguiente fórmula para identificar una aproximación de la moda: Donde: Ejemplo 1: Considérese la muestra de las edades de 20 alumnos de la universidad, pero agrupados en una tabla como se muestra a continuación: Si se reemplazan los valores de la fórmula de la moda. 7

8 Como resultado del ejercicio, se puede concluir que la edad que más se repite según la fórmula utilizada es de 19,5 años. Ejemplo 2: Considérese la muestra de las estaturas (en centímetros) de un grupo de 24 alumnos de una universidad: Antes de reemplazar los valores, si se observa la tabla, se aprecia que existen dos clases que poseen la mayor frecuencia absoluta. Por lo tanto, se puede inferir que en esta distribución existen dos modas. Si se reemplazan los valores de la fórmula de la moda: 8

9 Finalmente las modas son: Por lo tanto las alturas que más se repiten en esta distribución son: 165,3 cm y 172 cm. Otros ejemplos de cálculo de la moda: Los siguientes datos corresponden a los ingresos en miles de pesos de los empleados de una oficina: 9

10 Soluciones a) b) LA MEDIANA En un conjunto de observaciones ordenadas de menor a mayor, es una observación que divide a la muestra o la población en dos partes iguales y las agrupa en 50% menor a esa observación y un 50% mayor a esa observación. Es decir: Si X 1, X 2,, X n es una muestra entonces se define a X (1), X (2), X (n) la muestra ordenada de menor a mayor (X (1) sería el mínimo y X (n) sería el máximo) (Pagano, 2011). FÓRMULA PARA DATOS NO AGRUPADOS Para aplicar esta fórmula, primero se tiene que verificar si el total de casos n de la muestra es par o impar. 10

11 i) Si n es impar, entonces: ii) Si n es par, entonces: Ejemplo 1: Dados los siguientes datos correspondientes al número de hijos de 19 familias: º se ordenan los datos en forma ascendente, estos quedan: º se tiene un número impar de observaciones n = 19. Una vez aplicada la fórmula, se indicará en qué ubicación se encuentra la medida, con los datos previamente ordenados de menor a mayor. En el caso del ejemplo corresponde a la 10ª posición. Ejemplo 2: Los siguientes datos corresponden a las edades de 18 personas elegidas al azar: º se ordenan los datos en forma ascendente, estos quedan: º se tiene un número par de observaciones n =

12 FÓRMULA PARA DATOS AGRUPADOS Ejemplo 1: Los siguientes datos (agrupados) corresponden a los pesos en kg. de un grupo de jóvenes estudiantes de Administración de empresas, de IACC. 12

13 Se calcula la mediana, entonces: Ejemplo 2: Considérense los siguientes datos correspondientes a los tiempos de espera en la fila de un banco, de 40 clientes. 13

14 LA MEDIA GEOMÉTRICA La media geométrica (Mg) se usa especialmente en los casos en que existe una tasa de crecimiento relativamente constante (población, montos medios de capitales sujetos a interés compuesto, entre otros; o simplemente cuando se desea un porcentaje medio de crecimiento o de baja, según corresponda). También se utiliza de preferencia cuando conviene dar importancia a los valores pequeños. Otro uso de la media geométrica es la determinación del valor medio en un conjunto de porcentajes de variación mensual (Pagano, 2011). FÓRMULA PARA DATOS NO AGRUPADOS FÓRMULA PARA DATOS AGRUPADOS Ejemplo 1: Considérese el cuadro anterior de distribución, correspondiente a los pesos de un grupo de mujeres. 14

15 Calcúlese la media geométrica: LA MEDIA ARMÓNICA Se emplea la media armónica (Mh) para obtener un valor representativo de un conjunto de datos expresados en forma de tasas, esto es, tantas unidades de un tipo por cada unidad de otra especie (Pagano, 2011). Calcúlese la media armónica para el ejemplo anterior: Entonces: 15

