Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange"

Transcripción

1 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley de nerca: enúncela! b) 2ª ley de ewton: enúncela! c) 3ª ley de ewton: Ley de accón y reaccón (enúncela tambén).2. Comentaros a las leyes de ewton a) Prmera ley: - Crea el ámbto lógco del movmento: espaco homogéneo e sótropo, tempo homogéneo - Excluye varacones espontáneas de la velocdad b) Segunda ley: - Concepto de masa nerte como magntud constante, postva y adtva c) Tercera ley: - Velocdad nfnta del fenómeno de nteraccón gravtatora.3. Ley de la gravtacón unversal m F m m G ( ) m F F = r 3 r r r G: Constante de la gravtacón unversal ( cuál es el valor de G?) - Concepto de masa pesante - Expermento de Galleo: dentfcacón numérca de las masas nerte y pesante. TECU, 2006

2 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 2. Sstema cnétco a) Defncón: sstema de vectores lgados obtendo al aplcar en cada punto de un sstema materal un vector equpolente a m.v ( m es la masa de tal punto y v, su velocdad). b) - Resultante general: es el momento lneal - ó cantdad de movmento -: = p mv y tenendo en cuenta las propedades del centro de masas, G, = p = mv = v m = Mv () (M = masa total del sstema ) G G = = - El momento resultante del sstema cnétco respecto de un punto O, se llama momento angular - ó momento cnétco - en dcho punto: = O m = H OA v ( A punto ocupado por la masa m ) - - Energía cnétca: = 2 T mv 2 = 3. Teoremas de Köng Tenendo en cuenta las propedades del centro de masas se puede establecer que: v = vg + v r ( v r es la velocdad de la masa m en su movmento relatvo respecto a unos ees con orgen en G que se trasladan permanentemente). º Teorema: 2 2 vg v r = = T = mv = m( + ) 2 2 Hacendo operacones (hágalas): T = Mv + mv = Mv + T = 2 (sendo Tr m.v r) 2 2 = 2 2º Teorema: G r G r = H = GA mv = GA m ( v + v ) G G r = = TECU, 2006

3 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Hacendo operacones (hágalas): = G m r = H GA v, pues m G = GA v = 0 por qué? 4. Sstema dnámco a) Defncón: sstema de vectores lgados consttudo por las fuerzas actuantes sobre sus puntos materales. b) - Resultante general: F= F = F + F = F ac ext nt ext = = = = (pues por la 3º Ley de ewton = F = 0) nt - Momento resultante en un punto O: = OA F = OA F + OA F = OA F O ac ext nt ext = = = = pues por la 3º Ley de ewton nt = OA F = 0 ( O ) - Trabao elemental: = dw F.dr ( dw no es una dferencal exacta) = ac 5. Teoremas fundamentales de la dnámca p H o T Sstema cnétco Teoremas fundamentales Sstema dnámco F o dw TECU, 2006

4 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 dp a) = F (demuéstrelo) o ben, tenendo en cuenta () dt Ma = F Teorema del momento lneal G dho b) + vo p = O (demuéstrelo) y tenendo en cuenta (): dt dh dt G = G Teorema del momento angular c) dt = dw (demuéstrelo) Teorema de la energía 6. Prncpo de D Alembert a) Defncón de fuerza de nerca φ φ = ma b) Enuncado del prncpo: F + φ = 0 =... ac Todo sstema materal se encuentra en equlbro cuando se añade a cada punto materal su correspondente fuerza de nerca. c) Comentaros a este prncpo: - es una nueva perspectva no causal; sucesón temporal de equlbros. - posbldad de aplcar a ese equlbro el teorema de los trabaos vrtuales para determnar las fuerzas de nerca equlbrantes y, por tanto, el movmento del sstema. 7. Ecuacones de Lagrange a) Requstos que se han de mponer a los sstemas materales: - formados por sóldos ndeformables - con enlaces ( qué es un enlace? qué tpos exsten?) holónomos ( qué son enlaces holónomos?) y perfectos ( cuándo son perfectos los enlaces?) b) Concepto de desplazamento vrtual, elemental, δr : Lleva al sstema desde la confguracón que realmente ocupa a otra nfntamente próxma que podía haber ocupado en el msmo nstante: TECU, 2006

5 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 r δ r = δq (el tempo se congela ) n = c) otas matemátcas prevas: v v r = = d r dt (demuestre estas gualdades) d) F + φ = 0 ( F + φ ) δ r = 0 ac ac = luego: 0 = F δ r + φ δr (2) ac = = * F δ r = F δr ( por qué?) ac ap = = r r δ = δ = δq n n Fap r Fap ( q ) F ap = = = = = y de ahí se concluye que: n F δ r = F δ r = Qδq (3) ac ap = = = ( Qué es Q y cómo se obtene en la práctca?) r r δ = δ = δ = δ = n n * φ r ma r m a ( q) ma q = = = = = = = n d m v r δq dt = = Hacendo las operacones (hágalas) se llega a: d T T φ δ r = δ q + δq (4) n n = = dt = TECU, 2006