16 ASIMETRÍA La asimetría es un estadígrafo necesario para conocer cuánto se aproxima la distribución a una distribución teórica llamada curva normal (Pagano, 2011). El sesgo o asimetría (skewness) es la carencia de forma simétrica en la gráfica de un conjunto de datos. Si no existe asimetría o sesgo en los datos, la media es igual a la mediana y a la moda. Otra explicación se puede relacionar con el valor de la mediana, lo que implica que el 50% de los valores están por encima de la media y el 50% se encuentra por debajo, lo que implica un valor de asimetría = 0. Cuando el valor calculado para la asimetría resulta ser positivo significa que hay una mayor cantidad de datos agrupados hacia la izquierda de la curva (por debajo de la media). Mediana Moda Media Interpretando este gráfico, se deduce que: La moda es el valor que corresponde al punto más alto. La media es el mayor valor de los tres estadígrafos. 16

17 Cuando la asimetría es negativa significa que los valores tienden a agruparse hacia la derecha de la curva (por encima de la media la media es el valor más pequeño de los tres valores). Mediana Media Moda Es importante considerar que si la distribución concentra los valores hacia la derecha o hacia la izquierda, la media no sería representativa, por lo tanto, la mediana y la moda pasan a ser más representativas. CURTOSIS La curtosis mide el grado de agudeza de una distribución, esta se expresa como aparece en los gráficos a continuación. Cuando la curtosis es cero (0), significa que se trata de una curva normal, si es positiva, quiere decir que la curva o distribución es más elevada que la distribución teórica, por el contrario si es negativa, se puede decir que la curva es más plana (Pagano, 2011). Curva Leptocúrtica Curva Plalticúrtica Curva Mesocúrtica Eje Y Eje Y Eje Y Eje X Eje X Eje X El cálculo de este coeficiente, es factible a través de Microsoft Excel, pero antes se debe habilitar el complemento de análisis de datos, el cual encontrarán en el ítem de ayuda de dicha aplicación. 17

18 COMENTARIO FINAL Durante esta semana comenzamos a realizar los primeros cálculos relacionados con medidas de posición y de tendencia central, por lo tanto, ya están en condiciones de calcular en detalle las fórmulas de la media, moda, mediana, media armónica, media geométrica, además, pueden aplicar las formulas relacionadas a datos sin agrupar y para datos agrupados, se resolvieron ejercicios donde los datos se presentaron de forma no agrupados y también se resolvieron casos donde la variable se encuentra agrupada en una tabla de distribución de frecuencia. 18

19 REFERENCIAS Anderson David R., Sweeney Dennis J., Williams Thomas A. (2008). Estadística para administración y economía (10ª edición). Cencage Learning Canavos, George. (1988). Introducción y estadística descriptiva. Probabilidad y estadística. México: McGraw-Hill/Interamericana S. A. Pagano, Robert R. (2011). Estadística para las ciencias del comportamiento (9ª edición). Cencage Learning. PARA REFERENCIAR ESTE DOCUMENTO, CONSIDERE: IACC (2012). Estadística. Semana 3. 19

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN Cuando se analiza un conjunto de datos, normalmente muestran una tendencia a agruparse o aglomerarse alrededor de un punto central. Para describir ese conjunto

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad

MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad 1 Propiedades deseables de una medida de Tendencia Central. 1) Definida objetivamente a partir de los datos de la serie. 2) Que dependa

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Estadística I. Presentación de casos N 2

Estadística I. Presentación de casos N 2 Presentación de casos N 2 1. Dados los siguientes datos : 12 3 4 4 10 12 14 09 16 12 8 14 5 17 12 Calcule la Desviación Media Calcule la Desviación Típica o Estándar Calcule la Varianza Si todos los datos

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Los Gráficos. Que son? Cuales son los tipos que conoces. Cual es su relación con la estadística?

Los Gráficos. Que son? Cuales son los tipos que conoces. Cual es su relación con la estadística? Los Gráficos Que son? Cual es su relación con la estadística? Que factores se deben considerar para leerlos correctament e? Cuales son los tipos que conoces La representación grafica de datos sobre un

Más detalles

Teoría de errores -Hitogramas

Teoría de errores -Hitogramas FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: pinikel@hotmail.com Ma. Florencia Kronberg - e-mail:sil_simba@hotmail.com Silvina Poncelas - e-mail:flo_kron@hotmail.com Introducción:

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

PROBLEMAS ESTADÍSTICA I

PROBLEMAS ESTADÍSTICA I PROBLEMAS ESTADÍSTICA I INGENIERÍA TÉCNICA EN INFORMÁTICA CURSO 2002/2003 Estadstica Descriptiva Unidimensional 1. Un edificio tiene 45 apartamentos con el siguiente número de inquilinos: 2 1 3 5 2 2 2

Más detalles

Temas de Estadística Práctica

Temas de Estadística Práctica Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: Medidas de tipo paramétrico Resumen teórico Medidas de tipo paramétrico Medidas de tendencia central Medidas

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

Tablas de frecuencias con datos agrupados

Tablas de frecuencias con datos agrupados Tablas de frecuencias con datos agrupados Cuando los valores de la variable son muchos, conviene agrupar los datos en intervalos o clases para así realizar un mejor análisis e interpretación de ellos.