6 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 En defntva, llevando (3) y (4) a (2): n n n d T T 0 Qδq δ q + δ q = = dt = y de aquí a que: d T T Q = =, 2...n ( por qué?) dt q q que son las ecuacones de Lagrange. d) S, además, las fuerzas aplcadas fueran conservatvas: se demuestra que Q V = q (demuéstrelo) y entonces s L=T-V las ecuacones de Lagrange toman la sguente forma: d L L = 0 dt =, 2...n e) En el caso general de que las fuerzas aplcadas fueran unas conservatvas y otras no conservatvas, las ecuacones de Lagrange serían: d L L = Q dt =, 2...n, L=T-V (V de las fuerzas conservatvas) Q obtendo tan sólo a partr de las fuerzas aplcadas no conservatvas. 8. Momentos canóncos. Teorema de conservacón a) Defncón: p L = q es el momento canónco asocado a la coordenada q b) Teorema de conservacón: en el caso de que se puedan establecer las ecuacones de Lagrange y todas las fuerzas aplcadas sean conservatvas, s la L = T-V no fuera funcón explícta de una coordenada (por eemplo q k ), aunque s lo sea de q k, al aplcar la ecuacón de Lagrange correspondente a ese coordenada: TECU, 2006

7 TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 d L L d L = 0 = 0 p k = 0 pk = cte dt dt k k k * La coordenada q k se llama coordenada cíclca o gnorable, en consecuenca el momento canónco asocado a una coordenada cíclca se conserva constante durante el movmento. 9. Teorema de conservacón de la energía a) Condcones que hay que mponer al sstema materal: Formado por sóldos ndeformables Con enlaces esclerónomos y perfectos Sometdo a fuerzas aplcadas conservatvas En estas condcones: sóldos ndeformables dt = dw dt = dw = dw + dw enlaces perfectos dt = dw aplc ext enl aplc Pero s las fuerzas aplcadas son conservatvas: F = grad, luego: aplc V enlaces esclerónomos aplc = grad r aplc = = = = = = dw V d dw dv dv (V V ) Fnalmente: dt = dv d(t + V) = 0 T + V = E (constante) b) A déntco resultado se hubera llegado medante las ecuacones de Lagrange. En efecto, como: d T T V = =,2...n dt Resultaría tambén que: n n n d T T = V q q q = dt = = O ben ( obténgalo!): n n n n d T T T = V q q q q dt q q q q = = = = TECU, 2006

8 Ahora ben: TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 n q = T = 2T ( por qué?) n T + T dt (q q ) = q q dt = ( demuéstrelo!) n = V q dv = dt ( por qué?) Luego: d(2t) dt dv = T + V = cte dt dt dt 0. Integrales prmeras del movmento Las ntegrales prmeras son aquellas ecuacones que se obtenen al aplcar los teoremas de conservacón, tanto el de conservacón de la energía como el asocado a la exstenca de coordenadas cíclcas (conservacón del momento canónco). Las ecuacones asocadas a los teoremas de conservacón son sempre ecuacones de prmer orden, por lo que podrían consderarse como procedentes de una prmera ntegracón de las ecuacones unversales de la dnámca que son de segundo orden -. S hubera tantas ntegrales prmeras como grados de lbertad es posble llegar a establecer unas ecuacones dferencales de prmer orden de una sola varable, que se conocen como ecuacones del movmento undmensonal equvalente, de las que por smples consderacones geométrcas pueden deducrse propedades mportantes del movmento del sstema mecánco. FI DEL TEMA TECU, 2006

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Cantidad de movimiento

Cantidad de movimiento Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Sistemas de Varias Partículas.

Sistemas de Varias Partículas. Capítulo 6 Sstemas de Varas Partículas. Al estudar los sstemas con varas partículas surgen varos elementos adconales, como son los enlaces o lgaduras entre puntos, tanto nternos al sstema como externos,

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Principio de D Alembert

Principio de D Alembert Capítulo 15 Prncpo de D Alembert 15.1 Prncpo de D Alembert En práctcamente cualquer sstema mecánca, además de las fuerzas que controlan su evolucón, exsten certo número de lgaduras que constrñen su movmento.