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2012/01/27 Revisión No. 1 AC-DO-F-8 Página 1 de 3 ESTADÍSTICA DESCRIPTIVA CÓDIGO 14241 PROGRAMA TECNOLOGÍA EN CONTABILIDAD Y TRIBUTARIA ÁREA DE FORMACIÓN CIENCIAS

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA Estimado estudiante continuando con el estudio, determinaremos el comportamiento de una función en un intervalo, es decir, cuestiones como: Tiene la

Más detalles

UNIDAD 1 Estadimetría

UNIDAD 1 Estadimetría UNIDAD 1 Estadimetría La estadimetría es un método que sirve para medir distancias y diferencias de elevación indirectamente, es rápido pero su precisión no es muy alta. Este procedimiento se emplea cuando

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Economía en la escuela

Economía en la escuela Título de la actividad: Uso de indicadores estadísticos para la interpretación de información económica. Introducción Se espera que los alumnos y alumnas de este nivel puedan calcular las medidas de tendencia

Más detalles

EJERCICIOS ESTADÍSTICA DESCRIPTIVA

EJERCICIOS ESTADÍSTICA DESCRIPTIVA EJERCICIOS ESTADÍSTICA DESCRIPTIVA 1.- Dada la siguiente distribución de frecuencias de variable discreta. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica x i f i 47 1 48 3 49 2 50

Más detalles

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN)

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) Las medidas de tendencia central se llaman promedios. Un promedio es un valor típico en el sentido de que se emplea a veces para representar todos los

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

PROGRAMA DE LA ASIGNATURA: Estadística Básica

PROGRAMA DE LA ASIGNATURA: Estadística Básica Misión del Instituto Superior Bonó Formar personas con y para los demás a través de las humanidades, ciencias sociales y la filosofía, promoviendo un pensamiento crítico y una sensibilidad intercultural,

Más detalles

Tras trabajar con los datos extraídos de distintas tablas, hemos confeccionado una tabla resumen con los datos de las probabilidades obtenidas.

Tras trabajar con los datos extraídos de distintas tablas, hemos confeccionado una tabla resumen con los datos de las probabilidades obtenidas. 4. Supongamos que tenemos una larga lista de longitudes de ríos, alturas de montañas, superficies de países, precios de artículos, etc. y que nos fijamos tan sólo en el primer dígito. Cuál es la probabilidad

Más detalles

Guía para maestro. Medidas de dispersión. Guía para el maestro. Compartir Saberes

Guía para maestro. Medidas de dispersión. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com bperalta@colegioscompartir.org Determinan si la media de la distribución de los datos es

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Estadística Básica. Unidad 2. Actividades

Estadística Básica. Unidad 2. Actividades Estadística Básica Unidad 2. Actividades 0 Actividades Este documento contiene la presentación e indicaciones para realizar las actividades de esta unidad. Algunas actividades requieren un doble envío

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

ESTADÍSTICA I Código: 8219

ESTADÍSTICA I Código: 8219 ESTADÍSTICA I Código: 8219 Departamento : Metodología Especialidad : Ciclo Básico Prelación : Sin Prelación Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016) L ICDA.CL AUDIA J U DIT H MORAL E S L ÓPE Z

ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016) L ICDA.CL AUDIA J U DIT H MORAL E S L ÓPE Z U N I V E R S I D A D D E S A N C A R L O S D E G U A T E M A L A C E N T R O U N I V E R S I T A R I O D E O R I E N T E C I E N C I A S E C O N Ó M I C A S ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016)

Más detalles

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES MÁLAGA, 2004 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD CICLO: I-2015 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Control Estadístico parte I Entorno Lugar de Ejecución:

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE 1. TÉCNICAS DE INVESTIGACIÓN SOCIAL 1.1. Datos de la asignatura Tipo de estudios Titulación Nombre de la asignatura Carácter de la asignatura Licenciatura Investigación

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles

EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES SEGUNDO CICLO DE EDUCACIÓN MEDIA PRUEBA MATEMÁTICA 2013

EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES SEGUNDO CICLO DE EDUCACIÓN MEDIA PRUEBA MATEMÁTICA 2013 Coordinación Nacional de Normalización de Estudios / División de Educación General EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES SEGUNDO CICLO DE EDUCACIÓN MEDIA PRUEBA MATEMÁTICA 2013 DESCRIPCIÓN DE

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA TRONCO COMÚN 2003-1 4347 ESTÁTICA NOMBRE DE LA ASIGNATURA PRÁCTICA No. LABORATORIO DE CIENCIAS BÁSICAS DURACIÓN(HORAS) EST-01 NOMBRE DE LA PRÁCTICA REPORTE DE LA

Más detalles

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España

MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN Medidas de Tendencia Central Medidas de Dispersión Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN DEFINICIONES: Medida de tendencia central:

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 11 Nombre: Funciones exponenciales y logarítmicas. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos relacionados con las funciones

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

VACACIONES PROPORCIONALES DETERMINACION DE LA CANTIDAD DE DIAS

VACACIONES PROPORCIONALES DETERMINACION DE LA CANTIDAD DE DIAS VACACIONES PROPORCIONALES DETERMINACION DE LA CANTIDAD DE DIAS En el convenio, en la solapa SIN ANTIGÜEDAD MÍNIMA del ítem DETERMINACION DE LAS VACACIONES, podrá definir el método a considerar en la planificación

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

Curso: POBLACIÓN Y DESARROLLO Conferencia 4

Curso: POBLACIÓN Y DESARROLLO Conferencia 4 Tema 2. Dinámica y perspectivas de la población. Sumario: La mortalidad. Continuación... - El método de tipificación. Conceptos y razones para su uso. Tipos de métodos de tipificación. - La tipificación

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof.

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof. UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA Prof. Evy Guerrero Análisis e interpretación de los datos Una vez recolectada la información

Más detalles

(L i 1, L i ] x i n i N i f i F i a i h i (20, 50] 35 2 2 (, 60] 10 0.125 (60, ] 0.425 10 (, ] 75 0.225 (, 100] 28 80 1.4

(L i 1, L i ] x i n i N i f i F i a i h i (20, 50] 35 2 2 (, 60] 10 0.125 (60, ] 0.425 10 (, ] 75 0.225 (, 100] 28 80 1.4 Problemas Tema 1-I 1. Un gabinete de trabajo ha realizado un estudio sobre la distribución de la renta per cápita por municipio, construyéndose una tabla que posteriormente se extravió, quedando sólo la

Más detalles

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE

Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Tipos de gráficas y selección según los datos CIENCIA, TECNOLOGIA Y AMBIENTE Objetivos 2 Identificar los tipos de gráficas. Definir los conceptos tablas y cuadros Reconocer las partes de una gráfica. Construir

Más detalles

Inversión en condiciones de riesgo, riesgo y rendimiento

Inversión en condiciones de riesgo, riesgo y rendimiento Los barcos no están hechos más que de tablas, los marineros no son más que hombres; hay ratas de tierra y ratas de agua; Ladrones de tierra y Ladrones de agua; quiero decir piratas. Además existe el peligro

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Universidad Nacional de Santiago del Estero Facultad de Humanidades, Ciencias Sociales y de la Salud

Universidad Nacional de Santiago del Estero Facultad de Humanidades, Ciencias Sociales y de la Salud IDENTIFICACIÓN: Nombre de la Asignatura: ESTADISTICA Carrera: Lic. Y Porf. En Educación para la Salud Ciclo: Primero. Año: 2010 Correlativas: Anterior: Ninguna Posterior: Salud Pública y Técnicas de Investigación

Más detalles

Julio Deride Silva. 27 de agosto de 2010

Julio Deride Silva. 27 de agosto de 2010 Estadística Descriptiva Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de agosto de 2010 Tabla de Contenidos Estadística Descriptiva Julio Deride

Más detalles