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica TERMODINÁMIA FUNDAMENTAL TEMA 3. Prmer prncpo de la termodnámca 1. alor 1.1. oncepto de calor alor: orma de transerenca de energía entre dos sstemas termodnámcos, o entre un sstema y su entorno, como consecuenca

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS

1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1. MODELAMIENTO DE SISTEMAS: FUNDAMENTOS 1.1 INTRODUCCION Un sstema representa una undad donde se hacen tratamentos físcos o químcos de materales que puede ser contrastada con un modelo que representa

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

TERMODINÁMICA. descripción de la materia a nivel MACROSCÓPICO. cambios físicos y químicos que sufre. propiedades de un sistema y sus interrelaciones

TERMODINÁMICA. descripción de la materia a nivel MACROSCÓPICO. cambios físicos y químicos que sufre. propiedades de un sistema y sus interrelaciones ERMODINÁMICA descrpcón de la matera a nvel MACROSCÓPICO propedades de un sstema y sus nterrelacones cambos íscos y químcos que sure 25 C Zn CuSO 4 ZnSO 4 Aplcacones prncpos prncpos prncpos E R M O D I

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

Ecuaciones y Teoremas de la Elasticidad.

Ecuaciones y Teoremas de la Elasticidad. Capítulo 5 Ecuacones y Teoremas de la Elastcdad. partr de las ecuacones báscas de la Teoría de la Elastcdad, presentadas en los tres capítulos anterores, se dervan un conjunto de ecuacones y teoremas de

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

ESCUELA DE INGENIERÍAS INDUSTRIALES. UNIVERSIDAD DE VALLADOLID FÍSICA I. CURSO TEMA 4. Dinámica de los sistemas de partículas

ESCUELA DE INGENIERÍAS INDUSTRIALES. UNIVERSIDAD DE VALLADOLID FÍSICA I. CURSO TEMA 4. Dinámica de los sistemas de partículas ESCUEL DE IGEIERÍS IDUSTRILES. UIVERSIDD DE VLLDOLID FÍSIC I. CURSO 03-04 TEM 4 Dnáca de los ssteas de partículas Introduccón: generalzacón de la ª ley de ewton.- Moento lneal de un sstea de partículas:

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO Págna de 4 TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO INTRODUCCIÓN... 2 2 CLASIFICACIÓN DE LAS ACTIVIDADES PRODUCTIVAS... 4 3 FUNCIÓN DE PRODUCCIÓN... 3 4 CLASIFICACIÓN DE LOS PROCESOS

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

PRACTICA 2. DETERMINACION DE UNA CONSTANTE DE ACIDEZ EMPLEANDO MEDIDAS POTENCIOMETRICAS Y CONDUCTIMETRICAS SIMULACION DE UN CONDUCTIVIMETRO

PRACTICA 2. DETERMINACION DE UNA CONSTANTE DE ACIDEZ EMPLEANDO MEDIDAS POTENCIOMETRICAS Y CONDUCTIMETRICAS SIMULACION DE UN CONDUCTIVIMETRO EXPERIMENTACION EN QUIMICA FISICA 2º Curso er Cuatrmestre Ingenería Técnca Industral - Especaldad en Químca Industral Escuela Unverstara de Ingenería Técnca Industral PRACTICA 2. DETERMINACION DE UNA CONSTANTE

Más detalles

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo ígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, otacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

MÁQUINAS TÉRMICAS. Aspectos Fundamentales de Termodinámica. Mayo 2012 ASPECTOS FUNDAMENTALES

MÁQUINAS TÉRMICAS. Aspectos Fundamentales de Termodinámica. Mayo 2012 ASPECTOS FUNDAMENTALES MÁQUINAS TÉRMICAS Aspectos Fundamentales de Termodnámca rof. Mguel ASUAJE Mayo 2012 Contendo ASECTOS FUNDAMENTALES Breve revsón de los conceptos de Termodnámca Trabajo y Calor rmera Ley d Segunda Ley Cclo

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Texto guía para prácticas Pascual Martí Montrull Gregorio Sánchez Olivares Pedro Martínez Castejón Concepción Díaz Gómez

Texto guía para prácticas Pascual Martí Montrull Gregorio Sánchez Olivares Pedro Martínez Castejón Concepción Díaz Gómez Análss de Estructuras Teto guía para práctcas Pascual Martí Montrull Gregoro Sánchez Olvares Pedro Martínez Casteón Concepcón Díaz Gómez ÍNDICE LISTA DE FIGURAS... LISTA DE SÍMBOLOS... v 1. INTRODUCCIÓN...

Más detalles

TEMA 6 CONTROL DE VIBRACIONES. Control de Vibraciones

TEMA 6 CONTROL DE VIBRACIONES. Control de Vibraciones Control de Vbracones ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 6. - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 6. - 6. Introduccón y metodologías En la práctca, exsten un gran número de stuacones en las que es

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Potenciales y campos eléctricos

Potenciales y campos eléctricos Potencales y campos eléctrcos Obetvo El obetvo de este expermento es determnar las líneas (o superfces) equpotencales es decr el lugar geométrco donde el potencal eléctrco es constante. Estos potencales

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Mediciones eléctricas X

Mediciones eléctricas X Medcones eléctrcas X Proesor: Gabrel Ordóñez Plata Ampérmetro Sstema Eléctrco Vóltmetro Clase Prncpo de operacón Subclase Campo de aplcacón Electromagnétco Electrodnámco Interaccón entre correntes y campos

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles